首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of archidonic, oleic and linoleic acid on calcium uptake and release by sarcoplasmic reticulum isolated from longissimus dorsi muscle was investigated using a Ca2+ electrode. All three long chain fatty acids stimulated the release of Ca2+ from sacroplasmic reticulum when added after exogenous Ca2+ was accumulated by the vesicles, and also inhibited Ca2+ uptake when added before Ca2+. This inhibitory effect on the calcium transport by arachidonic, oleic and linoleic acid was prevented by bovine serum albumin through its ability to bind with the fatty acid. The order of effectiveness of the fatty acids in inhibiting calcium transport by isolated sarcoplasmic reticulum was arachidonic acid> oleic acid > linoleic acid. Similar inhibition of calcium uptake and induction of calcium release by arachidonic acid was observed in muscle homogenate sarcoplasmic reticulum preparations. Both arachidonic and oleic acid stimulated the (Ca2+ + Mg2+)-ATPase activity of sarcoplasmic reticulum at low concentrations, but inhibited the (Ca2+ + Mg2+)-ATPase activity at high concentrations. The maximal (Ca2+ + Mg2+-ATPase activity observed with arachidonic acid was twice that obtained with oleic acid, but the concentration of arachidonic acid required was 3–4-times greater than that of oleic acid. The concentration of arachidonic acid required to give maximum stimulation of the (Ca2+ + Mg2+)-ATPase activity was 3.6-times greater than that needed for complete inhibition of calcium accumulation by the sacroplasmic reticulum. With oleic acid, however, the concentration required to give maximum stimulation of the (Ca2+ + Mg2+)-ATPase activity inhibited the sarcoplasmic reticulum Ca2+ accumulation by 72%. The present data support our hypothesis that, in porcine malignant hyperthermia, unsaturated fatty acids from mitochondrial membranes released by endogenous phospholipase A2 would induce the sarcoplasmic reticulum to release calcium (Cheah K.S. and Cheah, A.M. (1981) Biochim. Biophys. Acta 634, 70–84).  相似文献   

2.
On solubilization with Triton X-100 of sarcoplasmic reticulum vesicles isolated by differential centrifugation, the Ca2+-ATPase is selectively extracted while approximately half of the initial Mg2+-, or ‘basal’, ATPase remains in the Triton X-100 insoluble residue. The insoluble fraction, which does not contain the 100 000 dalton polypeptide of the Ca2+-ATPase, contains high levels of cytochrome c oxidase. Furthermore, its Mg2+-ATPase activity is inhibited by specific inhibitors of mitochondrial ATPase, indicating that the ‘basal’ ATPase separated from the Ca2+-ATPase by detergent extraction originates from mitochondrial contaminants.To minimize mitochondrial contamination, sarcoplasmic reticulum vesicles were fractionated by sedimentation in discontinuous sucrose density gradients into four fractions: heavy, intermediate and light, comprising among them 90–95% of the initial sarcoplasmic reticulum protein, and a very light fraction, which contains high levels of Mg2+-ATPase. Only the heavy, intermediate and light fractions originate from sarcoplasmic reticulum; the very light fraction is of surface membrane origin. Each fraction of sarcoplasmic reticulum origin was incubated with calcium phosphate in the presence of ATP and the loaded fractions were separated from the unloaded fractions by sedimentation in discontinuous sucrose density gradients. It was found that vesicles from the intermediate fraction had, after loading, minimal amounts of mitochondrial and surface membrane contamination, and displayed little or no Ca2+-independent basal ATPase activity. This shows conclusively that the basal ATPase is not an intrinsic enzymatic activity of the sarcoplasmic reticulum membrane, but probably originates from variable amounts of mitochondrial and surface membrane contamination in sarcoplasmic reticulum preparations isolated by conventional procedures.  相似文献   

3.
Ruthenium red, a powerful inhibitor of Ca2+ transport by mitochondria, does not inhibit the active Ca2+ uptake by sarcoplasmic reticulum isolated from rabbit skeletal muscle promoted by 5 mM ATP-Mg in the presence or absence of potassium oxalate. Although concentrations of ruthenium red up to 100 μM do not affect the active uptake of Ca2+, 25 μM of the inorganic dye inhibit the passive binding of Ca2+ by about 50%. This inhibitory effect is observed in sarcoplasmic reticulum even after its lipid fraction is extracted with acetone.Although active Ca2+ uptake by sarcoplasmic reticulum is not inhibited by ruthenium red, in the absence of oxalate it inhibits significantly the Ca2+-dependent ATPase activity but not the Mg2+-ATPase. However, if potassium oxalate is present, the Ca2+-stimulated ATPase is not sensitive to the dye. It is not clear how oxalate functions to protect the Ca2+-ATPase against the inhibitor effect of ruthenium red.The high sensitivity to ruthenium red of the Ca2+ transport mechanism in mitochondria as compared to the Ca2+ transport in sarcoplasmic reticulum may be useful in determining the extent to which each organelle functions in the cell to regulate intracellular free Ca2+.  相似文献   

4.
The presence of an energy-dependent calcium uptake system in adipocyte endoplasmic reticulum (D. E. Bruns, J. M. McDonald, and L. Jarett, 1976, J. Biol. Chem.251, 7191–7197) suggested that this organelle might possess a calcium-stimulated transport ATPase. This report describes two types of ATPase activity in isolated microsomal vesicles: a nonspecific, divalent cation-stimulated ATPase (Mg2+-ATPase) of high specific activity, and a specific, calcium-dependent ATPase (Ca2+ + Mg2+-ATPase) of relatively low activity. Mg2+-ATPase activity was present in preparations of mitochondria and plasma membranes as well as microsomes, whereas the (Ca2+ + Mg2+)-ATPase activity appeared to be localized in the endoplasmic reticulum component of the microsomal fraction. Characterization of microsomal Mg2+-ATPase activity revealed apparent Km values of 115 μm for ATP, 333 μm for magnesium, and 200 μm for calcium. Maximum Mg2+-ATPase activity was obtained with no added calcium and 1 mm magnesium. Potassium was found to inhibit Mg2+-ATPase activity at concentrations greater than 100 mm. The energy of activation was calculated from Arrhenius plots to be 8.6 kcal/mol. Maximum activity of microsomal (Ca2+ + Mg2+)-ATPase was 13.7 nmol 32P/mg/min, which represented only 7% of the total ATPase activity. The enzyme was partially purified by treatment of the microsomes with 0.09% deoxycholic acid in 0.15 m KCl which increased the specific activity to 37.7 nmol 32P/mg/min. Characterization of (Ca2+ + Mg2+)-ATPase activity in this preparation revealed a biphasic dependence on ATP with a Hill coefficient of 0.80. The apparent Kms for magnesium and calcium were 125 and 0.6–1.2 μm, respectively. (Ca2+ + Mg2+)-ATPase activity was stimulated by potassium with an apparent Km of 10 mm and maximum activity reached at 100 mm potassium. The energy of activation was 21.5 kcal/mol. The kinetics and ionic requirements of (Ca2+ + Mg2+)-ATPase are similar to those of the (Ca2+ + Mg2+)-ATPase in sarcoplasmic reticulum. These results suggest that the (Ca2+ + Mg2+)-ATPase of adipocyte endoplasmic reticulum functions as a calcium transport enzyme.  相似文献   

5.
Summary The effects of various lysophospholipids on the calcium transport activity of sarcoplasmic reticulum (SR) from rabbit skeletal and canine cardiac muscles were examined. The lipids decreased calcium transport activity in both membrane types; the effectiveness being in the order lysoPC > lsyoPS, lysoPG > lysoPE. The maximum inhibition induced by lysoPC, lysoPG and lysoPS was greater than 85% of the normal Ca2+-transport rate. In cardiac SR lysoPE had a maximal inhibition of about 50%. Half maximal inhibition of calcium transport by lysoPC was achieved at 110 nmoles lysoPC/mg SR. At this concentration of lysoPC, the (Ca2+ + Mg2+)-ATPase and Ca2+-uptake activities were inhibited to the same extent (about 60%) in skeletal sarcoplasmic reticulum, while in cardiac sarcoplasmic reticulum, there was less than 20% inhibition of the Ca2+ + Mg2+-ATPase activity. Studies with EGTA-induced passive calcium efflux showed that up to 200 nmoles lysoPC/mg SR did not alter calcium permeability significantly in cardiac sarcoplasmic reticulum. In skeletal muscle membranes the lysophospholipid mediated decrease in calcium uptake correlated well with the increase in passive calcium efflux due to lysophosphatidylcholine. The difference in the lysophospholipid-induced effects on the sarcoplasmic reticulum from the two muscle types probably reflects variations in protein and other membrane components related to the respective calcium transport systems.  相似文献   

6.
The incorporation of [14C] N-ethylmaleimide reveals fast and slow-reacting sulfhydryl groups in sarcoplasmic reticulum. Two proteins react with the label: a fast-reacting glycoprotein recently isolated (Ikemoto, Cucchiaro and Garcia (1976) J. Cell Biol.70, 290a), and the Ca2+-ATPase. Labeling sarcoplasmic reticulum with a maleimide spin label gives a similar pattern. The spectra of maleimide-spin-labeled sarcoplasmic reticulum have both ‘strongly’ and ‘weakly’ immobilized components. Maleimide-spin-labeled purified Ca2+-ATPase, or sarcoplasmic reticulum labeled first with N-ethylmaleimide, and then with maleimide spin label, show spectra devoid of the ‘weakly’ immobilized component; the latter is enhanced in partially purified glycoprotein obtained from spin-labeled sarcoplasmic reticulum. This indicates that spectra from maleimide-spin-labeled sarcoplasmic reticulum do not reflect exclusively the state of the Ca2+-ATPase enzyme.  相似文献   

7.
Canine cardiac sarcoplasmic reticulum is phosphorylated by cyclic AMP-dependent and by Ca2+-calmodulin-dependent protein kinases on a 22 kDa protein, called phospholamban. Both types of phosphorylation have been shown to stimulate the initial rates of Ca2+ transport. To establish the interrelationship of the cAMP-dependent and Ca2+-calmodulin-dependent phosphorylation on Ca2+ transport, cardiac sarcoplasmic reticulum vesicles were preincubated under optimum conditions for: (a) cAMP-dependent phosphorylation, (b) Ca2+-calmodulin-dependent phosphorylation, and (c) combined cAMP-dependent and Ca2+-calmodulin-dependent phosphorylation. Control vesicles were treated under identical conditions, but in the absence of ATP, to avoid phosphorylation. Control and phosphorylated sarcoplasmic reticulum vesicles were subsequently centrifuged and assayed for Ca2+ transport in the presence of 2.5 mM Tris-oxalate. Our results indicate that cAMP-dependent and Ca2+-calmodulin-dependent phosphorylation can each stimulate calcium transport in an independent manner and when both are operating, they appear to have an additive effect. Stimulation of Ca2+ transport was associated with a statistically significant increase in the apparent affinity for calcium by each type of phosphorylation. The degree of stimulation of the calcium affinity was relatively proportional to the degree of phospholamban phosphorylation. These findings suggest the presence of a dual control system which may operate in independent and combined manners for regulating cardiac sarcoplasmic reticulum function.  相似文献   

8.
Calcium permeability of sarcoplasmic reticulum (SR) microsomes was measured after aging or after exposure to peroxydisulfate or to sulfhydryl-binding agents. Under conditions where the Ca2+-ATPase was active, the maximum net release of Ca2+ was not significantly different between control and oxidized SR. However, when calcium uptake was prevented by EGTA or apyrase, the Ca2+ permeability of oxidized microsomes was 2 to 3 times greater than control of low (10−9, 10−7 M) but not high (10−6 M) levels of external calcium. The observation that vesicles preincubated with 5 mM dithiothreitol loaded up to 3 times as much calcium and had a slightly lower calcium permeability coefficient than control vesicles suggested that suflhydryl oxidation might modulate calcium flux. This hypothesis was tested by exposing to sulfydryl-binding agents:silver, arsenite, and p-chloromercuri-phenylsulfonic acid. Sulfhydryl-binding agents initiated a rapid release of calcium from microsomes, and release was halted by dithiothreitol. Inhibition of calcium transport could not entirely account for the apparent increase in permeability because the calcium permeability of SR treated with sulfhydryl-binding agents was 5 times greater than that of SR exposed to Ca2+-ATPase inhibitors. These results suggest that oxidation may increase the calcium permeability of SR. by allowing calcium loss through a channel that can be gated by sulfhydryl oxidation.  相似文献   

9.
Transient-state kinetics of phosphorylation and dephosphorylation of the Ca2+-ATPase of sarcoplasmic reticulum vesicles from rabbit skeletal and dog cardiac muscles were studied in the presence of varying concentrations of monovalent and divalent cations. Monovalent cations affect the two types of sarcoplasmic reticulum differently. When the rabbit skeletal sarcoplasmic reticulum was Ca2+ deficient, preincubation with K+ (as compared with preincubation with choline chloride) did not affect initial phosphorylation at various concentrations of Ca2+, added with ATP to phosphorylate the enzyme. This is in contrast to preincubation with K+ of the Ca2+-deficient dog cardiac sarcoplasmic reticulum, which resulted in an increase in the phosphoenzyme level. When Ca2+ was bound to the rabbit skeletal sarcoplasmic reticulum, K+ inhibited E ~ P formation; but under the same conditions, E ~ P formation of dog cardiac sarcoplasmic reticulum was activated by K+ at 12 μM Ca2+ and inhibited at 0.33 and 1.3 μM Ca2+. Li+, Na+ and K+ also have different effects on E ~ P decomposition of skeletal and cardiac sarcoplasmic reticulum. The latter responded less to these cations than the former. Studies with ADP revealed differences between the two types of sarcoplasmic reticulum. For rabbit skeletal sarcoplasmic reticulum, 40% of the phosphoenzyme formed was ‘ADP sensitive’, and the decay of the remaining E ~ P was enhanced by K+ and ADP. Dog cardiac sarcoplasmic reticulum yielded about 40–48% ADP-sensitive E ~ P, but the decomposition rate of the remaining E ~ P was close to the rate measured in the absence of ADP. Thus, these studies showed certain qualitative differences in the transformation and decomposition of phosphoenzymes between skeletal and cardiac muscle which may have bearing on physiological differences between the two muscle types.  相似文献   

10.
Ca2+-ATPase and other membrane proteins of the sarcoplasmic reticulum membrane from rabbit skeletal muscle have been reconstituted into lipid vesicles with increasing amounts of phosphatidylcholine. The protein composition and phospholipid concentration of these vesicles were analyzed by determining the density of the reconstituted membrane vesicles on linear H2O-2H2O gradients, in a constant concentration of sucrose. In all combinations of the Ca2+-ATPase with a weight excess of phosphatidylcholine, the reconstituted vesicles had a phospholipid-to-protein ratio similar to that of the native sarcoplasmic reticulum membrane, even though both solubilization and mixing had occurred. These vesicles of low phospholipid and high protein content exhibited all the original Ca2+-ATPase activity and ATP-stimulated calcium transport. The Ca2+-ATPase, and the calcium-binding proteins to a lesser extent, may order the lipid in such a manner so as to maintain the initial stoichiometry of lipid to protein observed in the native sarcoplasmic reticulum membrane.  相似文献   

11.
Two groups of weanling Sprague-Dawley rats were fed a low-selenium basal diet (Se 0.009 mg/kg) and the same diet supplemented with sodium selenite (Se 0.25 mg/kg), respectively, for 1, 2, and 3 months. At each feeding time, the Ca2+-ATPase activity, Ca2+ uptake rate and the capacity of Ca2+ uptake in isolated cardiac sacroplasmic reticulum from the Se-deficient rats were decreased significantly compared to those from the Se-supplemented rats, the contents of lipid peroxide in postmitochondrial supernatant and isolated sarcoplasmic reticulum from the Se-deficient rats were significantly higher than that from Se-supplemented rats. Compared to the Se-supplemented rats, the cytosolic glutathione peroxidase activity in Se-deficient rats decreased significantly. In addition, significant linear negative correlations of lipid peroxide in postmitochondrial supernatant to sarcoplasmic reticular Ca2+-ATPase activity, Ca2+ uptake rate and to whole blood selenium concentration were observed. The results suggest that the enhancement of lipid peroxidation via the depressed glutathione peroxidase activity might be responsible for the decrease of Ca2+-ATPase and Ca2+ uptake activities in sarcoplasmic reticulum in Se-deficient animals.  相似文献   

12.
Canine cardiac sarcoplasmic reticulum is phosphorylated by an endogenous calcium · calmodulin-dependent protein kinase and phosphorylation occurs mainly on a 27 kDa proteolipid, called phospholamban. To determine whether this phosphorylation has any effect on Ca2+ release, sarcoplasmic reticulum vesicles were phosphorylated by the calcium · calmodulin-dependent protein kinase, while non-phosphorylated vesicles were preincubated under identical conditions but in the absence of ATP to avoid phosphorylation. Both non-phosphorylated and phosphorylated vesicles were centrifuged to remove calmodulin, and subsequently used for Ca2+ release studies. Calcium loading was carried out either by the active calcium pump or by incubation with high (5 mM) calcium for longer periods. Phosphorylation of sarcoplasmic reticulum by calcium · calmodulin-dependent protein kinase had no appreciable effect on the initial rates of Ca2+ released from cardiac sarcoplasmic reticulum vesicles loaded under passive conditions and on the apparent 45Ca2+40Ca2+ exchange from cardiac sarcoplasmic reticulum vesicles loaded under active conditions. Thus, it appears that calcium · calmodulin-dependent protein kinase mediated phosphorylation of cardiac sarcoplasmic reticulum is not involved in the regulation of Ca2+ release and 45Ca2+40Ca2+ exchange.  相似文献   

13.
Palmitylcarnitine is a time-dependent inhibitor of the Ca2+-ATPase activity of cardiac sarcoplasmic reticulum isolated from adult dogs. Half-maximal inhibition was obtained at approximately 20 μM (2 μmoles/mg). The extent of inhibition depended on the ratio of palmitylcarnitine to sarcoplasmic reticulum protein. Calcium uptake by cardiac sarcoplasmic reticulum (measured in the presence of sodium oxalate) was found to be even more sensitive to inhibition by palmitylcarnitine and complete inhibition was obtained at concentrations as low as 2.5 μM (0.25 μmole/mg) following preincubation. Calcium binding (measured in the absence of oxalate) was inhibited by palmitylcarnitine and calcium release was stimulated at similar ratios. The level of palmitylcarnitine has been reported to increase several fold in myocardial ischemia and inhibition of the sarcoplasmic reticulum calcium pump could conceivably contribute either to the initial loss of contractility or the subsequent inability to restore full contractile function after prolonged ischemia.  相似文献   

14.
Light and heavy sarcoplasmic reticulum vesicles were isolated from rabbit leg muscle using a combination of differential centrifugation and isophycnic zonal ultracentrifugation. Light sarcoplasmic reticulum vesicles obtained from the 30–32.5% and heavy sarcoplasmic reticulum vesicles obtained from the 38.5–42% sucrose regions of the linear sucrose gradient were determined to be free of surface and mitochondrial membrane contamination by marker enzyme analysis and electron microscopy. Thin sections of the light vesicles revealed empty vesicles of various sizes and shapes. Freeze-fracture replicas of the light vesicles showed an asymmetric distribution of intramembranous particles with the same orientation and distribution as the longitudinal sarcoplasmic reticulum in vivo. Heavy vesicles appeared as rounded vesicles of uniform size filled with electron dense material, similar to that seen in the terminal cisternae of the sarcoplasmic reticulum. The cytoplasmic surface of the membrane was decorated by membrane projections, closely resembling the ‘feet’ which join the sarcoplasmic reticulum to the transverse tubules in the intact muscle fiber. Freeze-fracture replicas of the heavy vesicles revealed an asymmetric distribution of particles which in some areas of the vesicle's surface are larger and less densely aggregated than those of the light vesicles. In the best quality replicas, some regions of the luminal leaflet were not smooth but showed evidence of pits. These structural details are characteristic of the area of sarcoplasmic reticulum membrane which is covered by the ‘feet’ in the intact muscle.Heavy vesicles contained greater than six times the calcium content of light vesicles, 54 vs. 9 nmol Ca2+/μl of water space. After KCl washing both contained less than 4 nmol Ca2+/μl of water space. Although they transported at the same rate and the same total amount of calcium, the rate of passive Ca2+ efflux from the heavy vesicles was double that of light vesicles. The higher rate of calcium efflux from the heavy vesicles was inhibited by dantrolene, an inhibitor of Ca2+ release. High resolution sodium dodecyl sulfate gel electrophoresis showed that the light vesicles contained predominantly Ca2+-ATPase along with several approx. 55 000-dalton proteins and a 5000-dalton proteolipid, while the heavy vesicles contained Ca2+-ATPase and calsequestrin along with several approx. 55 000-dalton proteins, extrinsic 34 000- and 38 000-dalton proteins, intrinsic 30 000- and 33 000-dalton proteins and two proteolipids of 5000 and 9000 daltons. KCl washing of the heavy vesicles removed both the approx. 34 000- and 38 000-dalton proteins, and the ‘sarcoplasmic reticulum feet’ were no longer seen on the heavy vesicles. The KCl supernatant was enriched in the 34 000- and 38 000-dalton proteins, indicating that these proteins are possible components of the sarcoplasmic reticulum feet. The biochemical and morphological data strongly support the view that the light vesicles are derived from the longitudinal sarcoplasmic reticulum and that the heavy vesicles are derived from the terminal cisternae containing junctional sarcoplasmic reticulum membrane with the intact ‘sarcoplasmic reticulum feet’.  相似文献   

15.
Europium luminescence from europium bound to sarcoplasmic reticulum (Ca2+ Mg2+)-ATPase indicates that there are two high affinity calcium binding sites. Furthermore, the two calcium ions at the binding sites are highly coordinated by the protein as the number of H2O molecules surrounding the Ca2+ ions are 3 and 0.5. In the presence of ATP, calcium ions are occluded even further down to 2 and zero H2O molecules, respectively. The Ca2+ - Ca2+ intersite distance is estimated to be 8–9 Å and the average distance from the Ca2+ sites to CrATP is about 18 Å.Digestion of the (Ca2+ + Mg2+)-ATPase at the T2 site (Arg 198) causes uncoupling of Ca2+-transport from ATPase activity while calcium occlusion due to E1-P formation remains unchanged. Further tryptic digestion beyond T2 and in the presence of ATP diminishes Ca2+ occlusion to zero while 50% of the ATPase hydrolytic activity remains. Tryptic digestion beyond T2 and in the absence of ATP diminishes ATPase hydrolytic activity to 50% of normal while Ca2+ occlusion remains intact. These data are consistent with a mechanism in which the functional enzyme must be in the dimeric form for occlusion and calcium uptake to occur, but each monomer can hydrolyze ATP.  相似文献   

16.
The data presented in this paper concern a kinetic study of the calcium uptake by sarcoplasmic reticulum vesicles and of the hydrolysis of the substrates which support the process. The results show that substrates which are different from ATP, acetylphosphate, and carbamylphosphate are able to support calcium transport. The technique used to follow the process allows us to detect continuously the changes in the concentration of the calcium present in the external medium. In our experimental conditions the calcium uptake supported by all the high energy substrates tested proceeds for several seconds at a constant rate, presumably corresponding to the “steady state” of the process; furthermore the calcium transport is clearly Ca2+ and Mg2+ dependent: the lowering of the Ca+ concentration in the medium from 10?4 to 10?5m causes a remarkable reduction of the V of the calcium transport and an apparent increase of the affinity of the sarcoplasmic reticulum vesicles for the acylphosphates; in the absence of Mg2+, none of the substrates is able to support the calcium uptake which increases in the presence of rising amounts of Mg2+ in the reaction medium. Furthermore, both the calcium transport and the substrate hydrolysis appear to follow the Michaelis-Menten kinetics in the presence of acylphosphates but not in the presence of ATP. The hydrolytic activity of sarcoplasmic reticulum vesicles on ATP and acylphosphates reveals a clear Mg2+ dependence; furthermore, in the absence of free Ca2+ and in the presence of 5 mm Mg2+, the high energy substrates tested reveal a different susceptibility to the hydrolitic attack by sarcoplasmic reticulum vesicles.  相似文献   

17.
Methods for preparing native scallop sarcoplasmic reticulum vesicles, largely purified membranous scallop sarcoplasmic reticulum Ca2+-ATPase, and nonionic detergent-solubilized sarcoplasmic reticulum Ca2+-ATPase are described. The effect of a range of polyoxyethylene-based detergents on the solubilized Ca2+-ATPase was tested. Decaethylene glycol dodecyl ether (C12E10) supported the highest levels of activity, although C12E8 and C12E9 were more routinely used. Arrhenius plots of Ca2+-ATPase activity, where the assays were carried out with the same pH at all temperatures (7.4), showed a region of nonlinearity at 10 degrees C. A very similar plot was obtained when no compensation was made for pH variation with temperature. Both the break in the Arrhenius plot and the activation energies for the scallop sarcoplasmic reticulum above and below the break were very similar to those found for lobster sarcoplasmic reticulum (Madeira, V. M. C., Antunes-Madeira, M. C., and Carvalho, A. R. (1974) Biochem. Biophys. Res. Commun. 65, 997-1003). The Arrhenius plot of the scallop Ca2+-ATPase in C12E8 no longer showed the nonlinearity at 10-12 degrees C seen with the native sarcoplasmic reticulum, but instead a break now appeared at 20-21 degrees C. This is close to the Arrhenius break temperature of rabbit Ca2+-ATPase in C12E8 and of a perturbation in C12E8 (Dean, W. L. (1982) Biophys. J. 37, 56-57).  相似文献   

18.
Partial labeling of the amino groups of sarcoplasmic reticulum with a complex of fluorescamine with cycloheptaamylose in the presence of ATP results in marked inhibition of Ca2+ transport without affecting the enzyme phosphorylation or the Ca2+-ATPase activity. Fast labeling, which parallels the time course of inhibition of Ca2+ transport, takes place into phosphatidylethanolamine; a slower labeling of the Ca2+-ATPase polypeptide was observed. Vesicles in which mainly phosphatidylethanolamine has reacted with the label retain their impermeability barrier to Ca2+, as judged by Ca2+ efflux measurements and by the stimulation of Ca2+-ATPase activity produced by the ionophore A23187. These results suggest that modification of fast-reacting amino groups interferes specifically with the calcium translocation reaction.  相似文献   

19.
The influence of chemical modification on the morphology of crystalline ATPase aggregates was analyzed in sarcoplasmic reticulum (SR) vesicles. The Ca2+-ATPase forms monomer-type (P1) type crystals in the E1 and dimer-type (P2) crystals in the E2 conformation. The P1 type crystals are induced by Ca2+ or lanthanides; P2 type crystals are observed in Ca2+-free media in the presence of vanadate or inorganic phosphate. P1- and P2-type Ca2+-ATPase crystals do not coexist in significant amounts in native sarcoplasmic reticulum membrane. The crystallization of Ca2+-ATPase in the E2 conformation is inhibited by guanidino-group reagents (2,3-butanedione and phenylglyoxal), SH-group reagents, phospholipases C or A2, and detergents, together with inhibition of ATPase activity. Amino-group reagents (fluorescein 5′-isothiocyanate, pyridoxal phosphate and fluorescamine) inhibit ATPase activity but do not interfere with the crystallization of Ca2+-ATPase induced by vanadate. In fluorescamine-treated sarcoplasmic reticulum the vanadate-induced crystals contain significant P1-type regions in addition to the dominant P2 form.  相似文献   

20.
By means of saturation transfer electron spin resonance spectroscopy the rotational motion of spin-labeled Ca2+-dependent ATPase molecules has been investigated for three kinds of preparations of rabbit skeletal muscle sarcoplasmic reticulum: MacLennan's enzyme (purified ATPase preparation), DOPC- and egg PC-ATPase (purified ATPase preparations in which endogenous lipids are replaced with dioleoyl and egg yolk phosphatidylcholine, respectively). The rotational mobility of the enzyme in these preparations is somewhat lower than that in the intact membrane, probably due to the reduced amount of lipids. For all the preparations, however, the Arrhenius plot for rotational mobility showed a break at about 18 degrees C, the same temperature at which a break in the Arrhenius plot for Ca2+-ATPase activity occurs. This result provides further evidence that the break in the Arrhenius plot is not related to a lipid phase transition but to a change in the physical state of the Ca2+-ATPase molecule existing in fluid lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号