首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among sport conditioning coaches, there is considerable discussion regarding the efficiency of training methods that improve lower-body power. Heavy resistance training combined with vertical jump (VJ) training is a well-established training method; however, there is a lack of information about its combination with Olympic weightlifting (WL) exercises. Therefore, the purpose of this study was to compare the short-term effects of heavy resistance training combined with either the VJ or WL program. Thirty-two young men were assigned to 3 groups: WL = 12, VJ = 12, and control = 8. These 32 men participated in an 8-week training study. The WL training program consisted of 3 x 6RM high pull, 4 x 4RM power clean, and 4 x 4RM clean and jerk. The VJ training program consisted of 6 x 4 double-leg hurdle hops, 4 x 4 alternated single-leg hurdle hops, 4 x 4 single-leg hurdle hops, and 4 x 4 40-cm drop jumps. Additionally, both groups performed 4 x 6RM half-squat exercises. Training volume was increased after 4 weeks. Pretesting and posttesting consisted of squat jump (SJ) and countermovement jump (CMJ) tests, 10- and 30-m sprint speeds, an agility test, a half-squat 1RM, and a clean-and-jerk 1RM (only for WL). The WL program significantly increased the 10-m sprint speed (p < 0.05). Both groups, WL and VJ, increased CMJ (p < 0.05), but groups using the WL program increased more than those using the VJ program. On the other hand, the group using the VJ program increased its 1RM half-squat strength more than the WL group (47.8 and 43.7%, respectively). Only the WL group improved in the SJ (9.5%). There were no significant changes in the control group. In conclusion, Olympic WL exercises seemed to produce broader performance improvements than VJ exercises in physically active subjects.  相似文献   

2.
There are no published data on the reliability of competitive strength performance, even though it has a pronounced effect on athletes' medal prospects and the ability of coaches and athletes to identify factors that affect competitive performance. The purpose of this investigation was to analyze the reliability of elite olympic weightlifters over a series of international weightlifting meets. We obtained official results of international competitions over an 18-month period from 1999 until the 2000 Olympic Games at the International Weightlifting Federation website. The measure of reliability was the typical within-athlete variation, derived as the coefficient of variation (CV) by 2-way analysis of variance of log-transformed weights lifted for the snatch, clean and jerk, and total. The results of this analysis were (a) within-athlete variations were as follows: snatch, 2.7% (95% likely range, 2.4-3.2%); clean and jerk, 2.3% (1.7-3.6%); total weight lifted, 2.5% (2.2-2.9%); (b) men and women: the variation was higher for the women compared with the men in both snatch (ratio of CV, 1.4) and clean and jerk (ratio of CV, 1.5), and for the total weight lifted (ratio of CV, 1.3); and (c) the top 5 athletes were almost always more reliable than the bottom-half athletes. Recent work has shown that the smallest worthwhile performance is about half the within-athlete variation, so coaches and sport scientists should focus on enhancements of as little as 1.2% in total weight lifted for elite olympic weightlifters.  相似文献   

3.
The purpose of this study was to compare the effects of a ballistic resistance training program of Olympic lifts with those of a traditional resistance training program of power lifts on vertical jump improvement in male high school athletes. Twenty-seven male student athletes were recruited from a high school football program at a small, rural school in the Southeast. The subjects were divided into an Olympic training group (OT, n = 11), a power training group (PT, n = 10), and a control group (n = 6). Analysis of variance was used to determine whether a significant mean difference existed among groups on vertical jump improvement after 8 weeks of group-specific training. Effect size of vertical jump improvement between groups, and correlations between strength and vertical jump performance, were also examined. There was no significant mean difference (p >or= 0.05) among OT, PT, and control groups, but large effect sizes between OT and control (d = 1.06) and PT and control (d = 0.94) demonstrate that both OT and PT are effective in improving vertical jump performance in male high school athletes. Moderate to high correlations were noted between squat score and vertical jump after adjusting for body weight (r = 0.42) and between power clean and vertical jump after adjusting for body weight (r = 0.75). Findings from the current study indicate that Olympic lifts as well as power lifts provide improvement in vertical jump performance and that Olympic lifts may provide a modest advantage over power lifts for vertical jump improvement in high school athletes.  相似文献   

4.
To our knowledge, no scientific literature has examined the 3-dimensional forces acting at the knee joint during a power clean. Ten male weightlifting subjects (25.9 years, SD 3.54) performed 1 set of the power clean at 60 and 70% of their maximal collegiate level for 5 repetitions. The subjects displayed a large compressive, moderate anterior, and a small degree of lateral and medial force at the knee during both percentage lifts. The majority of these forces occurred during the second pull phase or the catching phase of the lift. Lifters with decreased weight/system weight percentages displayed a more efficient lift that placed less stress on the knees. This analysis may provide invaluable information in the assessment of weight percentages used for Olympic weightlifters throughout the training year. the power clean.  相似文献   

5.
The purpose of this study was to examine the effect of 3 volumes of heavy resistance, average relative training intensity (expressed as a percentage of 1 repetition maximum that represented the absolute kilograms lifted divided by the number of repetitions performed) programs on maximal strength (1RM) in Snatch (Sn), Clean & Jerk (C&J), and Squat (Sq). Twenty-nine experienced (>3 years), trained junior weightlifters were randomly assigned into 1 of 3 groups: low-intensity group (LIG; n = 12), moderate-intensity group (MIG; n = 9), and high-intensity group (HIG; n = 8). All subjects trained for 10 weeks, 4-5 days a week, in a periodized routine using the same exercises and training volume (expressed as total number of repetitions performed at intensities equal to or greater than 60% of 1RM), but different programmed total repetitions at intensities of >90-100% of 1RM for the entire 10-week period: LIG (46 repetitions), MIG (93 repetitions), and HIG (184 repetitions). During the training period, MIG and LIG showed a significant increase (p < 0.01-0.05) for C&J (10.5% and 3% for MIG and LIG, respectively) and Sq (9.5% and 5.3% for MIG and LIG, respectively), whereas in HIG the increase took place only in Sq (6.9%, p < 0.05). A calculation of effect sizes revealed greater strength gains in the MIG than in HIG or LIG. There were no significant differences between LIG and HIG training volume-induced strength gains. All the subjects in HIG were unable to fully accomplish the repetitions programmed at relative intensities greater than 90% of 1RM. The present results indicate that short-term resistance training using moderate volumes of high relative intensity tended to produce higher enhancements in weightlifting performance compared with low and high volumes of high relative training intensities of equal total volume in experienced, trained young weightlifters. Therefore, for the present population of weightlifters, it may be beneficial to use the MIG training protocol to improve the weightlifting program at least in a short-term (10 weeks) cycle of training.  相似文献   

6.
The objectives of this study were to determine the mechanical work, the power output, and the angular kinematics of the lower limb and the linear kinematics of the barbell during the first and second pulls in the snatch lift event of the 2010 Women's World Weightlifting Championship, an Olympic qualifying competition, and to compare the snatch performances of the women weightlifters to those reported in the literature. The heaviest successful snatch lifts of 7 female weightlifters who won gold medals were analyzed. The snatch lifts were recorded using 2 Super-Video Home System cameras (50 fields·s), and points on the body and the barbell were manually digitized using the Ariel Performance Analysis System. The results revealed that the duration of the first pull was significantly greater than the duration of the transition phase, the second pull, and the turnover under the barbell (p < 0.05). The maximum extension velocities of the lower limb in the second pull were significantly greater than the maximum extension velocities in the first pull. The fastest extensions were observed at the knee joint during the first pull and at the hip joint during the second pull (p < 0.05). The barbell trajectories for the heaviest snatch lifts of these elite female weightlifters were similar to those of men. The maximum vertical velocity of the barbell was greater during the second pull than in the first pull (p < 0.05). The mechanical work performed in the first pull was greater than the second pull, and the power output during the second pull was greater than that of the first pull (p < 0.05). Although the magnitudes of the barbell's linear kinematics, the angular kinematics of the lower limb, and other energy characteristics did not exactly reflect those reported in the literature, the snatch lift patterns of the elite women weightlifters were similar to those of male weightlifters.  相似文献   

7.
The concentrations of serum testosterone, sex-hormone-binding-globulin (SHBG) and luteinizing hormone (LH) were examined throughout 1-year of training in six elite weightlifters. A systems model, providing an estimation of fatigue and fitness, was applied to records of training volume and performance levels in clean and jerk. The analysis focused on a 6-week training period during which blood samples were taken at 2-week intervals. A 4-week period of intensive training (period I) could be distinguished from the following 2-week period of reduced training (period II). During period I, decreases in serum testosterone (P less than 0.05) and increases in serum LH concentrations (P less than 0.01) were observed; a significant correlation (r = 0.90, P less than 0.05) was also observed between the changes in serum LH concentration and in estimated fitness. The magnitude of LH response was not related to the change in serum androgens. On the other hand, the change in testosterone:SHBG ratio during period II was significantly correlated (r = 0.97, P less than 0.01) to the LH variations during period I. These finding suggested that the LH response indicated that the decrease in testosterone concentration was not primarily due to a dysfunction of the hypothalamic-pituitary system control, and that the fatigue/fitness status of an athlete could have influenced the LH response to the decreased testosterone concentration. The negative effect of training on hormonal balance could have been amplified by its influence on the hypothalamic-pituitary axis. A decrease in physiological stress would thus have been necessary for the completion of the effect of LH release on androgenic activity.  相似文献   

8.
The purpose of this investigation was to study the effects of an 11-week training period performed by female weightlifters. Two weeks before this investigation, baseline measures for total testosterone, cortisol, and testosterone:cortisol ratio were collected. The 11-week training program consisted of the core exercises (i.e., clean, clean and jerk, and snatch) and other supplemental exercises (i.e., clean pull, snatch pull, squat, and front squat). Hormonal, isometric, and dynamic middle thigh pull force-time curve characteristics were assessed biweekly throughout the duration of the investigation, whereas volume load and training intensity were assessed weekly throughout the investigation. The testosterone:cortisol ratio of the baseline (1.19 +/- 0.64) was significantly different from the ratio of weeks 1 (0.67 +/- 0.36) and 9 (0.94 +/- 0.66). When the week-to-week values were compared, week 1 (0.67 +/- 0.36) was significantly different (P < 0.05; eta = 0.84) from week 3 (1.06 +/- 0.54). A very strong correlation (r = -0.83; r = 0.69) was found between the percentage change of the testosterone:cortisol ratio and volume load from weeks 1 to 11. Moderate to very strong correlations were noted between the percentage change in volume load and isometric peak force, peak force during the 30% isometric peak force trial, and peak force during the 100-kg trial during the 11 weeks of training. The primary finding of this study was that alterations in training volume load can result in concomitant changes in the anabolic-to-catabolic balance, as indicated by the testosterone:cortisol ratio, and the ability to generate maximal forces.  相似文献   

9.
Six elite women weightlifters were tested to evaluate force-time curve characteristics and intercorrelations of isometric and dynamic muscle actions. Subjects performed isometric and dynamic mid-thigh clean pulls at 30% of maximal isometric peak force and 100 kg from a standardized position on a 61.0 x 121.9 cm AMTI forceplate. Isometric peak force showed strong correlations to the athletes' competitive snatch, clean and jerk, and combined total (r = 0.93, 0.64, and 0.80 respectively). Isometric rate of force development showed moderate to strong relationships to the athletes' competitive snatch, clean and jerk, and combined total (r = 0.79, 0.69, and 0.80 respectively). The results of this study suggest that the ability to perform maximal snatch and clean and jerks shows some structural and functional foundation with the ability to generate high forces rapidly in elite women weightlifters.  相似文献   

10.
The effects of 3 types of set configurations (cluster, traditional, and undulating) on barbell kinematics were investigated in the present study. Thirteen men (track and field = 8; Olympic weightlifters = 5) (mean +/- SEM age, 23.4 +/- 1.1 years; height, 181.3 +/- 2.1 cm; body mass, 89.8 +/- 4.2 kg) performed 1 set of 5 repetitions in a cluster, traditional, and undulating fashion at 90 and 120% of their 1 repetition maximum (1RM) power clean (119.0 +/- 4.3 kg). All data were collected at 50 Hz and analyzed with a V-Scope Weightlifting Analysis System. Peak velocity (PV) and peak displacement (PD) were analyzed for each repetition and averaged for each set type. Results indicated that a significantly (p < 0.016) higher PV occurred during the cluster set when compared with the traditional sets at both intensities. PD was significantly higher than traditional sets at the 120% intensity. The present study suggests set configuration can affect PV and PD during clean pulls.  相似文献   

11.
The objective of this investigation was to examine the influence of body mass in the calculation of power and the subsequent effect on the load-power relationship in the jump squat, squat, and power clean. Twelve Division I male athletes were evaluated on their performance across various intensities in all the 3 lifts. Power output was calculated using 3 separate techniques: (a) including the contribution of body mass in force output (IBM), (b) including the contribution of the mass of body less the mass of the shanks and feet in force output (IBMS), and (c) excluding the contribution of body mass in force output (EBM). Peak power, peak power relative to body mass, and peak force calculated using EBM were significantly (p < or = 0.05) lower than outputs calculated with IBM and IBMS. The load that maximized power output was unchanged between the 3 techniques in the jump squat (0% 1 repetition maximum [1RM]) and power clean (80% 1RM) but was shifted from 56% (IBM and IBMS) to 71% 1RM (EBM) in the squat. Across all 3 movements, the shape of the load-power curve was affected when derived via the EBM method as a result of the underrepresentation of power output at light loads. This was due to the majority of the load being neglected when the mass of the body was removed from the system mass used in the calculation of force. This study indicates that not only is the actual power output significantly lower when body mass is excluded from the force output of a lower body movement, but the load-power relationship is altered as well. Therefore, it is imperative that the mass of the individual being tested is incorporated into the calculation of force used to determine power output during lower-body movements.  相似文献   

12.
The purpose of this study was to examine the effects of 3 resistance training volumes on maximal strength in the snatch (Sn), clean & jerk (C&J), and squat (Sq) exercises during a 10-week training period. Fifty-one experienced (>3 years), trained junior lifters were randomly assigned to one of 3 groups: a low-volume group (LVG, n = 16), a moderate-volume group (MVG, n = 17), and a high-volume group (HVG, n = 18). All subjects trained 4-5 days a week with a periodized routine using the same exercises and relative intensities but a different total number of sets and repetitions at each relative load: LVG (1,923 repetitions), MVG (2,481 repetitions), and HVG (3,030 repetitions). The training was periodized from moderate intensity (60- 80% of 1 repetition maximum [1RM]) and high number of repetitions per set (2-6) to high intensity (90-100% of 1RM) and low number of repetitions per set (1-3). During the training period, the MVG showed a significant increase for the Sn, C&J, and Sq exercises (6.1, 3.7, and 4.2%, respectively, p < 0.01), whereas in the LVG and HVG, the increase took place only with the C&J exercise (3.7 and 3%, respectively, p < 0.05) and the Sq exercise (4.6%, p < 0.05, and 4.8%, p < 0.01, respectively). The increase in the Sn exercise for the MVG was significantly higher than in the LVG (p = 0.015). Calculation of effect sizes showed higher strength gains in the MVG than in the HVG or LVG. There were no significant differences between the LVG and HVG training volume-induced strength gains. The present results indicate that junior experienced lifters can optimize performance by exercising with only 85% or less of the maximal volume that they can tolerate. These observations may have important practical relevance for the optimal design of strength training programs for resistance-trained athletes, since we have shown that performing at a moderate volume is more effective and efficient than performing at a higher volume.  相似文献   

13.
Closed-kinetic chain resistance training (CKCRT) of the lower body is superior to open-kinetic chain resistance training (OKCRT) to improve performance parameters (e.g., vertical jump), but the effects of upper-body CKCRT on throwing performance remain unknown. This study compared shoulder strength, power, and throwing velocity changes in athletes training the upper body exclusively with either CKCRT (using a system of ropes and slings) or OKCRT. Fourteen female National Collegiate Athletic Association Division I softball player volunteers were blocked and randomly placed into two groups: CKCRT and OKCRT. Blocking ensured the same number of veteran players and rookies in each training group. Training occurred three times weekly for 12 weeks during the team's supervised off-season program. Olympic, lower-body, core training, and upper-body intensity and volume in OKCRT and CKCRT were equalized between groups. Criterion variables pre- and posttraining included throwing velocity, bench press one-repetition maximum (1RM), dynamic single-leg balance, and isokinetic peak torque and power (PWR) (at 180 degrees x s(-1)) for shoulder flexion, extension, internal rotation, and external rotation (ER). The CKCRT group significantly improved throwing velocity by 2.0 mph (3.4%, p < 0.05), and the OKCRT group improved 0.3 mph (0.5%, NS). A significant interaction was observed (p < 0.05). The CKCRT group improved its 1RM bench press to the same degree (1.9 kg) as the OKCRT group (p < 0.05 within each group). The CKCRT group improved all measures of shoulder strength and power, whereas OKCRT conferred little change in shoulder torque and power scores. Although throwing is an open-chain movement, adaptations from CKCRT may confer benefits to subsequent performance. Strength coaches can incorporate upper-body CKCRT without sacrificing gains in maximal strength or performance criteria associated with an athletic open-chain movement such as throwing.  相似文献   

14.
为了考察单一抗阻运动模式和联合运动模式对举重运动员的卫星细胞活化和PI3K/Akt/mTOR信号通路的影响。本研究以30名男性举重运动员为研究对象,将受试者随机分为抗阻运动组和联合运动组,抗阻运动组接受60%最大重复次数(1 RM)的负重蹲起训练,联合运动组接受60%1 RM的负重蹲起和卧推训练。运动前和运动后3 h立即获得肌肉活检样品,采用双重免疫荧光染色检测活化的卫星细胞数(Pax7+/MyoD+)。采用蛋白质印迹法检测肌肉组织中Akt、mTOR、p70S6K和4E-BP1的磷酸化情况。研究发现,运动后,联合运动组活化的卫星细胞数显著高于抗阻运动组(35.14 vs 29.86个,p=0.011)。运动后联合运动组的Akt、mTOR、p70S6K和4E-BP1的磷酸化水平显著高于抗阻运动组(p<0.05)。本研究表明,与单一抗阻运动模式相比,联合运动模式更有助于肌肉卫星细胞的活化和PI3K/Akt/mTOR信号通路的活化,从而改善肌肉功能。  相似文献   

15.
To examine the effects of different rest intervals on the repeatability of 1 repetition maximum (1RM) efforts in the free-weight back squat exercise, 17 weight-trained men served as subjects (mean age 22.0 years). One repetition maximum was tested on each of the first 2 days of testing to establish a stable baseline (1RM = 184.9 kg). Each of the next 3 sessions involved performing 2 1RM back squats, with the rest interval between attempted lifts being either 1, 3, or 5 minutes, assigned in a counterbalanced fashion. For the 1-minute rest interval, 13 of 17 subjects successfully completed the second lift; for the 3-minute rest interval, 16 of 17 were successful; and for the 5-minute rest interval, 15 of 17 were successful. Cochran Q analysis determined no significant difference (p > 0.05) in the ability to repeat a successful maximal-effort back squat when different rest intervals were used. These findings are consistent with the literature for the bench-press exercise and indicate that 1-minute rest intervals are sufficient for recovery between attempted lifts during 1RM testing or training for the free-weight back squat when involving lifters of this caliber.  相似文献   

16.
ABSTRACT: Comfort, P, Fletcher, C, and McMahon, JJ. Determination of optimal loading during the power clean, in collegiate athletes. J Strength Cond Res 26(11): 2970-2974, 2012-Although previous research has been performed in similar areas of study, the optimal load for the development of peak power during training remains controversial, and this has yet to be established in collegiate level athletes. The purpose of this study was to determine the optimal load to achieve peak power output during the power clean in collegiate athletes. Nineteen male collegiate athletes (age 21.5 ± 1.4 years; height 173.86 ± 7.98 cm; body mass 78.85 ± 8.67 kg) performed 3 repetitions of power cleans, while standing on a force platform, using loads of 30, 40, 50, 60, 70, and 80% of their predetermined 1-repetition maximum (1RM) power clean, in a randomized, counterbalanced order. Peak power output occurred at 70% 1RM (2,951.7 ± 931.71 W), which was significantly greater than the 30% (2,149.5 ± 406.98 W, p = 0.007), 40% (2,201.0 ± 438.82 W, p = 0.04), and 50% (2,231.1 ± 501.09 W, p = 0.05) conditions, although not significantly different when compared with the 60 and 80% 1RM loads. In addition, force increased with an increase in load, with peak force occurring at 80% 1RM (1,939.1 ± 320.97 N), which was significantly greater (p < 0.001) than the 30, 40, 50, and 60% 1RM loads but not significantly greater (p > 0.05) than the 70% 1RM load (1,921.2 ± 345.16 N). In contrast, there was no significant difference (p > 0.05) in rate of force development across loads. When training to maximize force and power, it may be advantageous to use loads equivalent to 60-80% of the 1RM, in collegiate level athletes.  相似文献   

17.
18.
The purpose of this investigation was to compare the kinetic characteristics of the power clean exercise using either free weight or machine resistance. After familiarization, 14 resistance trained men (mean +/- SD; age = 24.9 +/- 6.2 years) participated in two testing sessions. During the initial testing session, one-repetition maximum performance (1RM) was assessed in either the free weight or machine power clean from the midthigh. This was followed by kinetic assessment of either the free weight or the machine power clean at 85% of 1RM. One week after the initial testing session, 1RM performance, as well as the subsequent kinetic evaluation, were performed for the alternate exercise modality. All performance measures were obtained using a computer-interfaced FiTROdyne dynamometer (Fitronic; Bratislava, Slovakia). Maximum strength (1RM) and average power were significantly greater for the free weight condition, whereas peak velocity and average velocity were greater for the machine condition (p < 0.05). Although peak power was not different between modalities, force at peak power (free weights = 1445 +/- 266 N, machine = 1231 +/- 194 N) and velocity at peak power (free weights = 1.77 +/- 0.28 m x s(-1), machine = 2.20 +/- 0.24 m x s(-1)) were different (p < 0.05). It seems that mechanical limitations of the machine modality (i.e., lift trajectory) result in different load capacities that produce different kinetic characteristics for these two lifting modalities.  相似文献   

19.
The present study investigated changes in indirect markers of muscle damage following a simulated tennis match play using nationally ranked young (17.6 ± 1.4 years) male tennis players. Ten young athletes played a 3-hour simulated match play on outdoor red clay courts following the International Tennis Federation rules. Muscle soreness, plasma creatine kinase activity (CK), serum myoglobin concentration (Mb), one repetition maximum (1RM) squat strength, and squat jump (SJ) and counter movement jump (CMJ) heights were assessed before, immediately after, and 24 and 48 h after the simulated match play. All parameters were also evaluated in a non-exercised group (control group). A small increase in the indirect markers of muscle damage (muscle soreness, CK and Mb) was detected at 24-48 hours post-match (p < 0.05). A marked acute decrement in neuromuscular performance (1RM squat strength: -35.2 ± 10.4%, SJ: -7.0 ± 6.0%, CMJ: -10.0 ± 6.3%) was observed immediately post-match (p < 0.05). At 24 h post-match, the 1RM strength and jump heights were not significantly different from the baseline values. However, several players showed a decrease of these measures at 24 h after the match play. The simulated tennis match play induced mild muscle damage in young players. Coaches could monitor changes in the indirect markers of muscle damage to assess athletes’ recovery status during training and competition.  相似文献   

20.
The problems in comparing the performances of Olympic weightlifters arise from the fact that the relationship between body weight and weightlifting results is not linear. In the present study, this relationship was examined by using a nonparametric curve fitting technique of robust locally weighted regression (LOWESS) on relatively large data sets of the weightlifting results made in top international competitions. Power function formulas were derived from the fitted LOWESS values to represent the relationship between the 2 variables in a way that directly compares the snatch, clean-and-jerk, and total weightlifting results of a given athlete with those of the world-class weightlifters (golden standards). A residual analysis of several other parametric models derived from the initial results showed that they all experience inconsistencies, yielding either underestimation or overestimation of certain body weights. In addition, the existing handicapping formulas commonly used in normalizing the performances of Olympic weightlifters did not yield satisfactory results when applied to the present data. It was concluded that the devised formulas may provide objective means for the evaluation of the performances of male weightlifters, regardless of their body weights, ages, or performance levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号