首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lytic activity of natural cytotoxic (NC) cells has several characteristics which clearly distinguish it from other cell-mediated lytic activities and from most soluble cytolytic factors. An exception is the lytic activity mediated by tumor necrosis factor (TNF). In this paper, we report a detailed comparison of NC and TNF lysis of target cells which are used as prototype NC targets or TNF targets, and show that the two cytolytic activities have very similar, if not identical, lytic mechanisms. We present data showing that target cells which are NC-sensitive are also TNF-sensitive and that target cells which are NC-resistant are also TNF-resistant. Moreover, cells selected either in vivo or in vitro for NC resistance are selected for TNF resistance, and cells selected for TNF resistance are selected for NC resistance. The analysis of the kinetics of 51Cr release mediated by NC cells or by TNF show that both activities affect similar kinetics, in that there is no cell lysis for several hours after targets and effectors first interact. However, NC and TNF lytic activities can be distinguished. By using the cell lines 10ME or B/C-N as targets, it can be shown that whereas NC-mediated lysis is dependent on protein synthesis, TNF-mediated lysis is not. We also show that targets which are resistant to NC-mediated lysis because they express a protein synthesis-dependent resistance mechanism also require protein synthesis to resist TNF-mediated lysis, suggesting that the same resistance mechanism protects cells against both NC cells and TNF. Together, these data strongly support the hypothesis that NC cells and TNF activate the same lytic mechanism within target cells and that TNF may mediate the lytic activity of NC effector cells.  相似文献   

2.
Summary It has been proposed that a component of the antitumor potential of the chemotherapeutic agent, cisplatin, resides in the host's ability to respond to cisplatintreated tumor cells. Here we report that tumor cells that are normally resistant to lysis mediated by naturally occurring cytotoxic cells showed an increased sensitivity to lysis mediated by murine spleen cells or human peripheral blood monocytes and lymphocytes when cisplatin was added at the beginning of the lytic assay. This was shown for the lysis of both murine and human tumor cells. The pretreatment of tumor cells, but not effector cells with cisplatin caused an increase in lysis in the presence of murine spleen cells or human peripheral blood leukocytes, indicating that the effect of cisplatin is to reduce resistance to lysis by these effector cells. The lysis of tumor cells by naturally occurring cytotoxic cells was blocked by antibodies specific for tumor necrosis factor. In addition, the ability of cisplatin to increase lysis was seen with cells that are sensitive to natural cytotoxic cells, but not with cells that are sensitive to natural killer cells. These results suggest that the effector cells that mediate the lysis of these tumor cells in the presence of cisplatin are likely to be natural cytotoxic cells. The ability of cisplatin to increase the lysis of tumor cells by naturally occurring cytotoxic cells indicates that these cells may be a host defense mechanism that contributes to the anticancer potential of cisplatin.  相似文献   

3.
The analysis of natural cytotoxicity (NC) has been hampered by the lack of cloned NC effectors. In studies reported here we show that the cloned cell line L10A2.J expresses properties similar to those of splenic NC effectors. L10A2.J cells lyse NC-sensitive targets, but do not lyse NC-resistant targets which are sensitive to lysis by natural killer (NK) or cytotoxic T lymphocytes. The mechanism by which L10A2.J cells lyse NC-sensitive targets is similar to the lytic mechanism of splenic NC effectors in that both result in the release of 51Cr from targets with a lag of 5-7 hr after effectors and targets are mixed. In addition, inhibition of protein synthesis during the in vitro assays of NC or L10A2.J lytic activity causes some NC-resistant targets to become sensitive to lysis by both NC and L10A2.J effectors. The only functional difference detected between L10A2.J and splenic NC effectors is in their recognition of targets. While L10A2.J and splenic NC effectors recognize many of the same targets (NC resistant and NC sensitive), L10A2.J, unlike splenic NC effectors, does not recognize the NK-sensitive cell line YAC-1.  相似文献   

4.
Spontaneously cytotoxic murine lymphocytes lysed certain cell types infected by herpes simplex virus type 1 (HSV-1) better than uninfected cells. The levels of virus-directed lysis varied widely from target to target, and we found that differences in virus-directed lytic efficiency could be attributed both to the characteristics of HSV-1 replication in the different targets and to the subgroup of natural effector cells which mediated lysis. Although HSV-1 adsorbed to the surface of all the target cells, those in which the virus replicated more efficiently were lysed to a greater extent. As targets, we used cell lines that, when uninfected, were spontaneously lysed by NK cells (YAC-1) or by NC cells (WEHI-164). We also used a fibroblastoid cell line (M50) and a monocytic tumor line (PU51R), which were not spontaneously killed. Using complement-mediated elimination of Qa-5-positive or asialo-GM1-positive NK cells to distinguish NK from NC activity, we found that NK cells lysed HSV-1-infected YAC cells better than uninfected cells, and an NC-like activity selectively lysed HSV-1-infected WEHI cells. In addition, we showed that both NK and NC cytotoxicities contributed to the lysis against the HSV-1-infected fibroblastoid line, M50, but the infected PU51R cells were killed by only NK effectors. These findings were consistent with the results of experiments performed to define the role of interferon in induction of virus-augmented cytolysis. Increased lysis of YAC-HSV and PU51R-HSV was entirely due to interferon activation and was completely abolished by performing the 51Cr-release assay in the presence of anti-interferon serum. Because NC activity was not augmented by interferon, virus-enhanced NC lysis of M50-HSV and WEHI-HSV was not due to this nonspecific mechanism. Together, our data show that HSV-1 infection of NK/NC targets induces increased cytotoxicity, but the effector cell responsible for lysis is determined by the uninfected target, or by an interaction between the virus and target cell, rather than by a viral determinant alone.  相似文献   

5.
Previous studies on the surface phenotype of natural cytotoxic (NC) cells defined by negative selection with antibodies and complement showed that most if not all NC activity is the property of "null" cells that did not express a variety of lymphoid markers, including some expressed by natural killer (NK) cells. In the present study we show that when murine C57BL/6 spleen cells were sorted by flow cytometry into fractions positive or negative for Qa-5, Ly-2.2, Thy-1.2, L3T4, or surface immunoglobulin (sIg) and for high or low expression of H-2Kb, the pattern of NC activities was quite different from the negative selection experiments with antibody and complement. Enrichment of NC activity tested against WEHI-164 targets was observed in the H-2Kb high, Qa-5+, Thy-1.2+, and Ly-2.2- fractions, and to a lesser extent in the L3T4+ and sIg- fractions. However, significant NC activity, although lower than in the unseparated cells, was also found in the H-2Kb low, Qa-5-, Thy-1.2-, L3T4-, Ly-2.2+, and sIg+. With the exception of the anti-Ig, all the reagents were monoclonal antibodies. By comparison, NK activity tested against YAC-1 targets was clearly enriched in the H-2Kb high, Ly-2.2-, sIg-, and to a lesser extent, Thy-1.2+ sorted fractions, whereas most of the NK activity was in the L3T4- fractions. These results indicate that NC activity against WEHI-164 targets is mediated by an heterogeneous population of effector cells, which includes cells with markers of both the T and the B lineages, as well as of NK cells. These studies also show that negative selection with antibodies and complement is not always a reliable method for defining the surface phenotype of effector cells.  相似文献   

6.
The interleukin-2-dependent mouse natural killer (NK) cell line NKB61A2 concomitantly exhibits NK and natural cytotoxic (NC) activities. This was determined by the cells' ability to lyse both the NK-sensitive YAC-1 lymphoma and the NC-sensitive WEHI-164 fibrosarcoma cell lines in a 4- and 18-hour 51Cr release assay, respectively. Cell-free supernatant from NKB61A2 cells grown in culture for 48 h had substantial lytic activity against WEHI-164. The mouse mast cell line PT18-A17 and the rat basophilic leukemia cell line RBL-2H3, which both express NC activity, also produced a soluble factor during culture which lysed WEHI-164 cells. This activity was increased in the basophilic/mast cells by crossbridging the surface IgE receptors. Similar results were obtained by triggering the basophilic NC cells with the calcium ionophore ionomycin and the tumor promoter phorbol-12-myristate-13-acetate (PMA). Such triggering of NKB61A2 cells, however, did not significantly increase their NC activity. Interestingly, both ionomycin and PMA had an inhibitory effect on the NK activity of NKB61A2. Recently it has been found that tumor necrosis factor (TNF) is a major mediator of NC activity. To determine if the soluble factor responsible for the NC activity of the NK clone was related to TNF, a rabbit polyclonal antiserum to mouse TNF was tested against the cell-free culture medium of NKB61A2, PT18-A17, RBL-2H3 and murine recombinant TNF (Mu-rTNF). The lytic activity of the culture medium from all these cells and the Mu-rTNF control was abrogated by this antibody. These data suggest that the murine cell line NKB61A2 has both NK and NC activities and that the NC activity is due to a factor immunologically similar to TNF. In addition, the enhancement of NC activity in the NK cell line is apparently under control by a separate pathway, different from that in the basophilic cells.  相似文献   

7.
It has been suggested that natural cytotoxic (NC) cell activity and tumor necrosis factor (TNF), the molecular mediator of NC activity, are capable of protecting individuals against the progression of incipient tumors or could be useful in cancer therapy regimens. Much of this speculation arises as a result of in vitro studies, on a variety of tumor cells, demonstrating the cytolytic and cytostatic properties of NC and TNF activities. Here, evidence is presented showing that certain mouse fibroblast cell lines, generally considered sensitive to NC and TNF lysis, are quite resistant to these lytic activities when cultured at high cell density. Although a soluble factor that renders these same target cells resistant to NC and TNF lysis has been described, no such factor is involved in this high density-induced resistance. Rather, it appears that cell to cell contact of the targets is critical. Moreover, the induced resistance to NC and TNF lysis does not result from loss of either NC recognition determinants or TNF receptors by the target cells, but is the consequence of increased expression of a protein synthesis-dependent resistance mechanism. These observations raise the issue of the in vivo phenotype of cells characterized in vitro as sensitive to NC and TNF lysis. It is entirely possible that certain cells which are considered sensitive to NC and TNF activities are, in fact, resistant to these cytolytic activities when growing as tumors (i.e., at high cell density). Should this be the so, NC and TNF cytolytic activities may not function in vivo or may function only via some indirect means.  相似文献   

8.
The addition of leukotriene B4 (LTB4) to cytotoxicity assays measuring natural killer (NK) or natural cytotoxic (NC) cell activities resulted in significantly augmented killing of K562 or herpes simplex virus (HSV)-infected target cells, respectively. Since the mechanism of cytotoxicity implies several steps, including the binding of effectors to targets which is Mg2+-dependent and the programming of lysis of the target which is Ca2+-dependent, we undertook to define the step(s) at which LTB4 acted in augmenting cytotoxicity. Our results showed that LTB4 significantly increased the percentage of effector-target conjugates when K562- or HSV-infected targets were incubated with lymphocytes. Maximal binding occurred at a concentration of LTB4 of 1 X 10(-10) M. Preincubation of lymphocytes and not target cells with LTB4 was sufficient to observe the increased binding. PBML binding to and killing of the NK-resistant target clone I, derived from K562, was not enhanced by LTB4. In the absence of Ca2+, cytotoxicity was impaired and LTB4 could not restore it. Use of a single cell lytic assay demonstrated augmented efficiency of lysis of both K562 and HSV-infected targets in the presence of LTB4. These findings suggest that LTB4 may augment natural cytotoxicity by enhancing target cell recognition by cytotoxic effector cells and subsequently by augmenting their lytic efficiency.  相似文献   

9.
A murine interleukin 3 (IL 3)-dependent basophilic mast cell line, PT-18 (A17), and a rat basophilic leukemic cell line, RBL-2H3, were shown to be capable of selective natural cytotoxic (NC) but not natural killer (NK) cell activity. The basophilic cell types could also be augmented in their NC activity by bridging of their surface IgE receptors. IgE-mediated triggering of the basophilic cells was accomplished by coating the cells with IgE and exposing the IgE-bound cells to specific antigen or to anti-IgE monoclonal antibody. Another method of triggering was by direct binding of basophilic cells to anti-IgE receptor monoclonal antibody. Basophilic cells, triggered by these methods, not only displayed increased NC activity but also released a soluble factor capable of selectively lysing NC tumor targets, WEHI-164, but not three of the NK-sensitive targets, YAC-1, RLM1, and RBL-5. Normal C3H/HeJ mouse embryonic fibroblasts were also not lysed. Dose response and time course of the cytotoxic factor release from triggered RBL-2H3 cells were similar to those of tritiated serotonin release. As with serotonin or histamine release, the NC-specific cytotoxic factor (NCCF) was not released in the absence of extracellular calcium. Therefore, NCCF appears to be released along with other mediators during the triggering of basophilic cells by bridging of IgE receptors. The m.w. of the native form of this factor, determined by a gel filtration method, was about 43,000.  相似文献   

10.
We studied the susceptibility of autologous and allogeneic tumors to lysis by human tumor infiltrating lymphocytes (TIL) after pre-incubation of the tumors with human rIFN-gamma and human rTNF-alpha. Preincubation of the tumor lines with IFN-gamma or TNF enhanced susceptibility to lysis significantly; the combination of both cytokines was more effective than either alone. Pretreatment for at least 24 h was required to enhance lytic susceptibility and maximal lysis was observed after pretreatment for 48 to 72 h. Highly specific TIL lysed only their autologous tumor targets and failed to lyse cytokine pretreated allogeneic tumor cells. In TIL populations with varying specificity, cytokine pretreatment of targets enhanced autologous lysis as well as allogeneic lysis. This cytokine-mediated effect could also be observed in a lectin-dependent cytotoxicity assay and did not correlate directly with enhanced expression of MHC class I Ag or the adhesion molecules LFA-3 and ICAM-1. These results suggest that enhancement of lysis may occur at a postbinding stage by making the target cell more sensitive to the cytotoxic factors delivered by the killer cell. The fact that lysis of cytokine treated targets by cells with LAK activity was not enhanced suggests that cells with lymphokine-activated killer activity and tumor-derived T cells kill tumor targets via different mechanisms.  相似文献   

11.
We have examined noninduced cytotoxicity of mouse gut associated and peripheral lymphoid tissues for a wide variety of syngeneic as well as allogeneic cell lines and lymphoblasts. Lymphoid cells from Peyer's patches were found to lyse these targets in a 3-hr chromium release assay whereas lymphoid cells from intestinal mucosa, mesenteric or peripheral lymph nodes, spleen, and thymus did not. The variety of targets toward which Peyer's patch cells were cytotoxic established the latter as nonspecific and H-2 unrestricted. The cell responsible for the lytic event was identified as possessing Thy 1.2 and Ia surface antigens. This naturally cytotoxic T cell (NCTC) was found to be adherent to nylon-wool but not to plastic plates. Although both natural killer cell (NK) and non-NK targets served as targets for the NCTC, the latter were further differentiable from NK cells by lack of asialo GM1 surface marker, which is present on NK cells. In addition, NCTC remained fully functional in mice given either of the drugs cyclophosphamide or cortisone. Each of these drugs, in the doses used, markedly reduced poly(I:C)-induced NK activity. Thus, NCTC differs from NK on the basis of the spectrum of targets against which it is functional, phenotypic surface markers, insusceptibility to stimulation with poly(I:C), and insensitivity to diminution by the immunosuppressive drugs cyclophosphamide and hydrocortisone. Since NCTC is a Thy 1.2 antigen-bearing cell and is detectable in a 3-hr cytotoxic assay, it also differs from the natural cytotoxic (NC) cell. NC lacks the Thy 1.2 marker and becomes detectable only in an 18-hr cytotoxic assay. Thus, NCTC is neither an NK nor an NC cell. We have discussed the possibility that the three naturally occurring cells may be related by being dedifferentiated descendants of an antigen-specific cytotoxic T lymphocyte (CTL). Alternatively, since NCTC is confined to an anatomical site prone to ample antigenic exposure and is still identifiable as a T cell, it may be in linear transition from the CTL to the NK or NC stages.  相似文献   

12.
Human peripheral blood lymphocytes (PBL) exhibited spontaneous cytotoxicity against OKT3 monoclonal antibody (mAb)-expressing murine hybridoma cells (OKT3 hybridomas). In contrast, other murine hybridomas expressing OKT4, OKT8, anti-HLA DR, and anti-HLA A, B, and C mAb were not lysed. PBL showed much lower levels of cytotoxicity (3 folds) against OKT3 hybridomas as compared with NK activity against the K562 targets. Lymph node (LN) cells exhibited the inverse relationship of cytotoxicity levels. The addition of OKT3 mAb to the effector cells totally blocked both the binding and the lysis of OKT3 hybridoma targets, indicating that the CD3 antigen on the effector cells may be involved in recognition of the targets. The addition of concanavalin (Con A) also inhibited the cytotoxicity of OKT3 hybridomas. OKT4 mAb-expressing hybridomas became susceptible to lysis after chemical attachment of OKT3 mAb with CrCl3. The kinetics of lysis of OKT3 hybridomas resembled that of NK activity. Both cytotoxicities were detectable after 1 to 2 hr and reached plateau levels by 4 to 6 hr. Effector cells responsible for lysis of OKT3 hybridomas expressed T3, T8, and Leu 7 antigens, but lacked T4 and Leu 11b antigens, and were sensitive to the treatment with L-leucine methyl ester. These results indicate that T3+, T8+, Leu 7+ and T4-, and Leu 11- granular lymphocytes have a spontaneous cytotoxic activity against OKT3 hybridomas which is different from classic NK activity. These findings may provide a method for the assessment of T-cell cytotoxicity mediated presumably by in vivo generated cytotoxic T lymphocytes in blood and the other immune organs.  相似文献   

13.
The ability of in vitro addition of recombinant interleukin 2 (rIL-2) to differentially enhance natural cytotoxicity was assessed using cells from mice with natural and induced cellular defects. In vivo treatment with most immunosuppressive or cytoreductive agents, anti-asialo-GM1 antibody, or gamma irradiation dramatically reduced in vitro cytotoxicity against natural killer (NK) sensitive targets by direct reduction in either percentage specific lysis or lytic units per spleen. In most cases, in vitro addition of rIL-2 (at concentrations causing augmented NK function in cells from naive Balb/C mice) enhanced cytotoxic activity of cells from treatment groups to a normal value but not within the rIL-2-enhanced range of nontreated animals. Additionally, cytotoxic activity of cells from animals treated with certain drugs or gamma irradiation could be augmented by rIL-2 when measured by percentage lysis but not lytic units per spleen. In vivo treatment with cyclosporin A did not affect natural cytotoxic activity and addition of rIL-2 augmented the NK activity in a similar fashion to the profile of naive cells. In experiments using cells from beige (C57Bl/6-bg) mice which have a natural defect in NK activity against YAC-1 targets, addition of rIL-2 (at concentrations causing augmented natural cytotoxic function in cells from C57Bl/6 mice) could not effectively enhance in vitro natural cytotoxic function.  相似文献   

14.
Using a cloned murine cell line, NKB61A2, that concomitantly exhibits both NK and natural cytotoxic (NC) activities, we investigated the biochemical mechanisms involved in natural cell mediated cytotoxicity against NK-sensitive YAC-1 tumor cells and against the NC-sensitive WEHI-164 tumor cells. Recent reports have suggested that target cell lysis by cytotoxic lymphocytes occurs by either a calcium dependent and/or a calcium-independent mechanism(s). To determine the role of calcium in NK and NC activities of the NKB61A2 cell line, we evaluated the effect of: 1) extracellular Ca2+ depletion by the divalent cation chelator, EGTA, 2) Ca2+ influx blockade by the Ca2+ channel blocker verapamil, and 3) blocking of intracellular Ca2+ mobilization by 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester (TMB-8). We found that EGTA, verapamil, and TMB-8 were all capable of inhibiting NK activity, but they had little effect on NC activity of the NKB61A2 cells. Using 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide which are inhibitors of protein kinase C and calmodulin respectively, we determined that protein kinase C and calmodulin do play a role in the NK activity of NKB61A2 cells. 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine and N-(6-aminohexyl)-5-chloro-1-naphthalanesulfonamide, similar to Verapamil and TMB-8, had no effect on NC activity. Thus, the data indicate that the NK activity of NKB61A2 cells is calcium dependent whereas NC activity is not. These results may explain the disparate reports seen in the literature of calcium-dependent and -independent lysis of tumor cells.  相似文献   

15.
Nonspecific cell-mediated cytotoxicity was examined in the peripheral blood and spleens of normal and vaccinia virus-infected adult domestic cats. Natural cytotoxic (NC)-like cells, as measured by lysis of vaccinia- or HSV-infected, adherent cat tongue cells, were found in both the spleen and peripheral blood of normal, nonimmune cats. Cytotoxicity was expressed in a 16-hr assay but not in a 4-hr assay. Natural killer (NK)-like cells, as measured by lysis of an FeLV-induced lymphoid tumor cell line (FL-74) growing in suspension, were found in the spleen but not PBL, and required a 16-hr assay for expression. Infection with vaccinia virus did not increase the activity of feline NC-like cells in either the peripheral blood or the spleen. NK-like function, however, was increased. Cytotoxicity peaked 6 days post-infection and required a 16-hr assay for maximal expression of cell lysis. Furthermore, a cell with cytotoxic characteristics of the spleen NK-like cell appeared at low levels in the circulation at 6 days post-vaccinia infection. NK-like cells from vaccinia-infected cats showed some cytotoxicity for FL74 targets in a 4-hr assay. The cat thus possesses at least two functionally different populations of naturally cytotoxic cells. NC-like cells are found in the spleen and peripheral blood, lyse virus-infected monolayer targets, and are not activated by infection. NK-like cells are found in the spleen, lyse-lymphoid tumor targets, and can be activated by infection, with their peak activity occurring 6 days after infection.  相似文献   

16.
The effects of monosaccharides on various lymphocyte functions have provided useful probes for the study of cell-cell interactions. In this report, we show that a monosaccharide, alpha-L-fucose, significantly enhances the cytolytic capacity of MLC-induced or preincubated effector cells. The increase in activity was seen against cytotoxic T lymphocyte (CTL) targets (:relevant PHA blasts), natural killer cell (NK) targets (:K562), and natural cytotoxic cell (NC) targets (:MA-160). In addition, traditionally NK-insensitive targets (Raji cells, irrelevant and autologous PHA blasts) were lysed after preincubation of effector cells with fucose. Conversely, ADCC activity was not significantly increased with fucose induction. The addition of fucose directly to assay cultures did not enhance NK or CTL activity, whereas other sugars, such as alpha-methyl-D-mannoside and D-fructose, were inhibitory. The proportion of target-binding cells was not affected by preincubation with fucose, but the percentage of lytic conjugates was doubled. Significant augmentation of NK activity could be observed within 24 hr of incubation with alpha-L-fucose. Conversely, when fucose was added more than 24 hr after initiation of the culture, the increase in cytolytic activity was not observed. Parallel to the increase in cytolytic activity, after preincubation with alpha-L-fucose, an increase in the expression of a newly defined human NC cell marker, HNC-1A3, was observed. The HNC-1A3+ cells were not the major subpopulation responsible for fucose-induced activity, as ascertained by the use of positively sorted cells. The populations expressing antigens defined by the antibodies OKT8 and Leu-7 showed no quantitative change. The treatment of cells with OKM1 and complement (C) before culture eliminated fucose-enhanced killing, whereas similar treatment with OKT8 and C had no significant effect. The induction of fucose-activated killers (FAK) does not result in higher concentrations of interferon (IFN) in culture supernatants, in contrast to poly I:C, which induced both higher cytolytic activity and high titers of IFN. In addition, the induction of FAK was not sensitive to 100 ng/ml of cyclosporin A, suggesting that IL 2 did not play a major role in fucose activation of killing. These results provide strong evidence that alpha-L-fucose is capable of augmenting nonspecific activity by acting on OKM1+ precursors of cytotoxic cells and influencing a postbinding event.  相似文献   

17.
TNF-alpha has been shown to be associated with macrophage cell membranes in such a way as to retain cytolytic activity despite fixation of the macrophage effector cells with paraformaldehyde. In this paper we report that, similar to cytotoxic macrophages, natural cytotoxic (NC) cells also use cell-associated TNF to lyse sensitive target cells. However, in contrast to fixed cytotoxic macrophages, NC cells do not retain cytolytic activity after fixation with paraformaldehyde. Additionally, the cytolytic activity of paraformaldehyde-fixed NC cells is not increased by incubation with LPS or by incubation with rTNF before fixation. Western blot analysis indicates that, unlike macrophages, NC cells use a smaller (17 kDa) constitutively active form of TNF. These results indicate that, although both macrophages and NC cells use effector cell-associated TNF to mediate lysis of sensitive targets, the way in which TNF is associated with these two types of effector cells must be different.  相似文献   

18.
Human cytotoxic T cell clones (CTL) were obtained by limiting dilution after in vitro priming against an allogeneic Epstein Barr virus (EBV)-transformed B cell line (B-LCL) BSM. Three OKT3+, OKT8+ E rosette-forming (RFC) but EA gamma-RFC- clones with cytotoxic activity against the stimulator cell and one "non-cytolytic" clone were expanded for over 50 generations and further characterized. Clone G9 showed allospecific lysis of Cw3+ lymphocytes and B cell lines. Three cytolytic clones (G9, D11, and A3) showed cytotoxicity to the stimulator B-LCL, to the human plasma cell leukemia-derived line LICR-LON-HMY2 and to short-term cultured melanoma cells (O-mel). Four other EBV-transformed B-LCL unrelated to the stimulator B-LCL were not lysed. These clones also exerted cytotoxic activity against NK-sensitive target cells (TC), e.g., the erythroleukemia cell line K562. Other NK-sensitive TC, e.g., lymphoma-derived Daudi cells, were killed provided they were pretreated with phytohemagglutinin (PHA). Cytolytic activity against the B-LCL cell LICR-LON and O-mel, but not against K562 or PHA-treated target cells, was inhibited by monoclonal anti-HLA ABC antibodies (MCA). The cytolytic activities of OKT3+,8+ clones G9 and A3 but not that of OKT3+,8+ clone D11 were inhibited by OKT8. Another MCA, 13.3, directed against the murine glycoprotein T-200, inhibited the cytolytic activity of clone D11 against K562 but not against the stimulator cells. Clone G9 was not inhibited by MCA 13.3. The four clones, including the OKT4+ "non-cytotoxic" clone K12, exerted lytic activity against TC that are normally resistant to lysis provided these TC were pretreated with PHA. The TC specificity range of the clones was confirmed by cold target inhibition experiments. A correlation between blocking of lytic activity by cold TC and the percentage of conjugate formation with the particular cold TC was observed. Because these clones also show differential susceptibility to inhibition of lysis by various MCA, it is concluded that human cytotoxic T cell clones can exert multiple lytic activities, i.e., the operationally defined lytic mechanisms differ at least at certain stages of the lytic cycle.  相似文献   

19.
In humans, decreased natural killer cell (NK) activity has been associated with stressful life events, whereas acute arousal and disturbance frequently has been reported to result in increased NK activity. This bidirectional immune modulation prompted us to investigate the effects of a social stressor on the lymphocyte cytolytic activity of 31 infant rhesus monkeys. The first of three studies evaluated the effects of an 8 hr maternal separation on the infants' cytolytic response against the K562 target-cell line. A finding of increased lytic activity indicated a need for a longer evaluation—after a 24 hr separation—and an additional assessment of two other target-cell lines, Raji and Daudi. The observation of decreased lytic responses to Raji and Daudi, in association with increased lysis of K562, warranted a third study to delineate which rhesus effector cells were responsible for lysis of the K562 and Raji target cells. By isolating cell subsets, it was possible to observe that the majority of unprimed cytotoxic activity resided in the CD3- population of cells, but that the CD3 + CD8 + population also mediated a significant amount of cytotoxicity against both targets. In conclusion, these findings support earlier studies indicating that maternal separation results in significant immune alterations in infant monkeys. However, the complex nature of changes in cytotoxic responses during prolonged stress revealed that different lymphocyte populations engage in parallel and compensatory alterations. © 1996 Wiley-Liss, Inc.  相似文献   

20.
Before the development of virus-specific immune responses, peripheral blood mononuclear cells (PBMC) from uninfected rhesus monkeys and human beings have the capacity to lyse target cells expressing simian immunodeficiency virus (SIV) or human immunodeficiency virus-1 (HIV) envelope (gp130 and gp120) antigens. Lysis by naive effector cells does not require major histocompatibility complex (MHC)-restricted antigen presentation, is equally effective for allogeneic and xenogeneic targets, and is designated MHC-unrestricted (UR) lysis. UR lysis is not sensitive to EGTA and does not require de novo RNA or protein synthesis. Several kinds of envelope-expressing targets, including cells that poorly express MHC class I antigens, can be lysed. CD4(+) effectors are responsible for most of the lytic activity. High lysis is correlated with high expression of HIV or SIV envelope, specifically, the central one-third of the gp130 molecule, and lysis is completely inhibited by a monoclonal antibody against envelope. Our work extends observations of human lymphocytes expressing HIV gp120 to the SIV/rhesus monkey model for AIDS. Additionally, we address the relevance of UR lysis in vivo. A survey of PBMC from 56 uninfected rhesus monkeys indicates that 59% of the individuals had peak UR lytic activity above 15% specific lysis. Eleven of these monkeys were subsequently infected with SIV. Animals with UR lytic activity above 15% specific lysis were predisposed to more rapid disease progression than animals with low UR lytic activity, suggesting a strong correlation between this form of innate immunity and disease progression to AIDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号