首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
以单核苷酸多态性(Single-nucleotide polymorphism, SNP)为遗传标记, 采用全基因组关联研究(Genome-wide association studies, GWAS)的策略, 已经在660多种疾病(或性状)中发现了3800多个遗传易感基因区域。但是, 其中最显著关联的遗传变异或致病性的遗传变异位点及其生物学功能并不完全清楚。这些位点的鉴定有助于阐明复杂疾病的生物学机制, 以及发现新的疾病标记物。后GWAS时代的主要任务之一就是通过精细定位研究找到复杂疾病易感基因区域内最显著关联的易感位点或致病性的易感位点并阐明其生物学功能。针对常见变异, 可通过推断或重测序增加SNP密度, 寻找最显著关联的SNP位点, 并通过功能元件分析、表达数量性状位点(Expression quantitative trait locus, eQTL)分析和单体型分析等方法寻找功能性的SNP位点和易感基因。针对罕见变异, 则可采用重测序、罕见单体型分析、家系分析和负荷检验等方法进行精细定位。文章对这些策略和所面临的问题进行了综述。  相似文献   

2.
The rapid decrease in sequencing cost has enabled genetic studies to discover rare variants associated with complex diseases and traits. Once this association is identified, the next step is to understand the genetic mechanism of rare variants on how the variants influence diseases. Similar to the hypothesis of common variants, rare variants may affect diseases by regulating gene expression, and recently, several studies have identified the effects of rare variants on gene expression using heritability and expression outlier analyses. However, identifying individual genes whose expression is regulated by rare variants has been challenging due to the relatively small sample size of expression quantitative trait loci studies and statistical approaches not optimized to detect the effects of rare variants. In this study, we analyze whole-genome sequencing and RNA-seq data of 681 European individuals collected for the Genotype-Tissue Expression (GTEx) project (v8) to identify individual genes in 49 human tissues whose expression is regulated by rare variants. To improve statistical power, we develop an approach based on a likelihood ratio test that combines effects of multiple rare variants in a nonlinear manner and has higher power than previous approaches. Using GTEx data, we identify many genes regulated by rare variants, and some of them are only regulated by rare variants and not by common variants. We also find that genes regulated by rare variants are enriched for expression outliers and disease-causing genes. These results suggest the regulatory effects of rare variants, which would be important in interpreting associations of rare variants with complex traits.  相似文献   

3.
Many questions about the genetic basis of complex traits remain unanswered. This is in part due to the low statistical power of traditional genetic mapping studies. We used a statistically powerful approach, extreme QTL mapping (X-QTL), to identify the genetic basis of resistance to 13 chemicals in all 6 pairwise crosses of four ecologically and genetically diverse yeast strains, and we detected a total of more than 800 loci. We found that the number of loci detected in each experiment was primarily a function of the trait (explaining 46% of the variance) rather than the cross (11%), suggesting that the level of genetic complexity is a consistent property of a trait across different genetic backgrounds. Further, we observed that most loci had trait-specific effects, although a small number of loci with effects in many conditions were identified. We used the patterns of resistance and susceptibility alleles in the four parent strains to make inferences about the allele frequency spectrum of functional variants. We also observed evidence of more complex allelic series at a number of loci, as well as strain-specific signatures of selection. These results improve our understanding of complex traits in yeast and have implications for study design in other organisms.  相似文献   

4.
PURPOSE OF REVIEW: Recently, genome-wide genetic screening of common DNA sequence variants has proven a successful approach to identify novel genetic contributors to complex traits. This review summarizes recent genome-wide association studies for lipid phenotypes, and evaluates the next steps needed to obtain a full picture of genotype-phenotype correlation and apply these findings to inform clinical practice. RECENT FINDINGS: So far, genome-wide association studies have defined at least 19 genomic regions that contain common DNA single nucleotide polymorphisms associated with LDL cholesterol, HDL cholesterol and/or triglycerides. Of these, eight represent novel loci in humans, whereas 11 genes have been previously implicated in lipoprotein metabolism. Many of the same loci with common variants have already been shown to lead to monogenic lipid disorders in humans and/or mice, suggesting that a spectrum of common and rare alleles at each validated locus contributes to blood lipid concentrations. SUMMARY: At least 19 loci harbor common variations that contribute to blood lipid concentrations in humans. Larger scale genome-wide association studies should identify additional loci, and sequencing of these loci should pinpoint all relevant alleles. With a full catalog of DNA polymorphisms in hand, a panel of lipid-related variants can be studied to provide clinical risk stratification and targeting of therapeutic interventions.  相似文献   

5.
With the rise of sequencing technologies, it is now feasible to assess the role rare variants play in the genetic contribution to complex trait variation. While some of the earlier targeted sequencing studies successfully identified rare variants of large effect, unbiased gene discovery using exome sequencing has experienced limited success for complex traits. Nevertheless, rare variant association studies have demonstrated that rare variants do contribute to phenotypic variability, but sample sizes will likely have to be even larger than those of common variant association studies to be powered for the detection of genes and loci. Large-scale sequencing efforts of tens of thousands of individuals, such as the UK10K Project and aggregation efforts such as the Exome Aggregation Consortium, have made great strides in advancing our knowledge of the landscape of rare variation, but there remain many considerations when studying rare variation in the context of complex traits. We discuss these considerations in this review, presenting a broad range of topics at a high level as an introduction to rare variant analysis in complex traits including the issues of power, study design, sample ascertainment, de novo variation, and statistical testing approaches. Ultimately, as sequencing costs continue to decline, larger sequencing studies will yield clearer insights into the biological consequence of rare mutations and may reveal which genes play a role in the etiology of complex traits.  相似文献   

6.
Blood lipid concentrations are heritable risk factors associated with atherosclerosis and cardiovascular diseases. Lipid traits exhibit considerable variation among populations of distinct ancestral origin as well as between individuals within a population. We performed association analyses to identify genetic loci influencing lipid concentrations in African American and Hispanic American women in the Women’s Health Initiative SNP Health Association Resource. We validated one African-specific high-density lipoprotein cholesterol locus at CD36 as well as 14 known lipid loci that have been previously implicated in studies of European populations. Moreover, we demonstrate striking similarities in genetic architecture (loci influencing the trait, direction and magnitude of genetic effects, and proportions of phenotypic variation explained) of lipid traits across populations. In particular, we found that a disproportionate fraction of lipid variation in African Americans and Hispanic Americans can be attributed to genomic loci exhibiting statistical evidence of association in Europeans, even though the precise genes and variants remain unknown. At the same time, we found substantial allelic heterogeneity within shared loci, characterized both by population-specific rare variants and variants shared among multiple populations that occur at disparate frequencies. The allelic heterogeneity emphasizes the importance of including diverse populations in future genetic association studies of complex traits such as lipids; furthermore, the overlap in lipid loci across populations of diverse ancestral origin argues that additional knowledge can be gleaned from multiple populations.  相似文献   

7.
Genome-wide association studies (GWAS) have successfully identified many genetic variants associated with complex diseases and traits. However, functional consequence of genetic variants studied in GWAS is not yet fully investigated, which would hinder the application of GWAS. We therefore performed a systematic functional analysis of HapMap SNPs, which have been most commonly used as the reference panel for GWAS. Our study highlights several characteristics of HapMap SNPs and identifies subsets of genetic variants with interesting functional implication. The results show that HapMap SNPs have good coverage within RefSeq genes, especially within known disease-related genes. On the other hand, only a small percentage of SNPs are non-synonymous SNPs while many SNPs are actually located at gene deserts. Moreover, many functionally important variants are not yet still interrogated. A redesigned SNP reference panel with additional functionally important variants would be useful to identify disease-causal variants in the future genome-wide studies.  相似文献   

8.
Within the last 3 years, genome-wide association studies (GWAS) have had unprecedented success in identifying loci that are involved in common diseases. For example, more than 35 susceptibility loci have been identified for type 2 diabetes and 32 for obesity thus far. However, the causal gene and variant at a specific linkage disequilibrium block is often unclear. Using a combination of different mouse alleles, we can greatly facilitate the understanding of which candidate gene at a particular disease locus is associated with the disease in humans, and also provide functional analysis of variants through an allelic series, including analysis of hypomorph and hypermorph point mutations, and knockout and overexpression alleles. The phenotyping of these alleles for specific traits of interest, in combination with the functional analysis of the genetic variants, may reveal the molecular and cellular mechanism of action of these disease variants, and ultimately lead to the identification of novel therapeutic strategies for common human diseases. In this Commentary, we discuss the progress of GWAS in identifying common disease loci for metabolic disease, and the use of the mouse as a model to confirm candidate genes and provide mechanistic insights.  相似文献   

9.
10.
原发性高血压全基因组关联研究进展   总被引:2,自引:0,他引:2  
Xu RW  Yan WL 《遗传》2012,34(7):793-809
原发性高血压是一种由遗传与环境因素共同导致的复杂疾病,具有高度的遗传异质性。自2007年首个高血压全基因组关联研究(Genome-wide association studies,GWAS)报道以来,许多GWAS相继开展。文章首先对2007年1月至2011年9月期间报道的24篇血压/高血压易感基因的GWAS按人种与染色体位置对其结果进行汇总,经统计位点rs17249754、rs1378942和rs11191548报道频数最多。其次介绍了GWAS方法学的研究进展,包括选择高质量的数量表型和选择多阶段研究设计来增加研究发现阳性关联的机会。统计分析方面,除强调了已经报道过的多重比较和重复(验证)研究等问题外,文章还介绍了通过Meta分析对GWAS数据进行深度发掘,并应用基因型填补法对缺失数据进行填补可以提高全基因组遗传标记的覆盖率的方法。尽管GWAS发现了许多我们未知的基因与疾病表型的关联,为了解高血压的发病机制提供了更多线索,但是目前GWAS发现的血压/高血压相关变异多为对人群血压的影响极其微弱的常见变异。因此今后的研究中可加强深度功能学研究对易感基因精细定位和外显子组测序技术的应用,结合GWAS的成果进行生物信息学通路分析和表观遗传学机制研究等,逐步揭示高血压的遗传机制。  相似文献   

11.
A primary goal of genetic association studies is to elucidate genes and novel biological mechanisms involved in disease. Recently, genome-wide association studies have identified many common genetic variants that are significantly associated with complex diseases such as cancer. In contrast to mutation-causing Mendelian disorders, a sizable fraction of the variants lies outside known protein-coding regions; therefore, understanding their biological consequences presents a major challenge in human genetics. Here we describe an integrated framework to allow non-protein coding loci to be annotated with respect to regulatory functions. This will facilitate identification of target genes as well as prioritize variants for functional testing.  相似文献   

12.
Linkage analysis was developed to detect excess co-segregation of the putative alleles underlying a phenotype with the alleles at a marker locus in family data. Many different variations of this analysis and corresponding study design have been developed to detect this co-segregation. Linkage studies have been shown to have high power to detect loci that have alleles (or variants) with a large effect size, i.e. alleles that make large contributions to the risk of a disease or to the variation of a quantitative trait. However, alleles with a large effect size tend to be rare in the population. In contrast, association studies are designed to have high power to detect common alleles which tend to have a small effect size for most diseases or traits. Although genome-wide association studies have been successful in detecting many new loci with common alleles of small effect for many complex traits, these common variants often do not explain a large proportion of disease risk or variation of the trait. In the past, linkage studies were successful in detecting regions of the genome that were likely to harbor rare variants with large effect for many simple Mendelian diseases and for many complex traits. However, identifying the actual sequence variant(s) responsible for these linkage signals was challenging because of difficulties in sequencing the large regions implicated by each linkage peak. Current 'next-generation' DNA sequencing techniques have made it economically feasible to sequence all exons or the whole genomes of a reasonably large number of individuals. Studies have shown that rare variants are quite common in the general population, and it is now possible to combine these new DNA sequencing methods with linkage studies to identify rare causal variants with a large effect size. A brief review of linkage methods is presented here with examples of their relevance and usefulness for the interpretation of whole-exome and whole-genome sequence data.  相似文献   

13.
Infectious pathogens have long been recognized as potentially powerful agents impacting on the evolution of human genetic diversity. Analysis of large-scale case-control studies provides one of the most direct means of identifying human genetic variants that currently impact on susceptibility to particular infectious diseases. For over 50 years candidate gene studies have been used to identify loci for many major causes of human infectious mortality, including malaria, tuberculosis, human immunodeficiency virus/acquired immunodeficiency syndrome, bacterial pneumonia and hepatitis. But with the advent of genome-wide approaches, many new loci have been identified in diverse populations. Genome-wide linkage studies identified a few loci, but genome-wide association studies are proving more successful, and both exome and whole-genome sequencing now offer a revolutionary increase in power. Opinions differ on the extent to which the genetic component to common disease susceptibility is encoded by multiple high frequency or rare variants, and the heretical view that most infectious diseases might even be monogenic has been advocated recently. Review of findings to date suggests that the genetic architecture of infectious disease susceptibility may be importantly different from that of non-infectious diseases, and it is suggested that natural selection may be the driving force underlying this difference.  相似文献   

14.
Many genetic loci and SNPs associated with many common complex human diseases and traits are now identified. The total genetic variance explained by these loci for a trait or disease, however, has often been very small. Much of the "missing heritability" has been revealed to be hidden in the genome among the large number of variants with small effects. Several recent studies have reported the presence of multiple independent SNPs and genetic heterogeneity in trait-associated loci. It is therefore reasonable to speculate that such a phenomenon could be common among loci known to be associated with a complex trait or disease. For testing this hypothesis, a total of 117 loci known to be associated with rheumatoid arthritis (RA), Crohn disease (CD), type 1 diabetes (T1D), or type 2 diabetes (T2D) were selected. The presence of multiple independent effects was assessed in the case-control samples genotyped by the Wellcome Trust Case Control Consortium study and imputed with SNP genotype information from the HapMap Project and the 1000 Genomes Project. Eleven loci with evidence of multiple independent effects were identified in the study, and the number was expected to increase at larger sample sizes and improved statistical power. The variance explained by the multiple effects in a locus was much higher than the variance explained by the single reported SNP effect. The results thus significantly improve our understanding of the allelic structure of these individual disease-associated loci, as well as our knowledge of the general genetic mechanisms of common complex traits and diseases.  相似文献   

15.
Finding genes for complex diseases has been the goal of many genetic studies. Most of these studies have been successful by searching for genes and mutations in rare familial cases, by screening candidate genes and by performing genome wide association studies. However, only a small fraction of the total genetic risk for these complex genetic diseases can be explained by the identified mutations and associated genetic loci. In this review we focus on Hirschsprung disease (HSCR) as an example of a complex genetic disorder. We describe the genes identified in this congenital malformation and postulate that both common ‘low penetrant’ variants in combination with rare or private ‘high penetrant’ variants determine the risk on HSCR, and likely, on other complex diseases. We also discuss how new technological advances can be used to gain further insights in the genetic background of complex diseases. Finally, we outline a few steps to develop functional assays in order to determine the involvement of these variants in disease development.  相似文献   

16.
Genetic variations in blood cell parameters can impact clinical traits. We report here the mapping of blood cell traits in a panel of 100 inbred strains of mice of the Hybrid Mouse Diversity Panel (HMDP) using genome-wide association (GWA). We replicated a locus previously identified in using linkage analysis in several genetic crosses for mean corpuscular volume (MCV) and a number of other red blood cell traits on distal chromosome 7. Our peak for SNP association to MCV occurred in a linkage disequilibrium (LD) block spanning from 109.38 to 111.75 Mb that includes Hbb-b1, the likely causal gene. Altogether, we identified five loci controlling red blood cell traits (on chromosomes 1, 7, 11, 12, and 16), and four of these correspond to loci for red blood cell traits reported in a recent human GWA study. For white blood cells, including granulocytes, monocytes, and lymphocytes, a total of six significant loci were identified on chromosomes 1, 6, 8, 11, 12, and 15. An average of ten candidate genes were found at each locus and those were prioritized by examining functional variants in the HMDP such as missense and expression variants. These results provide intermediate phenotypes and candidate loci for genetic studies of atherosclerosis and cancer as well as inflammatory and immune disorders in mice.  相似文献   

17.
Genome-wide association studies (GWAS) have successfully identified loci associated with quantitative traits, such as blood lipids. Deep resequencing studies are being utilized to catalogue the allelic spectrum at GWAS loci. The goal of these studies is to identify causative variants and missing heritability, including heritability due to low frequency and rare alleles with large phenotypic impact. Whereas rare variant efforts have primarily focused on nonsynonymous coding variants, we hypothesized that noncoding variants in these loci are also functionally important. Using the HDL-C gene LIPG as an example, we explored the effect of regulatory variants identified through resequencing of subjects at HDL-C extremes on gene expression, protein levels, and phenotype. Resequencing a portion of the LIPG promoter and 5' UTR in human subjects with extreme HDL-C, we identified several rare variants in individuals from both extremes. Luciferase reporter assays were used to measure the effect of these rare variants on LIPG expression. Variants conferring opposing effects on gene expression were enriched in opposite extremes of the phenotypic distribution. Minor alleles of a common regulatory haplotype and noncoding GWAS SNPs were associated with reduced plasma levels of the LIPG gene product endothelial lipase (EL), consistent with its role in HDL-C catabolism. Additionally, we found that a common nonfunctional coding variant associated with HDL-C (rs2000813) is in linkage disequilibrium with a 5' UTR variant (rs34474737) that decreases LIPG promoter activity. We attribute the gene regulatory role of rs34474737 to the observed association of the coding variant with plasma EL levels and HDL-C. Taken together, the findings show that both rare and common noncoding regulatory variants are important contributors to the allelic spectrum in complex trait loci.  相似文献   

18.
Complex traits such as susceptibility to diseases are determined in part by variants at multiple genetic loci. Genome-wide association studies can identify these loci, but most phenotype-associated variants lie distal to protein-coding regions and are likely involved in regulating gene expression. Understanding how these genetic variants affect complex traits depends on the ability to predict and test the function of the genomic elements harboring them. Community efforts such as the ENCODE Project provide a wealth of data about epigenetic features associated with gene regulation. These data enable the prediction of testable functions for many phenotype-associated variants.  相似文献   

19.
Genome-wide association studies (GWAS) have identified over 70 loci associated with type 2 diabetes (T2D). Most genetic variants associated with T2D are common variants with modest effects on T2D and are shared with major ancestry groups. To what extent the genetic component of T2D can be explained by common variants relies upon the shape of the genetic architecture of T2D. Fine mapping utilizing populations with different patterns of linkage disequilibrium and functional annotation derived from experiments in relevant tissues are mandatory to track down causal variants responsible for the pathogenesis of T2D.  相似文献   

20.
Mice are an ideal mammalian model for studying the genetics of aging: considerable resources are available, the generation time is short, and the environment can be easily controlled, an important consideration when performing mapping studies to identify genes that influence lifespan and age-related diseases. In this review we highlight some salient contributions of the mouse in aging research: lifespan intervention studies in the Interventions Testing Program of the National Institute on Aging; identification of the genetic underpinnings of the effects of calorie restriction on lifespan; the Aging Phenome Project at the Jackson Laboratory, which has submitted multiple large, freely available phenotyping datasets to the Mouse Phenome Database; insights from spontaneous and engineered mouse mutants; and complex traits analyses identifying quantitative trait loci that affect lifespan. We also show that genomewide association peaks for lifespan in humans and lifespan quantitative loci for mice map to homologous locations in the genome. Thus, the vast bioinformatic and genetic resources of the mouse can be used to screen candidate genes identified in both mouse and human mapping studies, followed by functional testing, often not possible in humans, to determine their influence on aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号