首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The small subunit ribosomal RNA (SSU rRNA) encoding genes from reference strains of Aeromonas salmonicida subsp. smithia and Haemophilus piscium were amplified by polymerase chain reaction and cloned into Escherichia coli cells. Almost the entire SSU rRNA gene sequence (1505 nucleotides) from both organisms was determined. These DNA sequences were compared with those previously described from A. salmonicida subsp. salmonicida, subsp. achromogenes and subsp. masoucida. This genetic analysis revealed that A. salmonicida subsp. smithia and H. piscium showed 99.4 and 99.6% SSU rRNA gene sequence identity, respectively, with A. salmonicida subsp. salmonicida.  相似文献   

2.
An ADP-ribosylating toxin named Aeromonas salmonicida exoenzyme T (AexT) in A. salmonicida subsp. salmonicida, the etiological agent of furunculosis in fish, was characterized. Gene aexT, encoding toxin AexT, was cloned and characterized by sequence analysis. AexT shows significant sequence similarity to the ExoS and ExoT exotoxins of Pseudomonas aeruginosa and to the YopE cytotoxin of different Yersinia species. The aexT gene was detected in all of the 12 A. salmonicida subsp. salmonicida strains tested but was absent from all other Aeromonas species. Recombinant AexT produced in Escherichia coli possesses enzymatic ADP-ribosyltransferase activity. Monospecific polyclonal antibodies directed against purified recombinant AexT detected the toxin produced by A. salmonicida subsp. salmonicida and cross-reacted with ExoS and ExoT of P. aeruginosa. AexT toxin could be detected in a wild type (wt) strain of A. salmonicida subsp. salmonicida freshly isolated from a fish with furunculosis; however, its expression required contact with RTG-2 rainbow trout gonad cells. Under these conditions, the AexT protein was found to be intracellular or tightly cell associated. No AexT was found when A. salmonicida subsp. salmonicida was incubated in cell culture medium in the absence of RTG-2 cells. Upon infection with wt A. salmonicida subsp. salmonicida, the fish gonad RTG-2 cells rapidly underwent significant morphological changes. These changes were demonstrated to constitute cell rounding, which accompanied induction of production of AexT and which led to cell lysis after extended incubation. An aexT mutant which was constructed from the wt strain with an insertionally inactivated aexT gene by allelic exchange had no toxic effect on RTG-2 cells and was devoid of AexT production. Hence AexT is directly involved in the toxicity of A. salmonicida subsp. salmonicida for RTG-2 fish cells.  相似文献   

3.
L'Abée-Lund TM  Sørum H 《Plasmid》2002,47(3):41-181
Two 11.8 kb non-conjugative, but mobilizable R plasmids designated pRAS3.1 and pRAS3.2 were isolated from Aeromonas salmonicida subspecies salmonicida and atypical A. salmonicida, respectively. Differences between the plasmids were of minor extent and they are considered as being variants of the same plasmid, pRAS3. The genes repA, repB, mobA, mobC, mobD, and mobE were organized similar to corresponding genes in the small, mobilizable plasmid pTF-FC2 isolated from Acidithiobacillus ferrooxidans (previously Thiobacillus ferrooxidans). The nucleotide identity between these genes from pRAS3.1 and pTF-FC2 ranged from 89.5 to 98.2%. The tetA(C), tetR(C), and approximately 960 base pairs adjacent to tetR(C) were highly similar to the nucleotide sequence in pSC101. Plasmid pRAS3 was also found in a Scottish A. salmonicida strain, and appears to be identical to the R plasmid pJA8102-2 isolated from A. salmonicida in Japan.  相似文献   

4.
Aeromonas salmonicida subsp. salmonicida possesses a number of potential virulence factors, including a recently identified plasmid-encoded Type III secretion system. A number of field isolates of A. salmonicida subsp. salmonicida were examined for the presence of Type III secretion genes. Using in vitro experiments, it was found that field isolates containing such genes are cytotoxic to fish cell lines, whereas those that lack these genes are not. Using a rainbow trout in vivo model, the virulence of a wild type A. salmonicida subsp. salmonicida strain (Strain JF2267), which possesses Type III secretion genes, was compared to that of a laboratory derivative of the same strain that has lost these genes. While Strain JF2267 was virulent towards rainbow trout, its derivative was not. The A. salmonicida subsp. salmonicida Type Strain ATCC 33658T, which also lacks Type III secretion genes, was also found to be avirulent by this challenge model. The findings from both the in vitro and in vivo experiments suggest that the presence of Type III secretion genes is associated with the virulence of this important fish pathogen.  相似文献   

5.
RAPD-PCR has been used to produce DNA probes for Aeromonas salmonicida . DNA hybridization studies showed that RAPD-PCR fragments of the same size did not necessarily hybridize to each other and therefore these sequences were not always homologous. However, a single RAPD-PCR fragment (designated 15e) was identified as being common to Aer. salmonicida . Subsequently, 15e was found to comprise five DNA fragments of similar size which differed in their nucleotide sequences. All five fragments were evaluated as DNA probes for the specific detection of Aer. salmonicida DNA: two hybridized specifically to DNA of all Aer. salmonicida isolates tested, including the four current subspecies and atypical isolates; one hybridized to subspecies salmonicida , achromogenes and masoucida , but not subspecies smithia ; one hybridized to subspecies salmonicida and achromogenes , but not subspecies masoucida or smithia ; and one hybridized to subspecies salmonicida , achromogenes and smithia , but not subspecies masoucida . It is believed that these fragments could be useful as non-radioactive probes for the safe and rapid diagnosis of these fish pathogens.  相似文献   

6.
Aeromonas salmonicida subsp. salmonicida, the etiological agent of furunculosis, is an important fish pathogen. We have screened this bacterium with a broad-host-range probe directed against yscV, the gene that encodes the archetype of a highly conserved family of inner membrane proteins found in every known type III secretion system. This has led to the identification of seven open reading frames that encode homologues to proteins functioning within the type III secretion systems of Yersinia species. Six of these proteins are encoded by genes comprising a virA operon. The A. salmonicida subsp. salmonicida yscV homologue, ascV, was inactivated by marker replacement mutagenesis and used to generate an isogenic ascV mutant. Comparison of the extracellular protein profiles from the ascV mutant and the wild-type strain indicates that A. salmonicida subsp. salmonicida secretes proteins via a type III secretion system. The recently identified ADP-ribosylating toxin AexT was identified as one such protein. Finally, we have compared the toxicities of the wild-type A. salmonicida subsp. salmonicida strain and the ascV mutant against RTG-2 rainbow trout gonad cells. While infection with the wild-type strain results in significant morphological changes, including cell rounding, infection with the ascV mutant has no toxic effect, indicating that the type III secretion system we have identified plays an important role in the virulence of this pathogen.  相似文献   

7.
Restriction endonuclease fingerprinting (REF) analysis was used to examine total cellular DNA prepared from 56 independent field isolates of the fish pathogen, Aeromonas salmonicida. DNA was digested singly with the restriction enzymes EcoRI and HindIII, and the resulting fragments separated by polyacrylamide gel electrophoresis and visualized by silver staining. The REF patterns of typical isolates of A. salmonicida subsp. salmonicida were distinct from those of A. hydrophila, A. salmonicida subsp. achromogenes, A. salmonicida subsp. masoucida, and atypical isolates of A. salmonicida subsp. salmonicida. Differences between strains of typical A. salmonicida subsp. salmonicida could also be distinguished. Canadian isolates examined could be assigned to 1 of 12 different groups (REF groups), with the majority of the isolates belonging to REF groups 1 and 5. REF group 1 strains were isolated from British Columbia and New Brunswick while REF group 5 isolates were found in Ontario. None of the European strains examined had REF patterns identical to those of Canadian isolates. Based on REF analysis, there was little genetic heterogeneity detected among 23 isolates from two short-term studies of naturally occurring infections. Several different REF groups were seen among A. salmonicida collected over a 10-year period from coho salmon from the Credit River. Consistent with earlier biochemical and hybridization studies, the REF data suggest that A. salmonicida is a clonal pathogen. REF analysis can, however, permit the identification of subgroups, which may be useful in epidemiological studies.  相似文献   

8.
RAPD-PCR has been used to produce DNA probes for Aeromonas salmonicida. DNA hybridization studies showed that RAPD-PCR fragments of the same size did not necessarily hybridize to each other and therefore these sequences were not always homologous. However, a single RAPD-PCR fragment (designated 15e) was identified as being common to Aer. salmonicida. Subsequently, 15e was found to comprise five DNA fragments of similar size which differed in their nucleotide sequences. All five fragments were evaluated as DNA probes for the specific detection of Aer. salmonicida DNA: two hybridized specifically to DNA of all Aer. salmonicida isolates tested, including the four current subspecies and atypical isolates; one hybridized to subspecies salmonicida, achromogenes and masoucida, but not subspecies smithia; one hybridized to subspecies salmonicida and achromogenes, but not subspecies masoucida or smithia; and one hybridized to subspecies salmonicida, achromogenes and smithia, but not subspecies masoucida. It is believed that these fragments could be useful as non-radioactive probes for the safe and rapid diagnosis of these fish pathogens.  相似文献   

9.
DNA:DNA reassociation analysis of Aeromonas salmonicida   总被引:6,自引:0,他引:6  
DNA from 26 Aeromonas salmonicida strains, namely 11 'typical' and 15 so-called 'atypical' strains, was used to assess the taxonomic relatedness within the species. The genomes were characterized by determination of DNA base composition, DNA:DNA reassociation, calculation of sequence divergence following reassociation, and by genome size estimations. By comparison with DNA obtained from controls and the Aeromonas hydrophila group, A. salmonicida strains were determined to be correctly placed with respect to genus and species. A. salmonicida subspecies salmonicida (the 'typical' group) was an extremely homogeneous taxon. The 'atypical' strains were more diverse, but distinct biotypes were recognizable. The first biotype included several geographically diverse isolates from goldfish. The second recognizable biotype included strains isolated from European carp. Other 'atypical' isolates could not be grouped but showed enough internal homology to be retained within the species. The A. salmonicida subspecies achromogenes and masoucida were found to be closely related to the motile aeromonads. It is considered that the present classification of A. salmonicida is unsuitable and should be restructured to include A. salmonicida subspecies salmonicida, subspecies achromogenes (to include the present subspecies masoucida), and the reintroduced subspecies nova.  相似文献   

10.
The core oligosaccharide structure of the in vivo derived rough phenotype of Aeromonas salmonicida subsp. salmonicida was investigated by a combination of compositional, methylation, CE-MS and one- and two-dimensional NMR analyses and established as the following: [carbohydrate: see text] where R=alpha-D-Galp-(1-->4)-beta-D-GalpNAc-(1--> or alpha-D-Galp-(1--> (approx. ratio 4:3). Comparative CE-MS analysis of A. salmonicida subsp. salmonicida core oligosaccharides from strains A449, 80204-1 and an in vivo rough isolate confirmed that the structure of the core oligosaccharide was conserved among different isolates of A. salmonicida.  相似文献   

11.
【目的】分离鉴定江苏省扬州市养殖场异育银鲫患病病原。【方法】采用常规的理化特性和分子生物学的方法,对从濒死异育银鲫肝脏处分离到的菌株YZ-1进行表型生物学、分子生物学及药敏试验的系统研究。【结果】该菌株16S r RNA基因(序列长度1 446 bp,Gen Bank登录号为JX164202)与其它杀鲑气单胞菌16S r RNA基因一致性在99%-100%之间,构建发育树确定该菌株为杀鲑气单胞菌杀鲑亚种(Aeromonas salmonicida subsp.salmonicida)。人工回感可导致异育银鲫死亡。药敏试验结果显示:对头孢呋辛、复方新诺明、恩诺沙星等23种抗生素敏感;对阿米卡星、四环素、大观霉素、头孢拉定等11种抗生素中度敏感;对青霉素G、链霉素、庆大霉素、氟苯尼考、万古霉素等10种抗生素耐药。【结论】研究结果证实引起异育银鲫死亡的病原为杀鲑气单胞菌杀鲑亚种。  相似文献   

12.
A DNA fragment that is specific to Aeromonas salmonicida has been isolated from a genomic DNA library by differential hybridization. The specificity of this fragment as a DNA probe for A. salmonicida was shown by hybridization against reference strains and clinical isolates of A. salmonicida, related aeromonads, and species from several other bacterial genera. The sensitivity of detection by a polymerase chain reaction test, based on this fragment, was approximately two A. salmonicida cells.  相似文献   

13.
14.
DNA probe for Aeromonas salmonicida.   总被引:4,自引:3,他引:1       下载免费PDF全文
A DNA fragment that is specific to Aeromonas salmonicida has been isolated from a genomic DNA library by differential hybridization. The specificity of this fragment as a DNA probe for A. salmonicida was shown by hybridization against reference strains and clinical isolates of A. salmonicida, related aeromonads, and species from several other bacterial genera. The sensitivity of detection by a polymerase chain reaction test, based on this fragment, was approximately two A. salmonicida cells.  相似文献   

15.
Plasmid profile analyses were performed for 113 strains of atypical Aeromonas salmonicida and the reference strain A. salmonicida subsp. salmonicida ATCC 14174. The atypical A. salmonicida strains comprised 98 strains obtained from fish originating from 54 farms and 2 lakes in Norway, 10 strains from Canada (2), Denmark (2), Finland (1), Iceland (1) and Sweden (4), the reference strains NCMB 1109 and ATCC 15711 (Haemophilus piscium) of A. salmonicida subsp. achromogenes, and the type cultures A. salmonicida subsp. achromogenes NCMB 1110, A. salmonicida subsp. masoucida ATCC 27013 and A. salmonicida subsp. smithia CCM 4103. A total of 95 strains of atypical A. salmonicida were separated into 7 groups (I to VII) based on the plasmid profiles. Eighteen strains of atypical A. salmonicida had no common plasmid profile. The type strain NCMB 1110 and the reference strain NCMB 1109 were included in group IV, and the type strain ATCC 27013 in group V, but the other reference and type strains had plasmid profiles different from all the other strains. An epidemiological link was documented between strains collected from different farms/localities in each of groups I, III, V and VII. Physiological and biochemical characterizations were performed for 93 of the strains to investigate phenotypic differences between the plasmid groups. Group VII strains and 3 strains with no common plasmid profile differed from the other groups in being catalase-negative. Differences in phenotypic characteristics were shown between the plasmid groups. However, significant variations in reactions for several phenotypic characteristics also occurred within each of the groups I to VII. The present study indicates that plasmid profiling may give useful epidemiological information during outbreaks of atypical A. salmonicida infections in fish. Additional comprehensive phenotypic characterisation is of limited value since the phenotypic characteristics in each plasmid group are not uniform.  相似文献   

16.
Atypical Aeromonas salmonicida strains comprise a heterogeneous group in terms of molecular and phenotypic characteristics. They cause various conditions of ulcer diseases or atypical furunculosis and are being isolated in increasing number from various fish species and geographical areas. Several marine fish species susceptible to atypical A. salmonicida, including spotted wolffish Anarhichas minor O., are now being farmed and new vaccines may be needed. A commercial furunculosis vaccine for salmon is reported to protect wolffish poorly against experimental challenge with atypical A. salmonicida. The protective antigen(s) in furunculosis vaccines is still unclear, but in oil-adjuvanted vaccine for Atlantic salmon Salmo salar L., the surface A-layer was shown to be important for protection. In spotted wolffish, the efficacy of atypical furunculosis vaccines seems to vary with the atypical A. salmonicida strains used as bacterin in the vaccine. In the present study we investigated whether differences in the A-layer protein among atypical strains might be responsible for the observed variation in vaccine efficacy. Atypical A. salmonicida strains from 16 fish species in 11 countries were compared by genome polymorphism analysis using amplified fragment length polymorphism (AFLP) fingerprinting and by comparative sequencing of the vapA genes encoding the A-protein. The A-protein sequences appeared to be highly conserved except for a variable region between Residues 90 to 170. Surprisingly, the grouping of strains based on AFLP- or A-protein sequence similarities was consistent. In addition, serological differences in the A-protein among the strains were demonstrated by an A-protein-specific monoclonal antibody. Vaccines based on atypical A. salmonicida strains possessing genetically and serologically different A-layer proteins were shown to result in significantly different protection in spotted wolffish.  相似文献   

17.
Virulence factors for Aeromonas salmonicida subsp. salmonicida (ASS) strains isolated from cultured turbot Psetta maxima L. are unknown with regard to this host. The presence of virulence genes associated with different stages of ASS infection in salmonids (vapA, tapA, fla, ascV, ascC, aexT, satA and aspA) was analysed using a polymerase chain reaction (PCR) technique in ASS strains isolated from turbot. Other ASS strains isolated from salmonids and environmental A. salmonicida (AS) strains were included for comparison. The presence of the genes was evaluated with respect to ASS virulence in turbot based on intraperitoneal and bath challenges. The genetic profile, including all of the genes studied, that was linked to virulent behaviour after intraperitoneal challenge was significantly more frequent in strains isolated from turbot than in those from salmonids or the environment. The data prove that it is not possible to predict the virulence of ASS in turbot based only on the presence of all genes tested. Moreover, the combined PCR results of vapA, aexT, ascV and ascC were useful for separating most of the ASS from environmental A. salmonicida strains. An association between virulence or genetic profile and the geographical or facility origin of the strains was not found.  相似文献   

18.
RAPD analysis of Aeromonas salmonicida and Aeromonas hydrophila   总被引:2,自引:0,他引:2  
The randomly amplified polymorphic DNA (RAPD) technique was used to analyse the genetic differentiation of 13 strains of Aeromonas salmonicida subsp. salmonicida , and seven strains of Aer. hydrophila. Reproducible profiles of genomic DNA fingerprints were generated by polymerase chain reaction (PCR) using a single randomly designed primer. The RAPD profiles of all the non-motile aeromonads, Aer. salmonicida subsp. salmonicida were identical. However, profiles of the motile aeromonads, Aer. hydrophila differed between isolates. These findings reveal genomic homogeneity in Aer. salmonicida subsp. salmonicida and genetic variety in Aer. hydrophila strains.  相似文献   

19.
A gene bank of DNA from the fish pathogenic bacterium Aeromonas salmonicida was constructed in the bacteriophage lambda gt11. Phage lambda gt11/10G, a recombinant carrying a 4.0-kilobase fragment of A. salmonicida DNA, was found to express the surface array protein (A protein) in Escherichia coli. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the protein expressed from the cloned gene had a subunit molecular weight of 49,000, which was identical to that of subunits in the native assembled A layer. Genomic Southern analysis showed that the gene coding for this predominant cellular protein was in a single copy on the chromosome and was conserved among a wide range of A. salmonicida strains with different phenotypic characteristics and isolated from diverse geographic locations, fish species, and means of pathogenesis. Results of genomic blotting experiments also showed that loss of expression of the A layer resulting from growth at 30 degrees C was accompanied by genetic rearrangement in which N-terminal sequences of the gene for A protein were lost by deletion.  相似文献   

20.
Survival of nonculturable Aeromonas salmonicida in lake water.   总被引:12,自引:9,他引:3       下载免费PDF全文
The survival of Aeromonas salmonicida subsp. salmonicida was investigated in sterile and untreated lake water. In sterile lake water (filtered and autoclaved), it was found that cells of A. salmonicida entered a nonculturable but viable condition. Viability was determined by flow cytometry with the dye rhodamine 123, which is taken up and maintained within cells with a membrane potential. For survival studies in untreated lake water, A. salmonicida was marked with the xylE gene by using the plasmid pLV1013. Marked cells were detected by growth on tryptone soy agar and tryptone soy agar supplemented with kanamycin. Cells were also detected by polymerase chain reaction DNA amplification of the xylE gene and a chromosomal DNA fragment specific for A. salmonicida (pLV1013). The results indicated that A. salmonicida entered a nonculturable condition in untreated lake water over a 21-day study. The viability of nonculturable cells could not be determined in mixed samples; however, the presence of nonculturable cells containing both chromosomal and plasmid DNA was confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号