首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA nicking favors PCR recombination.   总被引:9,自引:4,他引:5       下载免费PDF全文
We attempted to use the polymerase chain reaction (PCR) to monitor in vitro recombination in a plasmid containing directly repeated sequences. Some of the plasmid preparations which had not been exposed to recombination conditions were however found to behave in the PCR test as if they had undergone homologous recombination. We show here that such false positives are attributable to a small degree of nicking and/or breaking of the DNA template. Presumably, such damage allows the formation of hybrid parental duplexes containing at least one truncated strand, the 3' end of which maps within the homology; extension of this 3' end by the polymerase then results in a linkage of sequences identical to that arising from homologous recombination.  相似文献   

2.
3.
4.
Unequal crossing over between direct DNA repeats of sister chromosomes occurs during DNA replication in Escherichia coli. Such exchanges yield tandem duplications and thereby increase the expression of the genes involved. Nonhomologous cohesion of sister chromosomes and unequal crossing over were assumed to take place when the replication fork stops. When the replication forks moves continuously, homologous exchanges between sister chromosomes ensure their postreplication repair.  相似文献   

5.
D H Jones  S C Winistorfer 《BioTechniques》1992,12(4):528-30, 532, 534-5
Two simple methods for site-specific mutagenesis are described and compared. In each method, the PCR is used in two separate amplifications to mutate the site of interest and to add ends to one PCR product that are homologous to the ends of the other PCR product. In the first method, the two products are combined, denatured and reannealed prior to transformation of E. coli in order to form recombinant circles in vitro, while in the second method, the two linear products are co-transfected directly into E. coli without prior manipulation, resulting in transformation of E. coli with the recombinant of interest by recombination in vivo. Each PCR amplification uses a plasmid template that has been linearized by restriction enzyme digestion outside the region to be amplified. This permits use of unpurified PCR products in these two protocols and generation of the mutant of interest with no other enzymatic manipulation in vitro apart from PCR amplification. In each protocol greater than or equal to 50% of the resulting clones contained the mutation of interest without detected errors.  相似文献   

6.
Comment on: Kracker S, et al. Proc Natl Acad Sci USA 2010; 107:22225-30.  相似文献   

7.
We have constructed phage lambda and plasmid DNA substrates (lambda tk2 and ptk2) that contain two defective herpesvirus thymidine kinase (tk) genes that can be used to detect homologous recombination during the transfer of DNA into mouse L cells deficient in thymidine kinase activity. The recombination event reconstructs a wild-type tk gene and is scored because it converts Tk- cells to Tk+. Using this system, we have shown that (i) both intramolecular and intermolecular homologous recombination can be detected after gene transfer; (ii) the degree of recombination decreases with decreasing tk gene homology; and (iii) the efficiency of recombination can be stimulated 10- to 100-fold by cutting the tk2 DNA with restriction enzymes at appropriate sites relative to the recombining sequences. Based on the substrate requirements for these recombination events, we propose a model to explain how recombination might occur in mammalian cells. The essential features of the model are that the cut restriction site ends are substrates for cellular exonucleases that degrade DNA strands. This process exposes complementary strands of the two defective tk genes, which then pair. Removal of unpaired DNA at the junction between the paired and unpaired regions permits a gap repair process to reconstruct an intact gene.  相似文献   

8.
Constructing DNA by polymerase recombination.   总被引:9,自引:2,他引:7       下载免费PDF全文
Polymerase-mediated recombination based on DNA polymerase chain reactions (PCRs) has been used to carry out directed joining at a present point of two DNA fragments initially contained in a plasmid and a single-stranded synthetic DNA. The process includes copying of these fragments by PCR with generation of an overlapping homologous region. Such overlap of 12 base pairs in length was found to be sufficient to provide further DNA joining also by use of PCR.  相似文献   

9.
Copy-choice illegitimate DNA recombination revisited.   总被引:6,自引:1,他引:5       下载免费PDF全文
Nearly precise excision of a transposon related to Tn10 from an Escherichia coli plasmid was used as a model to study illegitimate DNA recombination between short direct repeats. The excision was stimulated 100-1000 times by induction of plasmid single-stranded DNA synthesis and did not involve transfer of DNA from the parental to the progeny molecule. We conclude that it occurred by copy-choice DNA recombination, and propose that other events of recombination between short direct repeats might be a result of the same process.  相似文献   

10.
We utilized strains of Saccharomyces cerevisiae that exhibit high efficiency of synchrony of meiosis to examine several aspects of meiosis including sporulation, recombination, DNA synthesis, DNA polymerase I and II, and Mg2+-dependent alkaline DNases. The kinetics of commitment to intragenic recombination and sporulation are similar. The synthesis of DNA, as measured directly with diphenylamine, appears to precede the commitment to recombination. Both DNA polymerase I and II activities and total DNA-synthesizing activity in crude extracts increase two- to threefold before the beginning of meiotic DNA synthesis. Increases of 10- to 20-fold over mitotic levels are found for Mg2+-dependent alkaline DNase activity in crude extracts before and during the commitment to meiotic intragenic recombination. Of particular interest is the comparable increase in a nuclease under the control of the RAD52 gene; this enzyme has been identified by the use of antibody raised against a similar enzyme from Neurospora crassa. Since the RAD52 gene is essential for meiotic recombination, the nuclease is implicated in the high levels of recombination observed during meiosis. The effects observed in this report are meiosis specific since they are not observed in an alpha alpha strain.  相似文献   

11.
Choreography of recombination proteins during the DNA damage response   总被引:1,自引:0,他引:1  
Michael Lisby  Rodney Rothstein   《DNA Repair》2009,8(9):1068-1076
Genome integrity is frequently challenged by DNA lesions from both endogenous and exogenous sources. A single DNA double-strand break (DSB) is lethal if unrepaired and may lead to loss of heterozygosity, mutations, deletions, genomic rearrangements and chromosome loss if repaired improperly. Such genetic alterations are the main causes of cancer and other genetic diseases. Consequently, DNA double-strand break repair (DSBR) is an important process in all living organisms. DSBR is also the driving mechanism in most strategies of gene targeting, which has applications in both genetic and clinical research. Here we review the cell biological response to DSBs in mitotically growing cells with an emphasis on homologous recombination pathways in yeast Saccharomyces cerevisiae and in mammalian cells.  相似文献   

12.
13.
Chromosomal double-strand breaks (DSBs) arise after exposure to ionizing radiation or enzymatic cleavage, but especially during the process of DNA replication itself. Homologous recombination plays a critical role in repair of such DSBs. There has been significant progress in our understanding of two processes that occur in DSB repair: gene conversion and recombination-dependent DNA replication. Recent evidence suggests that gene conversion and break-induced replication are related processes that both begin with the establishment of a replication fork in which both leading- and lagging-strand synthesis occur. There has also been much progress in characterization of the biochemical roles of recombination proteins that are highly conserved from yeast to humans.  相似文献   

14.
A combination of half-site substrates and step arrest mutants of Flp, a site-specific recombinase of the integrase family, had earlier revealed the following features of the half-site recombination reaction. (i) The Flp active site is assembled by sharing of catalytic residues from at least two monomers of the protein. (ii) A Flp monomer does not cleave the half site to which it is bound (DNA cleavage in cis); rather, it cleaves a half site bound by a second Flp monomer (DNA cleavage in trans). For the lambda integrase (Int protein), the prototype member of the Int family, catalytic complementation between two active-site mutants has been observed in reactions with a suicide attL substrate. By analogy with Flp, this observation is strongly suggestive of a shared active site and of trans DNA cleavage. However, reactions with linear suicide attB substrates and synthetic Holliday junctions are more compatible with cis than with trans DNA cleavage. These Int results either argue against a common mode of active-site assembly within the Int family or challenge the validity of Flp half sites as mimics of the normal full-site substrates. We devised a strategy to assay catalytic complementation between Flp monomers in full sites. We found that the full-site reaction follows the shared active-site paradigm and the trans mode of DNA cleavage. These results suggest that within the Int family, a unitary chemical mechanism of recombination is achieved by more than one mode of physical interaction among the recombinase monomers.  相似文献   

15.
16.
17.
Recombination during the PCR amplification of DNA templates can be a serious problem for those seeking to genotype heterogeneous populations, yet a boon to those seeking to enhance variation during in vitro evolution. Here, the extent to which PCR generates chimeric full-length products was estimated using a powerful restriction fragment-length polymorphism (RFLP) assay involving the use of fluorescently labeled PCR primers. Three different RNA-encoding DNA templates were assayed: (i) one for a group I ribozyme, (ii) one for a 16S ribosomal RNA (rRNA), and (iii) one for a messenger RNA (mRNA). In all cases, the observed frequency of chimeric PCR products exceeded 20%, and longer templates appear to produce more chimeric products. Although two of these templates have the potential to form secondary structures during the PCR, this tendency does not seem to heighten recombination frequency. These results corroborate previous studies that show that the production of chimeras can be best attenuated to a certain extent by varying the extension times in PCR.  相似文献   

18.
19.
Bacillus subtilis LrpC is a sequence-independent DNA-binding and DNA-bending protein, which binds both single-stranded (ss) and double-stranded (ds) DNA and facilitates the formation of higher order protein–DNA complexes in vitro. LrpC binds at different sites within the same DNA molecule promoting intramolecular ligation. When bound to separate molecules, it promotes intermolecular ligation, and joint molecule formation between a circular ssDNA and a homologous ssDNA-tailed linear dsDNA. LrpC binding showed a higher affinity for 4-way (Holliday) junctions in their open conformation, when compared with curved dsDNA. Consistent with these biochemical activities, an lrpC null mutant strain rendered cells sensitive to DNA damaging agents such as methyl methanesulfonate and 4-nitroquinoline-1-oxide, and showed a segregation defect. These findings collectively suggest that LrpC may be involved in DNA transactions during DNA repair and recombination.  相似文献   

20.
DNA polymerases play a central role during homologous recombination (HR), but the identity of the enzyme(s) implicated remains elusive. The pol3-ct allele of the gene encoding the catalytic subunit of DNA polymerase δ (Polδ) has highlighted a role for this polymerase in meiotic HR. We now address the ubiquitous role of Polδ during HR in somatic cells. We find that pol3-ct affects gene conversion tract length during mitotic recombination whether the event is initiated by single-strand gaps following UV irradiation or by site-specific double-strand breaks. We show that the pol3-ct effects on gene conversion are completely independent of mismatch repair, indicating that shorter gene conversion tracts in pol3-ct correspond to shorter extensions of primed DNA synthesis. Interestingly, we find that shorter repair tracts do not favor synthesis-dependent strand annealing at the expense of double-strand-break repair. Finally, we show that the DNA polymerases that have been previously suspected to mediate HR repair synthesis (Pol and Polη) do not affect gene conversion during induced HR, including in the pol3-ct background. Our results argue strongly for the preferential recruitment of Polδ during HR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号