首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The metal binding properties of a phenolic lichen substance usnic acid (UA) and its acetyl and enamine derivatives 9-O-acetylusnic acid (MAUA), 7,9-di-O-acetylusnic acid (DAUA), Delta(2,11)-enaminousnic acid (EUA), and N-substituted Delta(2,11)-enaminousnic acids have been studied by synthetic and spectroscopic methods, and the structures of copper(II) and palladium(II) complexes have been established by the X-ray diffraction method. Cu(II) reacted with UA and DAUA to give the binary complexes Cu(UA)(2) x H(2)O and Cu(DAUA)(2), respectively, and Cu(bpy) (bpy=2,2'-bipyridine) formed ternary complexes with UA and DAUA. Pd(II) also reacted with UA, DAUA, EUA, and N-substituted Delta(2,11)-enaminousnic acids to give the corresponding binary complexes. All the isolated complexes are insoluble in water and soluble in most organic solvents. They exhibited very strong absorption and circular dichroism spectral peaks in the UV region. The (1)H-NMR spectrum in CDCl(3) of the Pd(II) complex of N-phenyl-Delta(2,11)-enaminousnic acid (PEUA), Pd(PEUA)(2) x C(6)H(6), showed that the C(4)-proton signal suffered a large upfield shift (0.86 ppm) due to the ring current effect of the N-phenyl moiety. X-Ray crystal structure analysis has been performed for Cu(bpy)(UA)(ClO(4)) x CH(3)OH, Pd(MEUA)(2) x C(6)H(6), and Pd(PEUA)(2) x C(6)H(6). Cu(bpy)(UA)(ClO(4)) x CH(3)OH has a square-pyramidal structure with the two nitrogen atoms of bpy and the two oxygen atoms of the mono-deprotonated B ring of UA in the equatorial positions, while Pd(II) binds with two molecules of MEUA or PEUA in the trans configuration through the nitrogen and oxygen atoms with deprotonation. The N-phenyl ring of PEUA in Pd(PEUA)(2).C(6)H(6) was revealed to be located close to the C(4) proton as indicated by (1)H-NMR. Isolation of Cu(2)(bpy)(2)(UA)(NO(3))(2) x 2H(2)O suggests that UA has two metal binding sites that can form polymeric complexes. The present results substantiate the metal binding ability and the structures of the complexes of usnic acid and other substances from lichens as biomonitors of environmental metal ions.  相似文献   

2.
Three new complexes [Cu(L)(2)(NO(3))](NO(3))(H(2)O)(1/2)(CH(3)OH)(1/2) (1), [Cd(L)(2)(NO(3))(2)](H(2)O)(3) (2) and [Cd(L)(2)(ClO(4))(CH(3)OH)](ClO(4))(H(2)O)(1/4)(CH(3)OH) (3) (L=1-[3-(2-pyridyl)pyrazol-1-ylmethyl]naphthalene) were synthesized and characterized by elemental analyses, IR and X-ray diffraction analysis. Among them, the Cu(II) and Cd(II) ions were both coordinated by four N donors from two distinct L ligands via N,N-bidentate chelating coordination mode. Additional weak interactions, such as the face-to-face pi-pi stacking and C-Hcdots, three dots, centeredO H-bonding interactions, linked the mononuclear unit into 1D chain and further into 2D network. Complexes 1-3 were subjected to biological assays in vitro against six different cancer cell lines. All of them exhibited cytotoxic specificity and notable cancer cell inhibitory rate. The interactions of 1-3 with calf thymus DNA were investigated by thermal denaturation, viscosity measurements, spectrophotometric and electrophoresis methods. The results indicate that these complexes bound to DNA by intercalation mode via the ligand L and had different nuclease activities, which were in good agreement with their DNA-binding strength. Moreover, the central metal ions of 1-3 played a vital role in DNA-binding behaviors, DNA-cleavage activities and cytotoxicities, whereas the contribution of the different counter anions to their bioactivities also should not be ignored.  相似文献   

3.
《Inorganica chimica acta》1986,119(2):203-205
Reactions of cis-diaminediaqua palladium and platinum dinitrates and of trans-diaminediaqua platinum dinitrate give complexes of the type Pd(tmeda)(OH)(C4O4)Pd(tmeda)(C4O4H) (tmeda = tetramethylethylenediamine) (1), (en)M(C4O4)2M(en) (en = ethylenediamine (M = Pd, Pt) and trans-[Pt- (NH3)2C4O4]n, respectively. The structures of these compounds are discussed on the basis of their spectroscopic data.  相似文献   

4.
Three new nickel(II) complexes with ligands 1,8-bis(2'-pyridyl)-3,6-dithiaoctane (Pdto) and dithiosemicarbazone of 4,7-dithiadecane-2,9-dione (DtdtzH2) of composition Ni(Pdto)(H2O)2(ClO4)2, Ni(DtdtzH2)(ClO4)2 and Ni(Dtdtz) were prepared, their molecular structures, spectral and redox-properties were studied. The possibilities of chemical reduction of Ni(Pdto)(H2O)2(ClO4)2 to nickel(I) and nickel(0) species and the reaction of nickel(I) complex with CO were shown, which may be described as the modeling of one of the stages of reactions with CO on active Ni-Fe-site of Ni-CO-dehydrogenases. It was found that Ni(DtdtzH2)(ClO4)2 reacted with (Et4N)2[Fe4S4(SBz)4] (BzSH = C6H5 CH2SH) forming adduct. In the row of studied complexes Ni(Pdto) (H2O)2(ClO4)2 may be described as the best structural model of Ni-Fe-site of Ni-CO-dehydrogenases on the redox properties.  相似文献   

5.
1H and 13C nmr studies on the Pd(II)Gly-His complex interaction with cytidine and GMP have shown that the nucleoside binds the palladium complex via N3 nitrogen and the nucleotide binds that complex via N7 nitrogen. The analysis of the Cyd or GMP aromatic ring influence on the chemical shift of the H2 proton or the C2 carbon of imidazole ring has supported the earlier suggestions that nucleoside or nucleotide base and Pd(II) complex plane are almost perpendicular to each other. The Pd(II)Gly-His: Cyd or GMP ternary systems are easily decomposed already in weak basic solutions, which may suggest that the polymerization of Pd(II)Gly-His binary species might be the competitive process in the interactions with nucleosides or nucleotides.  相似文献   

6.
Dicopper complexes of the following benzimidazole-containing ligands have been studied as possible models for the active site of hemocyanin: EDTB (N,N,N',N'-tetrakis-(2-benzimidazolylmethyl)-1,2-ethanediamine), EGTB (1,1,10,10-tetrakis-(2-benzimidazolylmethyl)-1,10-diaza-4,7- dioxadecane), and MEGTB (1,1,10,10-tetrakis-(1-methylbenzimidazol-2-y lmethyl)-1,10-diaza-4,7-dioxadecane). The initial oxygenation product of Cu2(EDTB)(ClO4)2 in Me2SO gives optical absorption maxima at 315 nm (epsilon = 3750 M-1 cm-1) and 690 nm (epsilon = 100 M-1 cm-1). The fluorescence emission intensities of Cu2(EDTB)(ClO4)2 at 400 and 700 nm (excitation at 350 nm) decreases rapidly on exposure to air. This suggests oxidation of Cu2(I) to Cu2(II). The x-ray absorption edge spectra suggest that both coppers in the oxygenation product, analyzed as Cu2(EDTB)(ClO4)2(O).3H2O, are Cu(II). From spectrophotometric titration of Cu2(MEGTB)Cl4 with azide, formation constant of the Cu2(MEGTB)N3Cl3 complex has been obtained. Data from cyclic voltammetry experiments suggest that in the presence of azide, Cu(II)(N3)Cu(II) species is present.  相似文献   

7.
The thionucleoside 2-thiocytidine (C2S) occurs in nature in transfer RNAs; it receives attention in diverse fields like drug research and nanotechnology. By potentiometric pH titrations we measured the acidity constants of H(C2S)(+) and the stability constants of the M(C2S)(2+) and M(C2S-H)(+) complexes (M(2+) = Zn(2+), Cd(2+)), and we compared these results with those obtained previously for its parent nucleoside, cytidine (Cyd). Replacement of the (C2)=O unit by (C2)=S facilitates the release of the proton from (N3)H(+) in H(C2S)(+) (pK (a) = 3.44) somewhat, compared with H(Cyd)(+) (pK (a) = 4.24). This moderate effect of about 0.8 pK units contrasts with the strong acidification of about 4 pK units of the (C4)NH(2) group in C2S (pK (a) = 12.65) compared with Cyd (pK (a) approximately 16.7); the reason for this result is that the amino-thione tautomer, which dominates for the neutral C2S molecule, is transformed upon deprotonation into the imino-thioate form with the negative charge largely located on the sulfur. In the M(C2S)(2+) complexes the (C2)S group is the primary binding site rather than N3 as is the case in the M(Cyd)(2+) complexes, though owing to chelate formation N3 is to some extent still involved in metal ion binding. Similarly, in the Zn(C2S-H)(+) and Cd(C2S-H)(+) complexes the main metal ion binding site is the (C2)S(-) unit (formation degree above 99.99% compared with that of N3). However, again a large degree of chelate formation with N3 must be surmised for the M(C2S-H)(+) species in accord with previous solid-state studies of related ligands. Upon metal ion binding, the deprotonation of the (C4)NH(2) group (pK (a) = 12.65) is dramatically acidified (pK (a) approximately 3), confirming the very high stability of the M(C2S-H)(+) complexes. To conclude, the hydrogen-bonding and metal ion complex forming capabilities of C2S differ strongly from those of its parent Cyd; this must have consequences for the properties of those RNAs which contain this thionucleoside.  相似文献   

8.
Cu(BZA)(2)(EtOH)(0.5) (1) was generated by the reaction of copper(II) hydroxide with benzoic acid (BZAH). [Cu(TBZH)(2)(BZA)](BZA).0.5TBZH.H(2)O (2) and [Cu(2-PyBZIMH)(2-PyBZIM)(BZA)].1.66EtOH (3) were obtained when 1 reacted with Thiabendazole (TBZH) and 2-(2-pyridyl)benzimidazole (2-PyBZIMH), respectively. [Cu(BZA)(2)(phen)(H(2)O)] (4) was isolated from the reaction of benzoic acid and 1,10-phenanthroline (phen) with copper(II)acetate dihydrate. Molecular structures of 2, 3 and 4 were determined crystallographically. 2 and 3 are hydrogen bonded dimers and trimers, respectively. The copper centres in complexes 2 and 3 are bis-chelate derivatives that have N(4)O ligation and their geometry is very similar being approximately square-pyramidal. However whereas in complex 2 both TBZH ligands are neutral in 3 one of the 2-PyBZIMH chelators is deprotonated on each copper. The structural results for 4 represent a re-examination of this crystallographically known compound for which no hydrogen atom coordinates have been previously reported. It crystallises as a hydrogen bonded dimmer and is a mono-chelate of phen with each copper centre possessing N(2)O(3) ligation and square pyramidal geometry. The catalase and superoxide dismutase (SOD) activities of the four complexes along with those of the known phenanthroline complexes [Cu(mal)(phen)(2)] and [Cu(phendione)(3)](ClO(4))(2) (malH(2)=malonic acid and phendione=1,10-phenanthroline-5,6-dione) were investigated. Complexes 1-4, the metal free ligands and a simple copper(II) salt were assessed for their cancer chemotherapeutic potential against the hepatocellular carcinoma (Hep-G(2)) and kidney adenocarcinoma (A-498) cell lines. TBZH, 2-PyBZIMH and benzoic acid when uncoordinated to a metal centre offer poor chemotherapeutic potential. copper(II) benzoate is significantly more active than the free acid. The bis-chelate derivatives [Cu(TBZH)(2)(BZA)](BZA).0.5TBZH.H(2)O (2) and [Cu(2-PyBZIMH)(2-PyBZIM)(BZA)].1.66EtOH (3) elicit a significant cytotoxic response to the cancer cell lines tested. Replacing TBZH and 2-PyBZIMH with phen to give [Cu(BZA)(2)(phen)(H(2)O)] (4) does not significantly increase the anti-cancer activity.  相似文献   

9.
Syntheses and C-H bond activation reactions of the novel electrophilic PtII complexes [(tmeda)Pt(CH3)(OEt2)][BAr1], [(tmeda)Pt(CH3)(THF)][BArf], and [(tmeda)Pt(CH3)(NC5F5)][BArf] are described {[BArf] = [(3,5-C6H3(CF3)2)4B]} (tmeda is N,N,N′,N′-tetramethylethylenediamine), [(tmeda)Pt(CH3)(OEt2)][BArf] and [(tmeda)Pt(CH3)(THF)][BArf] are unstable at room temperature, yielding methane and the Fischer carbene PtII hydrides, [(tmeda)Pt(=C(CH3)(OCH2CH3))(H)][BArf] and . The methane liberated from [(tmeda)Pt(CH3)(OEt2-d10)][BArf] consists of an isotopomeric mixture, (CH4, CH3D, CH2D2 and CHD3), indicating a multiple H/D exchange reaction following the C-D activation and prior to methane loss. [(tmeda)Pt(CH3)(THF-d8)][BAr] liberates CH4 and CH3D. Methane-13C, cyclohexane, toluene, and benzene react with [(tmeda)Pt(CH3)(NC5F5)][BArf] to yield methane and new organoplatinum complexes. Deuterated alkanes and arenes react with [(tmeda)Pt(CH3)(NC5F5] [BArf] to give a mixture of methane isotopomers. The relevance of these results to the oxidation of alkanes by aqueous platinum complexes is discussed.  相似文献   

10.
In order to mimic dinuclear active sites of some non-heme diiron proteins, ten new polydentate and potentially dinucleating ligands have been synthesized. Each ligand contains a carboxylate moiety designed to bridge two metal atoms. These central carboxylate moieties are derived from substituted benzoic acids that in turn are linked to terminal nitrogen or oxygen donors by spacers so that framework-type polydentate ligands similar to the polypeptide frames in diiron metallobiosites are formed. Reaction of these ligands with Fe(ClO4)3 x 9H2O leads to ferric mu-oxo-mu-carboxylato iron complexes of the general formulas [Fe2O(L)2(H2O)2](ClO4)2 and [Fe2O(L)(BzO)](ClO4)2 (L = ligand), containing one or two immobilized bridging carboxylates, respectively. While X-ray crystallography shows that some of these complexes are dimers or network polymers in the solid state, electrospray ionization mass spectrometry (ESMS) and spectroscopic data (UV-Vis, NMR, Móssbauer) indicate that they dissociate to monomeric Fe2O units in dilute CH3CN solutions.  相似文献   

11.
The coordination propensities of 4(N,N')-diethylaminosalicylaldehyde-4(N)-substituted thiosemicarbazones (H(2)L(1-4)) were investigated by reacting with an equimolar amount of [PdCl(2)(PPh(3))(2)]. The new complexes were characterized by various spectroscopic techniques. The structure determination of the complexes [Pd(DeaSal-tsc)(PPh(3))] (1), [Pd(DeaSal-mtsc)(PPh(3))] (2) and [Pd(DeaSal-etsc)(PPh(3))] (3) by X-ray crystallography showed that ligands are coordinated in a dibasic tridentate ONS donor fashion forming stable five and six membered chelate rings. The binding ability of complexes (1-4) to calf-thymus DNA (CT DNA) has been explored by absorption and emission titration methods. Based on the observations, an electrostatic and an intercalative binding mode have been proposed. The protein binding studies have been monitored by quenching of tryptophan and tyrosine residues in the presence of complexes using lysozyme as a model protein. As determined by MTT assays, complex 3 exhibited a higher cytotoxic effect towards human lung cancer cell line (A549) and liver cancer cells (HepG2). LDH, NO assay and cellular uptake of the complexes have been studied. Further, antibacterial activity studies of the complexes have been screened against the pathogenic bacteria such as Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa, MIC50 values of the complexes showed that the complexes exhibited significant activity against the pathogens and among the complexes, 3 exhibited higher activity.  相似文献   

12.
The 1H NMR relaxation effects produced by paramagnetic Cr(III) complexes on nucleoside 5'-mono- and -triphosphates in D2O solution at pH' = 3 were measured. The paramagnetic probes were [Cr(III)(H2O)6]3+, [Cr(III)(H2O)3(HATP)], [Cr(III)(H2O)3(HCTP)] and [Cr(III)(H2O)3(UTP)-, while the matrix nucleotides (0.1 M) were H2AMP, HIMP-, and H2ATP2-. For the aromatic base protons, the ratios of the transverse to longitudinal paramagnetic relaxation rates (R2p/R1p) for the [Cr(III)(H2O)6]3+/H2ATP2-, [Cr(III)(H2O)3(HATP)]/H2ATP2-, [Cr(III)(H2O)3(HCTP)]/H2ATP2 and [Cr(III)(H2O)3(UTP)]-/H2ATP2 systems were below 2.33 so the dipolar term predominates. For a given nucleotide, R1p for the purine H(8) signal was larger than for the H(2) signal with the [Cr(III)(H2O)6]3+ probe, while R1p for the H(2) signal was larger with all the other Cr(III) probes. Molecular mechanics computations on the [Cr(III)(H2O)4(HPP)(alpha,beta)], [Cr(III)(NH3)4(HPP)(alpha,beta)], [Co(III)(NH3)3(H2PPP)(alpha,beta,gamma)] and [Co(III)(NH3)4(HPP)(alpha,beta)] complexes gave calculated energy-minimized geometries in good agreement with those reported in crystal structures. The molecular mechanics force constants found were then used to calculate the geometry of the inner sphere [Cr(III)(H2O)6]3+ and [Cr(III)(H2O)3(HATP)(alpha,beta,gamma)] complexes as well as the structures of the outer sphere [Cr(III)(H2O)6]3(+)-(H2AMP) and [Cr(III)(H2O)6]-(HIMP)- species. The gas-phase structure of the [Cr(III)(H2O)3(HATP)(alpha,beta,gamma)] complex shows the existence of a hydrogen bond interaction between a water ligand and the adenine N(7)(O...N = 2.82 A). The structure is also stabilized by intramolecular hydrogen bonds involving the -O(2')H group and the adenine N(3) (O...N = 2.80 A) as well as phosphate oxygen atoms and a water molecule (O...O = 2.47 A). The metal center has an almost regular octahedral coordination geometry. The structures of the two outer-sphere species reveal that the phosphate group interacts strongly with the hexa-aquochromium probe. In both complexes, the nucleotides have a similar "anti" conformation around the N(9)-C(1') glycosidic bond. However, a very important difference characterizes the two structures. For the (HIMP)- complex, strong hydrogen bond interactions exist between one and two water ligands and the inosine N(7) and O(6) atoms, respectively (O...O = 2.63 A; O...N = 2.72, 2.70 A). For the H2AMP complex, the [Cr(III)(H2O)6]3+ cation does not interact with N(7) since it is far from the purine system. Hydrogen bonds occur between water ligands and phosphate oxygens. The Cr-H(8) and Cr-H(2) distances revealed by the energy-minimized geometries for the two outer sphere species were used to calculate the R1p values for the H(8) and H(2) signals for comparison with the observed R1p values: 0.92(c), 1.04(ob) (H(8)) and 0.06(c), 0.35(ob) (H(2)) for H2AMP; and 3.76(c), 4.53(ob) (H(8)) and 0.16(c), 0.77(ob) s-1 (H(2)) for HIMP-.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
[2Fe2S] clusters with terminal N-ligation (His, Arg) and unique functions are increasingly recognized in biological systems. In this work three new [2Fe2S] clusters 1-3 with different 1,1'-dipyrrolmethane derivatives as chelating terminal ligands have been prepared and fully characterized, including by X-ray crystallography: (NEt(4))(2)[L(2)Fe(2)(mu-S)(2)] with L=Me(2)C(C(4)H(3)N)(2) (1), Ph(2)C(C(4)H(3)N)(2) (2), (CH(2))(5)C(C(4)H(3)N)(2) (3). These systems represent rare examples of synthetic [2Fe2S] complexes with N-donor capping ligands. While geometric parameters as well as spectroscopic and electrochemical characteristics of the new complexes are as anticipated, the chelating nature of the terminal ligands in 1-3 imparts a relatively high stability that will be advantageous for reactivity studies of the [2Fe2S] core.  相似文献   

14.
Chelating behavior of two biologically active ligands, pyridine-2-carboxaldehyde thiosemicarbazone (PT) and pyridine-2-carboxaldehyde-(4-phenyl)thiosemicarbazone (PPT), toward oxovanadium(IV) ion has been studied. The ligands are found to react in the thioketo form (pH 2-4), yielding the complexes [VO(PT)X2](X = Cl-, Br-, ClO4-), [VO(PT)(SO4)H2O], [VO(PPT)2X]X (X = Cl-, Br-, ClO4-) and [VO(PPT)2SO4]. Reactions of [VO(PT)(SO4)H2O] and [VO(PPT)2X]X (X = Cl-, Br-, ClO4-) with a monodenate Lewis base (B) like pyridine lead to the formation of [VO(PT)(SO4)Py]H2O and [VO(PPT)2py]X2 respectively. Bonding sites of the donor molecules around the oxometal cation have been located. Nature of the EPR spectra and magnetic moment values point to the monomeric character of the complexes and suggest a distorted octahedral donor environment for the oxovanadium(IV) ion. Status of the metal-oxygen multiple bond in all the complexes has been computed in terms of the V-O(1) stretching force constant. The ligands themselves and most of their oxovanadium(IV) complexes are found to exert powerful in vitro antibacterial activities towards E. coli.  相似文献   

15.
The reactivity of nitrite towards the copper(II) and copper(I) centers of a series of complexes with tridentate nitrogen donor ligands has been investigated. The ligands are bis[(1-methylbenzimidazol-2-yl)methyl]amine (1-bb), bis[2-(1-methylbenzimidazol-2-yl)ethyl]amine (2-bb), and bis[2-(3,5-dimethyl-1-pyrazolyl)ethyl]amine (ddah) and carry two terminal benzimidazole (1-bb, 2-bb) or pyrazole (ddah) rings and a central amine donor residue. While 2-bb and ddah form two adjacent six-membered chelate rings on metal coordination, 1-bb forms two smaller rings of five members. The binding affinity of nitrite and azide to the Cu(II) complexes (ClO4 as counterion) has been determined in solution. The association constants for the two ligands are similar, but nitrite is a slightly stronger ligand than azide when it binds as a bidentate donor. The X-ray crystal structure of the nitrite complex [Cu(ddah)(NO2)]ClO4 (final R=0.056) has been determined: triclinic P1ˉspace group, a=8.200(2) ?, b=9.582(3) ?, c=15.541(4) ?. It may be described as a perchlorate salt of a “supramolecular” species resulting from the assembly of two complex cations and one sodium perchlorate unit. The copper stereochemistry in the complex is intermediate between SPY and TBP, and nitrite binds to Cu(II) asymmetrically, with Cu-O distances of 2.037(2) and 2.390(3) ? and a nearly planar CuO2N cycle. On standing, solutions of [Cu(ddah)(NO2)]ClO4 in methanol produce the dinuclear complex [Cu(ddah)(OMe)]2(ClO4)2, containing dibridging methoxy groups. In fact the crystal structure analysis (final R=0.083) showed that the crystals are built up by dinuclear cations, arranged on a crystallographic symmetry center, and perchlorate anions. Electrochemical analysis shows that binding of nitrite to the Cu(II) complexes of 2-bb and ddah shifts the reduction potential of the Cu(II)/Cu(I) couple towards negative values by about 0.3 V. The thermodynamic parameters of the Cu(II)/Cu(I) electron transfer have also been analyzed. The mechanism of reductive activation of nitrite to nitric oxide by the Cu(I) complexes of 1-bb, 2-bb, and ddah has been studied. The reaction requires two protons per molecule of nitrite and Cu(I). Kinetic experiments show that the reaction is first order in [Cu(I)] and [H+] and exhibits saturation behavior with respect to nitrite concentration. The kinetic data show that [Cu(2-bb)]+ is more efficient than [Cu(1-bb)]+ and [Cu(ddah)]+ in reducing nitrite. Received: 19 November 1999 / Accepted: 20 January 2000  相似文献   

16.
The complexes [Cu(II)(phen)(L-Pro)(H2O)]+ ClO4(-) (1; phen = 1,10-phenanthroline) and [Cu(II)(bipy)(L-Pro)(H2O)]+ ClO4(-) (2; bipy = 2,2'-bipyridine) were synthesized and characterized by IR, magnetic susceptibility, UV/VIS, EPR, ESI-MS, elemental analysis, and theoretical calculations. The metal center was found in a square-pyramidal geometry. UV/VIS, thermal-denaturation, and fluorescence-spectroscopic studies were conducted to assess the interaction of the complexes with CT-DNA. An intercalative mode of binding was found, with intrinsic binding constants (Kb) of 3.86x10(3) and 4.6x10(3) M(-1) and Stern-Volmer quenching constants (K) of 0.15 and 0.11 for 1 and 2, respectively. Interestingly, none of the Cu(II) complexes was able to cleave pUC-19 DNA, which is attributed to the absence of a Pro amide H-atom and inhibition of the formation of an OH radical from the axially coordinated H2O molecule.  相似文献   

17.
5-Fluoroorotic acid (H(3)FOro) is a potent inhibitor for some metalloproteins such as dihydroorotase and dihydroorotate dehydrogenase and for thymidylate synthase (nonmetalloprotein) in the human malaria parasite Plasmodium falciparum. To study the coordination chemistry of H(3)Foro, the ammonium salt [NH(4)(+)][H(2)FOro(-)].1H(2)O (1) and the first coordination compounds of H(3)FOro with transition metals [Ni(HFOro(2-))(H(2)O)(4)].1H(2)O (2), [Cu(HFOro(2-))(NH(3))(H(2)O)](n) (3) and [Cu(3)(FOro(3-))(2)(NH(3))(6)(H(2)O)(2)] (4) have been synthesised and characterised by single-crystal X-ray diffraction, IR spectroscopy and by thermogravimetry. Three different coordination modes of 5-fluoroorotic acid have been established. In all cases the ligand is chelated to the metal via an amido-nitrogen and a carboxylate-oxygen but for (3), there is also a carboxylate oxygen from another HFOro(2-) ligand resulting in a polymeric structure and for (4), the second amido-nitrogen in the ororotic acid ring coordinates to give a trinuclear complex. The metal coordination polyhedra are octahedral in (2), square-pyramidal in (3) and square-planar and approximately square-pyramidal in (4). An octahedral coordination geometry including a N(1)/O(61)-chelating HFOro(2-) ligand with four aqua ligands is proposed for the Zn complex [Zn(HFOro(2-)) (H(2)O)(4)].0.5H(2)O (5), based on IR and thermogravimetric data. Extensive hydrogen bonded networks and some ring-ring stacking interactions are observed in each of the structures.  相似文献   

18.
Despite their structural similarity, [Pt(dien)(1-MeC-N3)](2+) (1), [Pd(dien)(1-MeC-N3)](2+) (2), and [Pt(NH(3))(3)(1-MeC-N3)](2+) (3) (with dien=diethylenetriamine and 1-MeC=neutral 1-methylcytosine) behave in part markedly different at strongly alkaline pH (12-13) and at room temperature. While 1 and 2, yet not 3 show linkage isomerization from N3 to N4, deamination of the cytosine nucleobase to 1-methyluracilate occurs with 1 and 3, yet not with 2. Pathways leading to N3,N4-diplatinated 1-MeC(-) complexes (1-MeC(-)=1-methylcytosine, deprotonated at exocyclic amino group N4) have been studied at high pH by starting from 1 and 3, respectively, and adding (dien)Pt(II). It appears that initial migration of the metal entity from N3 to N4, followed by binding of the second metal to the available N3 site, is favored over sequential coordination to N3 and then N4. X-ray crystal data of 1-3 density functional theory (DFT) calculations, and NMR ((1)H, (195)Pt) data are presented.  相似文献   

19.
Hydrazinonicotinamide (HYNIC) forms stable coordination complexes with Tc-99m when reacted with Tc(V)oxo species such as Tc-mannitol or other Tc-polyhydric complexes. However, radio-HPLC of [Tc-For-MLFK-HYNIC] labeled via Tc-polyhydric ligands demonstrated multiple radiochemical species each with unique biodistribution patterns. This is likely due to the fact that Tc can bind to the hydrazino moiety, as well as polyhydric ligands, in a variety of coordination geometries. Tridentate ligands, such as bis(mercaptoethyl)methylamine (NS2), may constrain the possible coordination geometries and improve overall stability. To investigate this, we synthesized NS2, converted the [Tc-mannitol-For-MLFK-HYNIC] to the corresponding NS2-containing complex [Tc-NS2-For-MLFK-HYNIC], and compared its infection imaging and biodistribution properties with [Tc-mannitol-For-MLFK-HYNIC]. Conversion to the NS2 complex was confirmed by HPLC which showed a single unique hydrophobic species with retention time greater than the [Tc-mannitol-For-MLFK-HYNIC] complex. Imaging experiments with both preparations were performed in rabbits with E. coli infections in the left thigh. Tissue radioactivity measurements demonstrated that compared to Tc-mannitol-peptide, accumulation of Tc-NS2-peptide was lower in blood, heart, and normal muscle and higher in spleen, infected muscle, and pus (p < 0.01). These results indicate that the Tc-NS2-peptide complex is chemically more homogeneous and exhibits improved infection localization and biodistribution properties. In an effort to model the interactions of the metal-HYNIC core with NS2 and related ligand types, the reactions of [ReCl3(NNC5H4NH)(NHNC5H4N)] and [99TcCl3(NNC5H4NH)(NHNC5H4N)], effective structural analogues for the [M(NNC5H4NH(x))2] core, with NS2, C5H3N-2,6-(CH2SH)2, O(CH2CH2SH)2, and S(CH2CH2SH)2 were investigated and the compounds [M[CH3N(CH2CH2S)2](NNC5H4N)(NHNC5H4N] (M = 99Tc (5a), Re (5b)), [Re[C5H3N-2,6-(CH2S)2](NNC5H4N)(NHNC5H4N)].CH2Cl2.0.5MeOH (7), [Re[SCH2CH2)2O] (NNC5H4N)(NHNC5H4N)] (8), and [Re[(SCH2CH2)2S](NNC5H4NH)(NHNC5H4N)]Cl (9) were isolated. Similarly, the reaction of [ReCl3(NNC5H4NH)(NHNC5H4N)] with the bidentate ligands pyridine-2-methanethiol and 3-(trimethlysilyl)pyridine-2-thiol led to the isolation of [ReCl(C5H4N-2-CH2S) (NNC5H4N)(NHNC5H4N)] (10) and [Re(2-SC5H3N-3-SiMe3)2 (NNC5H4N)(NHNC5H4N)] (11), respectively, while reaction with N-methylimidazole-2-thiol yielded the binuclear complex [Re(OH)Cl(SC3H2N2CH3)2(NNC5H4N)2 (NHNC5H4N)2] (12). The analogous metal-(HYNIC-OH) precursor, [ReCl3[NNC5H3NH(CO2R)] [NHNC5H3N(CO2R)]] (R = H, 13a; R = CH3, 13b) has been prepared and coupled to lysine to provide [RCl3[NNC5H3NH(CONHCH2CH2CH2CH2CH(NH2)CO2H)] [NHNC5H3NH(CONHCH2CH2CH2CH2CH(NH2)CO2H)]].2HCl (14.2HCl), while the reaction of the methyl ester 13b with 2-mercaptopyridine yields [Re(2-SC5H4N)2[NNC5H3N(CO2Me)][NHNC5H3N(CO2Me)]] (15). While the chemical studies confirm the robustness of the M-HYNIC core (M = Tc, Re) and its persistence in ligand substitution reactions at adjacent coordination sites of the metal, the isolation of oligomeric structures and the insolubility of the peptide conjugates of 13, 14, and 15 underscore the difficulty of characterizing these materials on the macroscopic scale, an observation relevant to the persistent concerns with reagent purity and identity on the tracer level.  相似文献   

20.
Potentiometric studies have shown that Ni(II) forms three pH-dependent complexes with famotidine (L), namely: [NiHL](3+), [NiL](2+) and [NiH(-2)L]. Two of them have been isolated from solution with a Ni/famotidine ratio of 1:1. At pH 6.0, a paramagnetic complex [NiL](2+) with octahedral geometry is formed in which, most likely thiazole N(9) and guanidine N(3) nitrogens are involved in the metal binding. Additionally, two water molecules and two perchlorate anions, ClO(4)(-), fulfil the coordination sphere. The second complex, [NiH(-2)L], that precipitates at pH 8 is diamagnetic and takes square-planar geometry in which four nitrogen donors: N(3), N(9), N(16) and N(20) coordinate to Ni(II). Potentiometric studies, mass spectrometry, FT-IR and Raman spectroscopy are employed to determine and discuss the structure of both complexes. Additionally, 1H, 13C and 15N NMR spectroscopy is used to confirm the binding site in a square-planar complex. The assignment of vibrational bands are made using ab initio HF/CEP-31G method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号