首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects and mechanisms of mitochondrial DNA (mtDNA) in the development of sepsis-induced lung injury is not well understood. In our present study, we studied the mtDNA effects in sepsis-induced lung injury model, in vitro and in vivo. Compared with the Normal group, the lung histopathological score, the number of positive apoptosis cell, wet/dry (W/D) ratio and TNF-α, IL-1β, and IL-6 concentrations of lipopolysaccharides (LPSs) and mtDNA groups were significantly increased (P < 0.001, respectively). Meanwhile, the lung histopathological score, positive W/D ratio, number of apoptosis cell and tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 concentrations of LPS + mtDNA and small interfering RNA (siRNA)-NC + LPS + mtDNA groups were significantly upregulated compared with those of LPS group (P < 0.05, respectively). However, the lung histopathological score, the number of positive apoptosis cell, W/D ratio and TNF-α, IL-1β, and IL-6 concentrations were significantly improved within the toll-like receptor (TLR9)siRNA + LPS + mtDNA group compared with the LPS group (P < 0.01, respectively). The TLR9, MyD88, and NF-κB proteins or gene expressions of the LPS group and mtDNA group were significantly upregulated compared with those of Normal group by Western blot analysis or immunohistochemistry assay (P < 0.01, respectively), and the TLR9, MyD88, and NF-κB proteins or gene expressions of LPS + mtDNA and siRNA-NC + LPS + mtDNA groups were significantly enhanced compared with those of LPS group (P < 0.05, respectively). However, the TLR9, MyD88, and NF-κB proteins or gene expressions of TLR9siRNA + LPS + mtDNA group were significantly suppressed compared with those of the LPS group (P < 0.01, respectively). In conclusion, mtDNA could provoke lung injury induced by sepsis via regulation of TLR9/MyD88/NF-κB pathway in vitro and in vivo.  相似文献   

2.
3.
Liver transplantation is the only therapy of proven benefit in fulminant hepatic failure (FHF). Lipopolysaccharide (LPS), D-galactosamine (GalN)-induced FHF is a well established model of liver injury in mice. Toll-Like Receptor 4 (TLR4) has been identified as a receptor for LPS. The aim of this study was to investigate the role of TLR4 in FHF induced by D-GalN/LPS administration in mice. Wild type (WT) and TLR4 deficient (TLR4ko) mice were studied in vivo in a fulminant model induced by GalN/LPS. Hepatic TLR4 expression, serum liver enzymes, hepatic and serum TNF-α and interleukin-1β levels were determined. Apoptotic cells were identified by immunohistochemistry for caspase-3. Nuclear factor-kappaβ (NF-κ β) and phosphorylated c-Jun hepatic expression were studied using Western blot analysis. All WT mice died within 24 hours after administration of GalN/LPS while all TLR4ko mice survived. Serum liver enzymes, interleukin-1β, TNF-α level, TLR4 mRNA expression, hepatic injury and hepatocyte apoptosis all significantly decreased in TLR4ko mice compared with WT mice. A significant decrease in hepatic c-Jun and IκB signaling pathway was noted in TLR4ko mice compared with WT mice. In conclusion, following induction of FHF, the inflammatory response and the liver injury in TLR4ko mice was significantly attenuated through decreased hepatic c-Jun and NF-κB expression and thus decreased TNF-α level. Down-regulation of TLR4 expression plays a pivotal role in GalN/LPS induced FHF. These findings might have important implications for the use of the anti TLR4 protein signaling as a potential target for therapeutic intervention in FHF.  相似文献   

4.
5.
6.
Converging clinical data suggest that peripheral inflammation is likely involved in the pathogenesis of the neuropsychiatric symptoms associated with metabolic syndrome (MetS). However, the question arises as to whether the increased prevalence of behavioral alterations in MetS is also associated with central inflammation, i.e. cytokine activation, in brain areas particularly involved in controlling behavior. To answer this question, we measured in a mouse model of MetS, namely the diabetic and obese db/db mice, and in their healthy db/+ littermates emotional behaviors and memory performances, as well as plasma levels and brain expression (hippocampus; hypothalamus) of inflammatory cytokines. Our results shows that db/db mice displayed increased anxiety-like behaviors in the open-field and the elevated plus-maze (i.e. reduced percent of time spent in anxiogenic areas of each device), but not depressive-like behaviors as assessed by immobility time in the forced swim and tail suspension tests. Moreover, db/db mice displayed impaired spatial recognition memory (hippocampus-dependent task), but unaltered object recognition memory (hippocampus-independent task). In agreement with the well-established role of the hippocampus in anxiety-like behavior and spatial memory, behavioral alterations of db/db mice were associated with increased inflammatory cytokines (interleukin-1β, tumor necrosis factor-α and interleukin-6) and reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus but not the hypothalamus. These results strongly point to interactions between cytokines and central processes involving the hippocampus as important contributing factor to the behavioral alterations of db/db mice. These findings may prove valuable for introducing novel approaches to treat neuropsychiatric complications associated with MetS.  相似文献   

7.
Acanthamoeba keratitis (AK) is a vision-threatening corneal infection that is intimately associated with contact lens use which leads to hypoxic conditions on the corneal surface. However, the effect of hypoxia on the Acanthamoeba-induced host inflammatory response of corneal epithelial cells has not been studied. In the present study, we investigated the effect of hypoxia on the Acanthamoeba-induced production of inflammatory mediators interleukin-8 (IL-8) and interferon-β (IFN-β) in human corneal epithelial cells and then evaluated its effects on the Toll-like receptor 4 (TLR4) signaling, including TLR4 and myeloid differentiation primary response gene (88) (MyD88) expression as well as the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and extracellular signal-regulated kinases 1/2 (ERK1/2). We then studied the effect of hypoxia on a TLR4-specific inflammatory response triggered by the TLR4 ligand lipopolysaccharide (LPS). Our data showed that hypoxia significantly decreased the production of IL-8 and IFN-β. Furthermore, hypoxia attenuated Acanthamoeba-triggered TLR4 expression as well as the activation of NF-κB and ERK1/2, indicating that hypoxia abated Acanthamoeba-induced inflammatory responses by affecting TLR4 signaling. Hypoxia also inhibited LPS-induced IL-6 and IL-8 secretion, myeloid differentiation primary response gene (88) MyD88 expression and NF-κB activation, confirming that hypoxia suppressed the LPS-induced inflammatory response by affecting TLR4 signaling. In conclusion, our results demonstrated that hypoxia attenuated the host immune and inflammatory response against Acanthamoeba infection by suppressing TLR4 signaling, indicating that hypoxia might impair the host cell's ability to eliminate the Acanthamoeba invasion and that hypoxia could enhance cell susceptibility to Acanthamoeba infection. These results may explain why contact lens use is one of the most prominent risk factors for AK.  相似文献   

8.
A growing body of evidence recently suggests that glial cell activation plays an important role in several neurodegenerative diseases and neuropathic pain. Microglia in the central nervous system express toll-like receptor 4 (TLR4) that is traditionally accepted as the primary receptor of lipopolysaccharide (LPS). LPS activates TLR4 signaling pathways to induce the production of proinflammatory molecules. In the present studies, we verified the LPS signaling pathways using cultured highly aggressively proliferating immortalized (HAPI) microglial cells. We found that HAPI cells treated with LPS upregulated the expression of TLR4, phospho-JNK (pJNK) and phospho-NF-κB (pNF-κB), TNFα and IL-1β. Silencing TLR4 with siRNA reduced the expression of pJNK, TNFα and IL-1β, but not pNF-κB in the cells. Inhibition of JNK with SP600125 (a JNK inhibitor) decreased the expression of TNFα and IL-1β. Unexpectedly, we found that inhibition of Nod1 with ML130 significantly reduced the expression of pNF-κB. Inhibition of NF-κB also reduced the expression of TNFα and IL-1β. Nod1 ligand, DAP induced the upregulation of pNF-κB which was blocked by Nod1 inhibitor. These data indicate that LPS-induced pJNK is TLR4-dependent, and that pNF-κB is Nod1-dependent in HAPI cells treated with LPS. Either TLR4-JNK or Nod1-NF-κB pathways is involved in the expression of TNFα and IL-1β.  相似文献   

9.
目的: 观察加味逍遥散对LPS诱导的抑郁模型大鼠海马小胶质细胞TLR4/NF-κB通路的影响,探讨其抗抑郁机制。方法: 将SD大鼠随机分为对照组、模型组、氟西汀组(10.8 mg·kg-1)、加味逍遥散低、高剂量组(3.64、7.28 g·kg-1)。采用慢性LPS注射(ip,0.5 mg·kg-1)的方法建立抑郁大鼠模型,于造模同时灌胃给药,共14 d。采用旷场和强迫游泳实验评价大鼠的抑郁样行为,免疫组化法检测海马小胶质细胞标志蛋白Iba-1的表达,ELISA法检测海马匀浆液中TNF-α、IL-6的含量,Western blot法检测海马TLR4、NF-κB蛋白的表达。结果: 与对照组比较,模型组大鼠抑郁样行为显著(P<0.01),海马小胶质细胞明显激活(P<0.01),TNF-α、IL-6含量增加(P<0.01),TLR4、NF-κB蛋白明显上调(P<0.01);与模型组比较,氟西汀和高剂量加味逍遥散组大鼠抑郁样行为明显缓解(P< 0.05),小胶质细胞Iba-1表达恢复正常(P<0.01),TNF-α、IL-6含量下降(P<0.01),TLR4、NF-κB蛋白表达下调(P<0.05);与氟西汀组比较,高剂量加味逍遥散组各指标无统计学差异,提示两者抗抑郁功效无显著区别。结论: 加味逍遥散能明显改善大鼠的抑郁样行为,其机制可能与抑制小胶质细胞TLR4/NF-κB通路,进而下调炎症因子的表达有关。  相似文献   

10.
Notoginsenoside R1 (NGR1) is a neoteric phytoestrogen extracted from Panax notoginseng, and possesses comprehensive pharmacological functions in multitudinous ailments. But, whether NGR1 is utilized in neonatal pneumonia is not clear. This research study aspired to disclose the protective activity of NGR1 in neonatal pneumonia. WI-38 cells were co-stimulated with NGR1 and lipopolysaccharide (LPS, 10 ng/mL), CCK-8 and flow cytometry assays were implemented for cell viability and apoptosis assessment. Real-time quantitative plymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and Western blot analysis were executed for inflammatory cytokine determination. MicroRNA-181a (miR-181a) expression was evaluated through RT-qPCR, simultaneously, the impact of miR-181a was estimated in NGR1 and LPS co-managed cells. Dual luciferase report assay was performed to disclose the relation between miR-181a and Toll-like receptor 4 (TLR4). The nuclear factor-κB (NF-κB) and TAK1/JNK pathways were ultimately appraised. We found that NGR1 decreased cell viability, evoked apoptosis and impeded interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) expression and secretions in LPS-managed WI-38 cells. MiR-181a expression was enhanced by NGR1, and miR-181a inhibition inverted the impacts of NGR1 in LPS-managed WI-38 cells. Besides, TLR4 was predicted to be a firsthand direct target of miR-181a. Furthermore, NGR1 hindered NF-κB and TAK1/JNK pathways through modulating TLR4. These discoveries disclosed the fact that NGR1 protected WI-38 cells against LPS-triggered injury via adjusting the miR-181a/TLR4 and NF-κB and TAK1/JNK pathways.  相似文献   

11.
Abstract

Introduction: Bile acids are recognized as signaling molecules, mediating their effects both through the cell surface receptor TGR5 and the nuclear receptor FXR. After a meal, approximately 95% of the bile acids are transported from terminal ileum and back to the liver via the portal vein, resulting in postprandial elevations of bile acids in blood. During the digestion of fat, components from the microbiota, including LPS, are thought to reach the circulation where it may lead to inflammatory responses after binding TLR4 immune cells. Both LPS and bile acids are present in blood after a high-fat meal; we therefore wanted to study consequences of a possible interplay between TGR5 and TLR4 in human monocytes. Methods: The monocytic cell line U937 stably transfected with the NF-κB reporter plasmid 3x-κB-luc was used as a model system to study the effects of TGR5 and TLR4. Activation of MAP kinases was studied to reveal functional consequences of triggering TGR5 in U937 cells. Effects of TGR5 and TLR4 activation were monitored using NF-κB luciferase assay and by quantification of the pro-inflammatory cytokines IL-6 and IL-8 using ELISA. Results: In this study, results show that triggering TGR5 with the specific agonist betulinic acid (BA), and the bile acids CDCA or DCA, activated both the main MAP kinases ERK1/2, p38 and JNK, and the NF-κB signaling pathway. We further demonstrated that co-triggering of TLR4 and TGR5 enhanced the activation of NF-κB and the release of inflammatory cytokines in a synergistic manner compared to triggering of TLR4 alone. Conclusions: Thus, two different and simultaneous events associated with the digestive process coordinately affect the function of human monocytes and contribute to enhanced inflammation. Because elevated levels of circulatory LPS may contribute to the development of insulin resistance, the results from this study suggest that bile acids through the activation of TGR5 may have a role in the development of insulin resistance as well.  相似文献   

12.
ABSTRACT

The current investigation was carried out to analyze the correlation of bacterial lipopolysaccharide (LPS) and pre-mRNA processing factor 4B (PRP4) in inducing inflammatory response and cell actin cytoskeleton rearrangement in macrophages (Raw 264.7) and colorectal (HCT116) as well as skin cancer (B16-F10) cells. Cell lines were stimulated with LPS, and the expression of PRP4 as well as pro-inflammatory cytokines and proteins like IL-6, IL-1β, TLR4, and NF-κB were assayed. The results demonstrated that LPS markedly increased the expression of PRP4, IL-6, IL-1β, TLR4, and NF-κB in the cells. LPS and PRP4 concomitantly altered the morphology of cells from an aggregated, flattened shape to a round shape. Decursin, a pyranocoumarin from Angelica gigas, inhibited the LPS and PRP4-induced inflammatory response, and reversed the induction of morphological changes. Finally, we established a possible link of LPS with TLR4 and JNK signaling, through which it activated PRP4. Our study provides molecular insights for LPS and PRP4-related pathogenesis and a basis for developing new strategies against metastasis in colorectal cancer and skin melanoma. Our study emphasizes that decursin may be an effective treatment strategy for various cancers in which LPS and PRP4 perform a critical role in inducing inflammatory response and morphological changes leading to cell survival and protection against anti-cancer drugs.  相似文献   

13.
14.
Inflammation is a system used by a host to defend against the presence of bacteria, viruses, or yeasts. Toll-like receptors (TLRs) in the plasma membranes of macrophages are activated when they recognize the molecular structure of a virus or bacterium. Lipopolysaccharide (LPS), an outer cell-wall component of Gram-negative bacteria, initiates an inflammatory process via TLR4. We investigated the effect of the extract of Anethum graveloens flowers (AGFs) on LPS-mediated inflammation in RAW 264.7 cells. The extract markedly suppressed nitric oxide generation in a concentration-dependent manner in LPS-stimulated RAW 264.7 cells. It inhibited inducible nitric oxide synthase (iNOS) and the mRNA expression of cytokines such as interleukin-1 beta and interleukin-6 in LPS-stimulated RAW 264.7 cells. It also inhibited iNOS protein levels in LPS-stimulated RAW 264.7 cells. In addition, AGF decreased the LPS-induced phosphorylation of mitogen-activated protein kinases in LPS-stimulated RAW 264.7 cells. AGF inhibited the phosphorylation of Akt, an upstream molecule of the nuclear factor kappa B (NF-κB) pathway, and thus inhibited NF-κB activity in LPS-stimulated RAW 264.7 cells. These results suggest that AGF exerts an anti-inflammatory effect in LPS-stimulated RAW 264.7 cells by inhibiting iNOS expression and blocking the NF-κB pathway.  相似文献   

15.
Early brain injury (EBI) is associated with the adverse prognosis of subarachnoid hemorrhage (SAH) patients. The key bioactive component of the Chinese herbal medicine Artemisia asiatica Nakai (Asteraceae) is eupatilin. Recent research reports that eupatilin suppresses inflammatory responses induced by intracranial hemorrhage. This work is performed to validate whether eupatilin can attenuate EBI and deciphers its mechanism. A SAH rat model was established by intravascular perforation in vivo. At 6 h after SAH in rats, 10 mg/kg eupatilin was injected into the rats via the caudal vein. A Sham group was set as the control. In vitro, BV2 microglia was treated with 10 μM Oxyhemoglobin (OxyHb) for 24 h, followed by 50 μM eupatilin treatment for 24 h. The SAH grade, brain water content, neurological score, and blood-brain barrier (BBB) permeability of the rats were measured 24 h later. The content of proinflammatory factors was detected via enzyme-linked immunosorbent assay. Western blot analysis was conducted to analyze the expression levels of TLR4/MyD88/NF-κB pathway-associated proteins. In vivo, eupatilin administration alleviated neurological injury, and decreased brain edema and BBB injury after SAH in rats. Eupatilin markedly reduced the levels of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), and suppressed the expression levels of MyD88, TLR4, and p-NF-κB p65 in the SAH rats' cerebral tissues. Eupatilin treatment also reduced the levels of IL-1β, IL-6, and TNF-α, and repressed the expression levels of MyD88, TLR4, and p-NF-κB p65 in OxyHb-induced BV2 microglia. Additionally, pyrrolidine dithiocarbamate or resatorvid enhanced the suppressive effects of eupatilin on OxyHb-induced inflammatory responses in BV2 microglia. Eupatilin ameliorates SAH-induced EBI via modulating the TLR4/MyD88/NF-κB pathway in rat model.  相似文献   

16.
Fisetin, a dietary flavonoid, is commonly found in many fruits and vegetables. Although studies indicate that fisetin has an anti-inflammatory property, little is known about its effects on intestinal inflammation. The present study investigated the effects of the fisetin on dextran sulphate sodium (DSS)-induced murine colitis, an animal model that resembles human inflammatory bowel disease. Fisetin treatment to DSS-exposed mice significantly reduced the severity of colitis and alleviated the macroscopic and microscopic signs of the disease. Moreover, fisetin reduced the levels of myeloperoxidase activity, the production of proinflammatory cytokines, tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) and the expressions of COX-2 and iNOS in the colon tissues. Further studies revealed that fisetin suppressed the activation of NF-κB (p65) by inhibiting IκBα phosphorylation and NF-κB (p65)–DNA binding activity and attenuated the phosphorylation of Akt and the p38, but not ERK and JNK MAPKs in the colon tissues of DSS-exposed mice. In addition, DSS-induced decline in reduced glutathione (GSH) and the increase in malondialdehyde (MDA) levels were significantly restored by oral fisetin. Furthermore, the results from in vitro studies showed that fisetin significantly reduced the pro-inflammatory cytokine and mediator release and suppressed the degradation and phosphorylation of IκBα with subsequent nuclear translocation of NF-κB (p65) in lipopolysaccharide (LPS)-stimulated mouse primary peritoneal macrophages. These results suggest that fisetin exerts anti-inflammatory activity via inhibition of Akt, p38 MAPK and NF-κB signaling in the colon tissues of DSS-exposed mice. Thus, fisetin may be a promising candidate as pharmaceuticals or nutraceuticals in the treatment of inflammatory bowel disease.  相似文献   

17.
Dynorphin 1-17 (DYN 1-17) is biotransformed rapidly to a range of fragments in rodent inflamed tissue with dynorphin 3-14 (DYN 3-14) being the most stable and prevalent. DYN 1-17 has been shown previously to be involved in the regulation of inflammatory response following tissue injury, in which the biotransformation fragments of DYN 1-17 may possess similar features. This study investigated the effects of DYN 3-14 on lipopolysaccharide (LPS)-induced nuclear factor-kappaB/p65 (NF-κB/p65) nuclear translocation and the release of pro-inflammatory cytokines interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) in differentiated THP-1 cells. Treatment with DYN 3-14 (10 nM) resulted in 35% inhibition of the LPS-induced nuclear translocation of NF-κB/p65. Furthermore, DYN 3-14 modulated both IL-1β and TNF-α release; inhibiting IL-1β and paradoxically augmenting TNF-α release in a concentration-independent manner. A number of opioids have been implicated in the modulation of the toll-like receptor 4 (TLR4), highlighting the complexity of their immunomodulatory effects. To determine whether DYN 3-14 modulates TLR4, HEK-Blue™hTLR4 cells were stimulated with LPS in the presence of DYN 3-14. DYN 3-14 (10 μM) inhibited TLR4 activation in a concentration-dependent fashion by suppressing the LPS signals around 300-fold lower than LPS-RS, a potent TLR4 antagonist. These findings indicate that DYN 3-14 is a potential TLR4 antagonist that alters cellular signaling in response to LPS and cytokine release, implicating a role for biotransformed endogenous opioid peptides in immunomodulation.  相似文献   

18.
Previous studies have demonstrated expression of Toll-like receptors (TLRs) in the surface epithelium of normal ovaries (OSE) and in epithelial ovarian tumors. Most notably, OSE-derived cancers express TLR4, which activates the nuclear factor-kappa B (NF-κB) signaling cascade as a mediator of inflammatory response. Currently, there is considerable interest in elucidating the role of TLR-mediated signaling in cancers. Nevertheless, the expression of TLRs in granulosa cell tumors (GCTs) of the ovary, and the extent to which GCT expression of TLRs may influence cell-signaling pathways and/or modulate the efficacy of chemotherapeutics, has yet to be determined. In the present study, human GCT lines (COV434 and KGN) were utilized to evaluate expression of functional TLR4. TLR4 is expressed in GCT cell lines and ligation of TLR4 with bacterial lipopolysaccharide (LPS) led to IκB degradation and activation of NF-κB. NF-κB activation was confirmed by nuclear localization of NF-κB p65 following treatment with LPS and the naturally occurring ligand, HSP60. Notably, immunoneutralization of TLR4 blocked nuclear localization, and inhibition of NF-κB signaling attenuated LPS-induced TNFα plus increased doubling time in both cell lines. Contradictory to reports using human OSE cell lines, inhibition of NF-κB signaling failed to sensitize GCT lines to TRAIL or cisplatin. In summary, findings herein are the first to demonstrate a functional TLR-signaling pathway specifically in GCTs, and indicate that in contrast to OSE-derived cancers, inhibition of NF-κB does not sensitize GCTs to TRAIL or cisplatin.  相似文献   

19.
The choroid plexus is able to modulate the cognitive function, through changes in the neuroinflammatory response and in brain immune surveillance. However, whether lycopene is involved in inflammatory responses at the choroid plexus in the early stages of Alzheimer's disease, and its molecular underpinnings are elusive. In this rat study, lycopene was used to investigate its protective effects on inflammation caused by β-amyloid. We characterized the learning and memory abilities, cytokine profiles of circulating TNF-α, IL-1β and IL-6β in the serum and the expressions of Toll like receptor 4 and nuclear factor-κB p65 mRNA and protein at the choroid plexus. The results showed that functional deficits of learning and memory in lycopene treatment groups were significantly improved compared to the control group without lycopene treatment in water maze test. The levels of serum TNF-α, IL-1β and IL-6β were significantly increased, and the expressions of TLR4 and NF-κB p65 mRNA and protein at the choroid plexus were up-regulated, indicating inflammation response was initiated following administration of Aβ1–42. After intragastric pretreatment with lycopene, inflammatory cytokines were significantly reduced and lycopene also reversed the Aβ1–42 induced up-regulation of TLR4 and NF-κB p65 mRNA and protein expressions at the choroid plexus. These results provided a novel evidence that lycopene significantly improved cognitive deficits and were accompanied by the attenuation of inflammatory injury via blocking the activation of NF-κB p65 and TLR4 expressions and production of cytokines, thereby endorsing its usefulness for diminishing β-amyloid deposition in the hippocampus tissues.  相似文献   

20.
Myocardial dysfunction is a major consequence of septic shock and contributes to the high mortality of sepsis. High-mobility group box 1 (HMGB1) serves as a late mediator of lethality in sepsis. We have reported that glucan phosphate (GP) attenuates cardiac dysfunction and increases survival in cecal ligation and puncture (CLP)-induced septic mice. In the present study, we examined the effect of GP on HMGB1 translocation from the nucleus to the cytoplasm in the myocardium of septic mice. GP was administered to mice 1 h before induction of CLP. Sham-operated mice served as control. The levels of HMGB1, Toll-like receptor 4 (TLR4), and NF-κB binding activity were examined. In an in vitro study, H9C2 cardiomyoblasts were treated with lipopolysaccharide (LPS) in the presence or absence of GP. H9C2 cells were also transfected with Ad5-IκBα mutant, a super repressor of NF-κB activity, before LPS stimulation. CLP significantly increased the levels of HMGB1, TLR4, and NF-κB binding activity in the myocardium. In contrast, GP administration attenuated CLP-induced HMGB1 translocation from the nucleus to the cytoplasm and reduced CLP-induced increases in TLR4 and NF-κB activity in the myocardium. In vitro studies showed that GP prevented LPS-induced HMGB1 translocation and NF-κB binding activity. Blocking NF-κB binding activity by Ad5-IκBα attenuated LPS-induced HMGB1 translocation. GP administration also reduced the LPS-stimulated interaction of HMGB1 with TLR4. These data suggest that attenuation of HMGB1 translocation by GP is mediated through inhibition of NF-κB activation in CLP-induced sepsis and that activation of NF-κB is required for HMGB1 translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号