首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The homeobox gene Distal-less (Dll) is well known for its participation in the development of arthropod limbs and their derivatives. Dll activity has been described for all groups of arthropods, but also for molluscs, echinoderms and vertebrates. Generally, Dll participates in the establishment of the proximo-distal-axis and differentiation along this axis. During our investigation of the expression pattern in the silverfish Lepisma saccharina and the horseshoe crab Limulus polyphemus, we found several expressions in late stages which cannot be explained with the "normal" limb-specific function. The antenna, cerci and terminal filament of the silverfish show a striped expression; single cells on the labrum, mandibles, maxillary palps and anal valves are also strongly stained by the Dll antibody. In addition to cell groups in the developing ganglia of the CNS, in the coxal endites and several nerve cells in femur and the trochanter of the prosomal limbs, the whole prosomal shield of Limulus polyphemus is surrounded by Dll-positive cell clusters. Furthermore, the lateral processes of the opisthosoma and the edges of the opisthosomal appendages are Dll positive. To get an indication of the cell fate of these regions, we examined hatched larvae and juvenile stages of both species with the SEM. We found a striking correlation of these Dll-positive areas and different sense organs, especially mechanoreceptors. Since many sense organs in arthropods are situated on the limbs, interpretation of the Dll expression in limbs is problematical. This has critical implications for comparative analysis of Dll expression patterns between arthropods and for the claim of homology between limb-like structures. Furthermore, we discuss the possibility of convergent appendage evolution in various bilaterian groups based on the improvement of spatial sensory resolution.  相似文献   

2.
3.
Chelicerates represent a basal arthropod group, which makes them an excellent system for the study of evolutionary processes in arthropods. To enable functional studies in chelicerates, we developed a double-stranded RNA-interference (RNAi) protocol for spiders while studying the function of the Distal-less gene. We isolated the Distal-less gene from the spider Cupiennius salei. Cs-Dll gene expression is first seen in cells of the prosomal segments before the outgrowth of the appendages. After the appendages have formed, Cs-Dll is expressed in the distal portion of the prosomal appendages, and in addition, in the labrum, in two pairs of opisthosmal (abdominal) limb buds, in the head region, and at the posterior-most end of the spider embryo. In embryos, in which Dll was silenced by RNAi, the distal part of the prosomal appendages was missing and the labrum was completely absent. Thus, Dll also plays a crucial role in labrum formation. However, the complete lack of labrum in RNAi embryos may point to a different nature of the labrum from the segmental appendages. Our data show that the expression of Dll in the appendages is conserved among arthropods, and furthermore that the role of Dll is evolutionarily conserved in the formation of segmental appendages in arthropods.  相似文献   

4.
SUMMARY Within the last decade, gene expression patterns and neuro‐anatomical data have led to a new consensus concerning the long‐debated association between anterior limbs and neuromeres in the arthropod head. According to this new view, the first appendage in all extant euarthropods is innervated by the second neuromere, the deutocerebrum, whereas the anterior‐most head region bearing the protocerebrum lacks an appendage. This stands in contrast to the clearly protocerebrally targeted “antennae” of Onychophora and to some evidence for protocerebral limbs in fossil euarthropod representatives. Yet, the latter “frontal appendages” or “primary antennae” have most likely been reduced or lost in the lineage, leading to extant taxa. Surprisingly, a recent neuro‐anatomical study on a pycnogonid challenged this evolutionary scenario, reporting a protocerebral innervation of the first appendages, the chelifores. However, this interpretation was soon after questioned by Hox gene expression data. To re‐evaluate the unresolved controversy, we analyzed neuro‐anatomy and neurogenesis in four pycnogonid species using immunohistochemical techniques. We clearly show the postprotocerebral innervation of the chelifores, which is resolved as the plesiomorphic condition in pycnogonids when evaluated against a recently published comprehensive phylogeny. By providing direct morphological support for the deutocerebral status of the cheliforal ganglia, we reconcile morphological and gene expression data and argue for a corresponding position between the anterior‐most appendages in all extant euarthropods. Consequently, other structures have to be scrutinized to illuminate the fate of a presumptive protocerebral appendage in recent euarthropods. The labrum and the “frontal filaments” of some crustaceans are possible candidates for this approach.  相似文献   

5.
We isolated the homologue of the Drosophila gene dachshund (dac) from the beetle Tribolium castaneum. Tc'dac is expressed in all appendages except urogomphi and pleuropodia. Tc'dac is also active in the head lobes, in the ventral nervous system, in the primordia of the Malpighian tubules and in bilateral stripes corresponding to the presumptive dorsal midline. Expression of Tc'dac in the labrum lends support to the interpretation that the insect labrum is derived from a metameric appendage. The legs of Tribolium accommodate two Tc'dac domains, of which the more distal one corresponds to the single dac domain described for Drosophila leg discs. In contrast to Drosophila, where this domain is thought to intercalate between the homothorax (hth) and the Distal-less (Dll) domains, in Tribolium it arises from within the Dll domain. In embryos mutant for the Tc'Dll gene we find that the distal Tc'dac domain in the legs, as well as the expression in the labrum, are deleted while the proximal leg domain and the mandibular expression are unaffected. Based on Tc'dac expression in wild-type and mutant embryos, we demonstrate serial homology of the complete mandible with the coxa of the thoracic legs, which affirms the gnathobasic nature of the insect mandible.  相似文献   

6.
In Drosophila, the homeotic gene Distal-less (Dll) has a fundamental role in the establishment of the identity of ventral appendages such as the leg and antenna. This study reports the expression pattern of Dll in the genital disc, the requirement of Dll activity for the development of the terminalia and the activation of Dll by the combined action of the morphogenetic signals Wingless (Wg) and Decapentaplegic (Dpp). During the development of the two components of the anal primordium - the hindgut and the analia - only the latter is dependent on Dll and hedgehog (hh) functions. The hindgut is defined by the expression of the homeobox gene even-skipped. The lack of Dll function in the anal primordia transforms the anal tissue into hindgut by the extension of the eve domain. Meanwhile targeted ectopic Dll represses eve expression and hindgut formation. The Dll requirement for the development of both anal plates in males and only for the dorsal anal plate in females, provides further evidence for the previously held idea that the analia arise from two primordia. In addition, evaluation was made of the requirement for the optomotor-blind (omb) gene which, as in the leg and antenna, is located downstream to Dpp. These results suggest that the terminalia show similar behaviour to the leg disc or the antennal part of the eye-antennal disc consistent with both the proposed ventral origin of the genital disc and the evolutive consideration of the terminalia as an ancestral appendage.  相似文献   

7.
8.
Much of our understanding of arthropod limb development comes from studies on the leg imaginal disc of Drosophila melanogaster. The fly limb is a relatively simple unbranched (uniramous) structure extending out from the body wall. The molecular basis for this outgrowth involves the overlap of two signaling molecules, Decapentaplegic (Dpp) and Wingless (Wg), to create a single domain of distal outgrowth, clearly depicted by the expression of the Distal-less gene (Dll). The expression of wg and dpp during the development of other arthropod thoracic limbs indicates that these pathways might be conserved across arthropods for uniramous limb development. The appendages of crustaceans and the gnathal appendages of insects, however, exhibit a diverse array of morphologies, ranging from those with no distal elements, such as the mandible, to appendages with multiple distal elements. Examples of the latter group include branched appendages or those that possess multiple lobes; such complex morphologies are seen for many crustacean limbs as well as the maxillary and labial appendages of many insects. It is unclear how, if at all, the known patterning genes for making a uniramous limb might be deployed to generate these diverse appendage forms. Experiments in Drosophila have shown that by forcing ectopic overlaps of Wg and Dpp signaling it is possible to generate artificially branched legs. To test whether naturally branched appendages form in a similar manner, we detailed the expression patterns of wg, dpp, and Dll in the development of the branched gnathal appendages of the grasshopper, Schistocerca americana, and the flour beetle, Tribolium castaneum. We find that the branches of the gnathal appendages are not specified through the redeployment of the Wg-Dpp system for distal outgrowth, but our comparative studies do suggest a role for Dpp in forming furrows between tissues.  相似文献   

9.
SUMMARY Contrasting hypotheses have been proposed to explain the pervasive parallels in the patterning of arthropod and vertebrate appendages. These hypotheses either call for a common ancestor already provided with patterned appendages or body outgrowths, or for the recruitment in limb patterning of single genes or genetic cassettes originally used for purposes other than axis patterning. I suggest instead that body appendages such as arthropod and vertebrate limbs and chordate tails are evolutionarily divergent duplicates (paramorphs) of the main body axis, that is, its duplicates, albeit devoid of endodermal component. Thus, vertebrate limbs and arthropod limbs are not historical homologs, but homoplastic features only transitively related to real historical homologs. Thus, the main body axis and the axis of the appendages have distinct but not independent evolutionary histories and may be involved in processes of homeotic co-option producing effects of morphological assimilation. For instance, chordate segmentation may have originated in the posterior appendage (tail) and subsequently extended to the trunk.  相似文献   

10.
11.
12.
In Drosophila, the T-box genes optomotor-blind (omb) and H15 have been implicated in specifying the development of the dorso-ventral (DV) axis of the appendages. Results from the spider Cupiennius salei have suggested that this DV patterning system may be at least partially conserved. Here we extend the study of the DV patterning genes omb and H15 to a representative of the Myriapoda in order to add to the existing comparative data set and to gain further insight into the evolution of the DV patterning system in arthropod appendages. The omb gene of the millipede Glomeris marginata is expressed on the dorsal side of all appendages including trunk legs, maxillae, mandibles, and antennae. This is similar to what is known from Drosophila and Cupiennius and suggests that the role of omb in instructing dorsal fates is conserved in arthropods. Interestingly, the lobe-shaped portions of the mouthparts do not express omb, indicating that these are ventral components and thus may be homologous to the endites present in the corresponding appendages in insects. Concerning the H15 gene we were able to identify two paralogous genes in Glomeris. Both genes are expressed in the sensory organs of the maxilla and antenna, but only Gm-H15-1 is expressed along the ventral side of the trunk legs. The expression is more extensive than in Cupiennius, but less so than in Drosophila. In addition, no ventral expression domain is present in the maxilla, mandible, and antenna. Because of this, the role of H15 in the determination of ventral fate remains unclear.  相似文献   

13.
14.
The abdominal appendages on male Themira biloba (Diptera: Sepsidae) are complex novel structures used during mating. These abdominal appendages superficially resemble the serially homologous insect appendages in that they have a joint and a short segment that can be rotated. Non-genital appendages do not occur in adult pterygote insects, so these abdominal appendages are novel structures with no obvious ancestry. We investigated whether the genes that pattern the serially homologous insect appendages have been co-opted to pattern these novel abdominal appendages. Immunohistochemistry was used to determine the expression patterns of the genes extradenticle (exd), Distal-less (Dll), engrailed (en), Notch, and the Bithorax Complex in the appendages of T. biloba during pupation. The expression patterns of Exd, En, and Notch were consistent with the hypothesis that a portion of the patterning pathway that establishes the coxopodite has been co-opted to pattern the developing abdominal appendages. However, Dll was only expressed in the bristles of the developing appendages and not the proximal–distal axis of the appendage itself. The lack of Dll expression indicates the absence of a distal domain of the appendage suggesting that sepsid abdominal appendages only use genes that normally pattern the base of segmental appendages.  相似文献   

15.
The proximo‐distal axis of the arthropod leg is patterned by mutually antagonistic developmental expression domains of the genes extradenticle, homothorax, dachshund, and Distal‐less. In the deutocerebral appendages (the antennae) of insects and crustaceans, the expression domain of dachshund is frequently either absent or, if present, is not required to pattern medial segments. By contrast, the dachshund domain is entirely absent in the deutocerebral appendages of spiders, the chelicerae. It is unknown whether absence of dachshund expression in the spider chelicera is associated with the two‐segmented morphology of this appendage, or whether all chelicerates lack the dachshund domain in their chelicerae. We investigated gene expression in the harvestman Phalangium opilio, which bears the plesiomorphic three‐segmented chelicera observed in “primitive” chelicerate orders. Consistent with patterns reported in spiders, in the harvestman chelicera homothorax, extradenticle, and Distal‐less have broadly overlapping developmental domains, in contrast with mutually exclusive domains in the legs and pedipalps. However, unlike in spiders, the harvestman chelicera bears a distinct expression domain of dachshund in the proximal segment, the podomere that is putatively lost in derived arachnids. These data suggest that a tripartite proximo‐distal domain structure is ancestral to all arthropod appendages, including deutocerebral appendages. As a corollary, these data also provide an intriguing putative genetic mechanism for the diversity of arachnid chelicerae: loss of developmental domains along the proximo‐distal axis.  相似文献   

16.
A complex role for distal-less in crustacean appendage development.   总被引:3,自引:0,他引:3  
The developing leg of Drosophila is initially patterned by subdivision of the leg into proximal and distal domains by the activity of the homeodomain proteins Extradenticle (Exd) and Distal-less (Dll). These early domains of gene expression are postulated to reflect a scenario of limb evolution in which an undifferentiated appendage outgrowth was subdivided into two functional parts, the coxapodite and telopodite. The legs of most arthropods have a more complex morphology than the simple rod-shaped leg of Drosophila. We document the expression of Dll and Exd in two crustacean species with complex branched limbs. We show that in these highly modified limbs there is a Dll domain exclusive of Exd but there is also extensive overlap in Exd and Dll expression. While arthropod limbs all appear to have distinct proximal and distal domains, those domains do not define homologous structures throughout arthropods. In addition, we find a striking correlation throughout the proximal/distal extent of the leg between setal-forming cells and Dll expression. We postulate that this may reflect a pleisiomorphic function of Dll in development of the peripheral nervous system. In addition, our results confirm previous observations that branch formation in multiramous arthropod limbs is not regulated by a simple iteration of the proximal/distal patterning module employed in Drosophila limb development.  相似文献   

17.
The proximodistal (PD) axis of the Drosophila leg is thought to be established by the combined gradients of two secreted morphogens, Wingless (Wg) and Decapentaplegic (Dpp). According to this model, high [Wg+Dpp] activates Distalless (Dll) and represses dachshund (dac) in the distal cells of the leg disc, while intermediate [Wg+Dpp] activates dac in medial tissue. To test this model we identified and characterized a dac cis-regulatory element (dac RE) that recapitulates dac's medial expression domain during leg development. Counter to the gradient model, we find that Wg and Dpp do not act in a graded manner to activate RE. Instead, dac RE is activated directly by Dll and repressed distally by a combination of factors, including the homeodomain protein Bar. Thus, medial leg fates are established via a regulatory cascade in which Wg+Dpp activate Dll and then Dll directly activates dac, with Wg+Dpp as less critical, permissive inputs.  相似文献   

18.
Knowledge of tardigrade brain structure is important for resolving the phylogenetic relationships of Tardigrada. Here, we present new insight into the morphology of the brain in a marine arthrotardigrade, Actinarctus doryphorus, based on transmission electron microscopy, supported by scanning electron microscopy, conventional light microscopy as well as confocal laser scanning microscopy. Arthrotardigrades contain a large number of plesiomorphic characters and likely represent ancestral tardigrades. They often have segmented body outlines and each trunk segment, with its paired set of legs, may have up to five sensory appendages. Noticeably, the head carries numerous cephalic appendages that are structurally equivalent to the sensory appendages of the trunk segments. Our data reveal that the brain of A. doryphorus is partitioned into three paired lobes, and that these lobes exhibit a more pronounced separation as compared to that of eutardigrades. The first brain lobe in A. doryphorus is located anteriodorsally, with the second lobe just below it in an anterioventral position. Both of these two paired lobes are located anterior to the buccal tube. The third pair of brain lobes are situated posterioventrally to the first two lobes, and flank the buccal tube. In addition, A. doryphorus possesses a subpharyngeal ganglion, which is connected with the first of the four ventral trunk ganglia. The first and second brain lobes in A. doryphorus innervate the clavae and cirri of the head. The innervations of these structures indicate a homology between, respectively, the clavae and cirri of A. doryphorus and the temporalia and papilla cephalica of eutardigrades. The third brain lobes innervate the buccal lamella and the stylets as described for eutardigrades. Collectively, these findings suggest that the head region of extant tardigrades is the result of cephalization of multiple segments. Our results on the brain anatomy of Actinarctus doryphorus support the monophyly of Panarthropoda. J. Morphol. 275:173–190, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
20.
Current awareness of gene expression patterns and developmental mechanisms involved in the outgrowth and patterning of animal appendages contributes to our understanding of the origin and evolution of these body parts. Nevertheless, this vision needs to be complemented by a new adequate comparative framework, in the context of a factorial notion of homology. It may even be profitable to categorize as appendages also gut diverticula, body ingrowths and 'virtual appendages' such as the eye spots on butterfly wings. Another unwarranted framework is the Cartesian co-ordinate system onto which the appendages are currently described and where it is supposed that one patterning system exists for each separate Cartesian axis. It may be justified, instead, to look for correspondences between the appendages and the main body axis of the same animal, as the latter might be the source of the growth and patterning mechanisms which gave rise to the former. This hypothesis of axis paramorphisms is contrasted with the current hypothesis of gene co-option. Recapitulationism is a common fault in current Evo-Devo perspectives concerning the origin of the appendages, in that the evolutionary origin of appendages is often expected to be the same as one of the key mechanisms involved in the ontogenetic inception of appendage formation. This unwarranted perspective is also evident in the current debate on the nature of the default arthropod appendage. Most likely, a default arthropod appendage never did exist, as the first appendages probably developed along the trunk of an animal already patterned extensively along the antero-posterior body axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号