首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-diversity biofilm for the oxidation of sulfide-containing effluents   总被引:7,自引:0,他引:7  
In the present work, we describe for the first time the utilization of a complex microbial biofilm for the treatment of sulfide-containing effluents. A non-aerated packed-column reactor was inoculated with anoxic lake sediment and exposed to light. A biofilm developed in the column and showed a stable oxidation performance for several weeks. Microbial species composition was analyzed by microscopy, pigment analysis and a bacterial 16S rRNA gene clone library. Colorless sulfur bacteria, green algae and purple sulfur bacteria were observed microscopically. Pigment composition confirmed the presence of algae and purple sulfur bacteria. The clone library was dominated by alpha-Proteobacteria (mostly Rhodobacter group), followed by gamma-Proteobacteria (Chromatiaceae-like and Thiothrix-like aerobic sulfur oxidizers) and the Cytophaga-Flavobacterium-Bacteroides group. Plastid signatures from algae were also present and a few clones belonged to both the beta- (Rhodoferax sp., Thiobacillus sp.) and delta-Proteobacteria (Desulfocapsa sp.) and to the low G+C Gram-positive bacteria (Firmicutes group). The coexistence of aerobic, anaerobic, phototrophic and chemotrophic microorganisms in the biofilm, the species richness found within these metabolic groups (42 operational taxonomic units) and the microdiversity observed within some species could be very important for the long-term functioning and versatility of the reactor.  相似文献   

2.
The diversity of purple and green sulfur bacteria in the multilayered sediments of the Ebro Delta was investigated. Specific oligonucleotide primers for these groups were used for the selective amplification of 16S rRNA gene sequences. Subsequently, amplification products were separated by denaturing gradient gel electrophoresis and sequenced, which yielded a total of 32 sequences. Six of the sequences were related to different cultivated members of the green sulfur bacteria assemblage, whereas seven fell into the cluster of marine or halophilic Chromatiaceae. Six sequences were clustered with the family Ectothiorhodospiraceae, three of the six being closely related to chemotrophic bacteria grouped together with Halorhodospira genus, and the other three forming a group related to the genus Ectothiorhodospira. The last thirteen sequences constituted a cluster where no molecular isolate from microbial mats has so far been reported. Our results indicate that the natural diversity in the ecosystem studied has been significantly underestimated in the past and point out the presence of novel species not related to all known purple sulfur bacteria. Furthermore, the detection of green sulfur bacteria, after only an initial step of enrichment, suggests that -- with the appropriate methodology -- several genera, such as Prosthecochloris, could be established as regular members of marine microbial mats.  相似文献   

3.
The Ancaster sulfur spring is a cold (9°C) sulfur spring located near Ancaster, Ontario, Canada, which hosts an abundant and diverse microbial mat community. We conducted an extensive microscopical study of the microbial community of this spring using a number of techniques: phase light, confocal scanning laser microscopy, conventional scanning electron microscopy using both chemical/critical point drying and cryofixation preparative techniques, environmental scanning electron microscopy, and transmission electron microscopy. The latter two techniques were coupled with energy dispersive X-ray spectrometry for elemental analysis to complement wet geochemical data collected on bulk spring water and mat pore water. In the anoxic source of the spring, green and purple sulfur bacteria were found together with a sulfide-utilizing type of cyanobacteria that had the unusual characteristic of storing colloidal sulfur intracellularly. Deeper within the source, the mats were dominated by green sulfur bacteria and thick biofilms of cells that precipitated Fe and Zn sulfide minerals on their surfaces. Downstream from the source, thick, filamentous white mats lined the stream channel, formed by a diverse mass of nonphotosynthetic sulfur oxidizers, which were responsible for forming thick masses of spherical colloidal sulfur. These were distinguished by ESEM-EDS from cells by their simple elemental composition (only S was detected). Aqueous geochemistry analysis by ICP-MS showed that some elements (Fe, C, P, Zn, Mg, Ba) were present at higher levels in mat pore water than in bulk spring water. Our approach allowed us to gain an appreciation of the characteristics of this microbial community and allowed us to develop a good understanding of the types of microorganisms present and infer some of the relationships among the members of the community. In addition, we wish to convey the utility of a thorough microscopical approach in geomicrobiological and microbial ecology studies.  相似文献   

4.
Water chemistry, energetic modeling, and molecular analyses were combined to investigate the microbial ecology of a biofilm growing in a thermal artesian spring within Hot Springs National Park, AR. This unique fresh water spring has a low dissolved chemical load and is isolated from both light and direct terrestrial carbon input - resulting in an oligotrophic ecosystem limited for fixed carbon and electron donors. Evaluation of energy yields of lithotrophic reactions putatively linked to autotrophy identified the aerobic oxidation of methane, hydrogen, sulfide, ammonia, and nitrite as the most exergonic. Small subunit (SSU) rRNA gene libraries from biofilm revealed a low-diversity microbial assemblage populated by bacteria and archaea at a gene copy ratio of 45:1. Members of the bacterial family 'Nitrospiraceae', known for their autotrophic nitrite oxidation, dominated the bacterial SSU rRNA gene library (approximately 45%). Members of the Thaumarchaeota ThAOA/HWCGIII (>96%) and Thaumarchaeota Group I.1b (2.5%), which both contain confirmed autotrophic ammonia oxidizers, dominated the archaeal SSU rRNA library. Archaea appear to dominate among the ammonia oxidizers, as only ammonia monooxygenase subunit A (amoA) genes belonging to members of the Thaumarchaeota were detected. The geochemical, phylogenetic, and genetic data support a model that describes a novel thermophilic biofilm built largely by an autotrophic nitrifying microbial assemblage. This is also the first observation of 'Nitrospiraceae' as the dominant organisms within a geothermal environment.  相似文献   

5.
Abstract A saltern near La Baule (Bretagne, France) was remodeled in a programmable temperature and humidity controlled walk-in environmental chamber resembling the characteristics of the original saltern. The saltern showed different types of microbial mats predominantly composed of algae, oxy- and anoxyphotobacteria, and associated chemoorganotrophic bacteria, fungi and animals. Well-developed microbial mats were found up to a salinity of 10% during the three or four months in summer when salinity gradients and NaCl precipitation were established. The main phototrophic organisms were diatoms, the cyanobacteria Aphanothece, Microcoleus, Spirulina , and Oscillatoria , and Chromatiaceae. At higher salinity, Halobacterium sp., diatoms, and Dunaliella were dominant. Typical microbial mats and saltern-typical invertebrate, algal and bacterial species also developed in the saltern model, building up a stable community. The ionic composition of the brines and physicochemical parameters were similar to those determined for the original saltern. Different photosynthetic organisms, e.g. a filamentous purple bacterium and a hypersaline Chloroflexus -like organism, could be enriched within the microbial mats by changing the light regime.  相似文献   

6.
Chemolithoautotrophic nitrifying bacteria release soluble organic compounds, which can be substrates for heterotrophic microorganisms. The identities of these heterotrophs and the specificities of their interactions with nitrifiers are largely unknown. In this study, we incubated nitrifying activated sludge with 13C-labeled bicarbonate and used stable isotope probing of 16S rRNA to monitor the flow of carbon from uncultured nitrifiers to heterotrophs. To facilitate the identification of heterotrophs, the abundant 16S rRNA molecules from nitrifiers were depleted by catalytic oligonucleotides containing locked nucleic acids (LNAzymes), which specifically cut the 16S rRNA of defined target organisms. Among the 13C-labeled heterotrophs were organisms remotely related to Micavibrio, a microbial predator of Gram-negative bacteria. Fluorescence in situ hybridization revealed a close spatial association of these organisms with microcolonies of nitrite-oxidizing sublineage I Nitrospira in sludge flocs. The high specificity of this interaction was confirmed by confocal microscopy and a novel image analysis method to quantify the localization patterns of biofilm microorganisms in three-dimensional (3-D) space. Other isotope-labeled bacteria, which were affiliated with Thermomonas, colocalized less frequently with nitrifiers and thus were commensals or saprophytes rather than specific symbionts or predators. These results suggest that Nitrospira spp. are subject to bacterial predation, which may influence the abundance and diversity of these nitrite oxidizers and the stability of nitrification in engineered and natural ecosystems. In silico screening of published next-generation sequencing data sets revealed a broad environmental distribution of the uncultured Micavibrio-like lineage.  相似文献   

7.
The community structure of pink-colored microbial mats naturally occurring in a swine wastewater ditch was studied by culture-independent biomarker and molecular methods as well as by conventional cultivation methods. The wastewater in the ditch contained acetate and propionate as the major carbon nutrients. Thin-section electron microscopy revealed that the microbial mats were dominated by rod-shaped cells containing intracytoplasmic membranes of the lamellar type. Smaller numbers of oval cells with vesicular internal membranes were also found. Spectroscopic analyses of the cell extract from the biomats showed the presence of bacteriochlorophyll a and carotenoids of the spirilloxanthin series. Ubiquinone-10 was detected as the major quinone. A clone library of the photosynthetic gene, pufM, constructed from the bulk DNA of the biomats showed that all of the clones were derived from members of the genera Rhodobacter and Rhodopseudomonas. The dominant phototrophic bacteria from the microbial mats were isolated by cultivation methods and identified as being of the genera Rhodobacter and Rhodopseudomonas by studying 16S rRNA and pufM gene sequence information. Experiments of oxygen uptake with lower fatty acids revealed that the freshly collected microbial mats and the Rhodopseudomonas isolates had a wider spectrum of carbon utilization and a higher affinity for acetate than did the Rhodobacter isolates. These results demonstrate that the microbial mats were dominated by the purple nonsulfur bacteria of the genera Rhodobacter and Rhodopseudomonas, and the bioavailability of lower fatty acids in wastewater is a key factor allowing the formation of visible microbial mats with these phototrophs.  相似文献   

8.
The microenvironment and community composition of microbial mats developing on beaches in Scapa Flow (Orkney Islands) were investigated. Analysis of characteristic biomarkers (major fatty acids, hydrocarbons, alcohols, and alkenones) revealed the presence of different groups of bacteria and microalgae in mats from Waulkmill and Swanbister beach, including diatoms, Haptophyceae, cyanobacteria, and sulfate-reducing bacteria. These analyses also indicated the presence of methanogens, especially in Swanbister beach mats, and therefore a possible role of methanogenesis for the carbon cycle of these sediments. High amounts of algal lipids and slightly higher numbers (genera, abundances) of cyanobacteria were found in Waulkmill Bay mats. However, overall only a few genera and low numbers of unicellular and filamentous cyanobacteria were present in mats from Waulkmill and Swanbister beach, as deduced from CLSM (confocal laser scanning microscopy) analysis. Spectral scalar irradiance measurements with fiber-optic microprobes indicated a pronounced heterogeneity concerning zonation and density of mainly anoxygenic phototrophs in Swanbister Bay mats. By microsensor and T-RFLP (terminal restriction fragment length polymorphism) analysis in Swanbister beach mats, the depth distribution of different populations of purple and sulfate-reducing bacteria could be related to the microenvironmental conditions. Oxygen, but also sulfide and other (inorganic and organic) sulfur compounds, seems to play an important role in the stratification and diversity of these two major bacterial groups involved in sulfur cycling in Swanbister beach mats.  相似文献   

9.
Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring   总被引:4,自引:0,他引:4  
An artesian sulfide- and sulfur-rich spring in southwestern Oklahoma is shown to sustain an extremely rich and diverse microbial community. Laboratory incubations and autoradiography studies indicated that active sulfur cycling is occurring in the abundant microbial mats at Zodletone spring. Anoxygenic phototrophic bacteria oxidize sulfide to sulfate, which is reduced by sulfate-reducing bacterial populations. The microbial community at Zodletone spring was analyzed by cloning and sequencing 16S rRNA genes. A large fraction (83%) of the microbial mat clones belong to sulfur- and sulfate-reducing lineages within delta-Proteobacteria, purple sulfur gamma-Proteobacteria, epsilon -Proteobacteria, Chloroflexi, and filamentous Cyanobacteria of the order Oscillatoria as well as a novel group within gamma-Proteobacteria. The 16S clone library constructed from hydrocarbon-exposed sediments at the source of the spring had a higher diversity than the mat clone library (Shannon-Weiner index of 3.84 compared to 2.95 for the mat), with a higher percentage of clones belonging to nonphototrophic lineages (e.g., Cytophaga, Spirochaetes, Planctomycetes, Firmicutes, and Verrucomicrobiae). Many of these clones were closely related to clones retrieved from hydrocarbon-contaminated environments and anaerobic hydrocarbon-degrading enrichments. In addition, 18 of the source clones did not cluster with any of the previously described microbial divisions. These 18 clones, together with previously published or database-deposited related sequences retrieved from a wide variety of environments, could be clustered into at least four novel candidate divisions. The sulfate-reducing community at Zodletone spring was characterized by cloning and sequencing a 1.9-kb fragment of the dissimilatory sulfite reductase (DSR) gene. DSR clones belonged to the Desulfococcus-Desulfosarcina-Desulfonema group, Desulfobacter group, and Desulfovibrio group as well as to a deeply branched group in the DSR tree with no representatives from cultures. Overall, this work expands the division-level diversity of the bacterial domain and highlights the complexity of microbial communities involved in sulfur cycling in mesophilic microbial mats.  相似文献   

10.
The diversity and variation of total and active ammonia-oxidizing bacteria in a full-scale aerated submerged biofilm reactor for drinking water pretreatment were characterized by clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA and its gene during a whole year. Sequences obtained from clone libraries affiliated with the Nitrosomonas oligotropha lineage and the Nitrosomonas communis lineage. An uncultured subgroup of Nitrosomonas communis lineage was also detected. Seasonal variations in both total and active ammonia-oxidizing bacteria communities were observed in the DGGE profiles, but an RNA-based analysis reflected more obvious dynamic changes in ammonia-oxidizer community than a DNA-based approach. Statistical study based on canonical correspondence analysis showed that a community shift of active ammonia oxidizers was significantly influenced by temperature and pH, but no significant correlation was found between environmental variables and total ammonia-oxidizer community shift.  相似文献   

11.
Time-depth distribution of the microbial anaerobic assemblage of Lake Cisó was analyzed by microscopy, pigment composition, and electrophoretic analysis of 5S rRNAs. Purple (Amoebobacter-like and Thiocystis minor-like cells) and green (Chlorobium-like) sulfur bacteria were very abundant. Both groups coexisted in depth and in time despite the fact that they compete for the same natural resources (e.g., light and sulfide). Cell abundance, group-specific pigment content, and group-specific 5S rRNA content did not change in parallel with depth. This was due to variations in the specific content of both RNA and pigments. Specific content of RNA was systematically higher in purple than in green sulfur bacteria. The latter, in turn, displayed a much higher pigment content. Specific content of both RNA and pigments changed with depth and time. Analysis of tRNA band patterns indicated no changes in the populations forming the assemblage. Changes in specific contents, therefore, were the result of physiological adaptations of the populations already present in the system. We concluded that each group of bacteria showed differential adaptations in both RNA and pigment content, and that the specific contents measured were good indicators of the physiological status of these bacteria in situ. The higher content of RNA in purple sulfur bacteria indicates that these organisms are the main contributors to anaerobic carbon fixation and sulfide oxidation processes in Lake Cisó.  相似文献   

12.
The White Sands National Monument from New Mexico (U.S.A) contains one of the largest known gypsum dune fields with unique, rapidly migrating, arid, evaporitic habitats. Deposits from dune sides and interdune areas were collected in order to determine the characteristics of microbial habitat and communities through mineral assemblages, microbial pigments along with investigations of nitrogen and sulfur cycles. The most abundant pigments, scytonemin and carotenoids, were common UV protective pigments. Predominance of nitrite and nitrate over ammonium nitrogen (2.16: 1) implies that nitrification processes might be important in this ecosystem. Ammonium oxidizers from groups of β-, γ-proteobacteria and archaea were detected in all deposits, thereby indicating microbial involvement in nitrification. Additionally, denitrifying organisms with nirS and nirK genes were also present in most of the analyzed samples. The presence of trace carbonate mineral phases in association with biofilm implies possible microbial sulfate reduction. Microbes with metabolic abilities for sulfur cycling (i.e., dissimilatory sulfite reducers, purple sulfur bacteria, green sulfur and non-sulfur bacteria, and organisms with the APS enzyme) were identified in all samples. These particular organisms have the ability to reduce sulfate and to re-oxidize reduced sulfur compounds back to sulfate.  相似文献   

13.
Oil field bacteria were characterized by cloning and sequencing of PCR-amplified 16S rRNA genes. A variety of gram-negative, sulfate-reducing bacteria was detected (16 members of the family Desulfovibrionaceae and 8 members of the family Desulfobacteriaceae). In contrast, a much more limited number of anaerobic, fermentative, or acetogenic bacteria was found (one Clostridium sp., one Eubacterium sp., and one Synergistes sp.). Potential sulfide oxidizers and/or microaerophiles (Thiomicrospira, Arcobacter, Campylobacter, and Oceanospirillum spp.) were also detected. The first two were prominently amplified from uncultured production water DNA and represented 28 and 47% of all clones, respectively. Growth on media containing sulfide as the electron donor and nitrate as the electron acceptor and designed for the isolation of Thiomicrospira spp. gave only significant enrichment of the Campylobacter sp., which was shown to be present in different western Canadian oil fields. This newly discovered sulfide oxidizer may provide a vital link in the oil field sulfur cycle by reoxidizing sulfide formed by microbial sulfate or sulfur reduction.  相似文献   

14.
Filamentous bacteria containing bacteriochlorophylls c and a were enriched from hypersaline microbial mats. Based on phylogenetic analyses of 16S rRNA gene sequences, these organisms form a previously undescribed lineage distantly related to Chloroflexus spp. We developed and tested a set of PCR primers for the specific amplification of 16S rRNA genes from filamentous phototrophic bacteria within the kingdom of "green nonsulfur bacteria." PCR products recovered from microbial mats in a saltern in Guerrero Negro, Mexico, were subjected to cloning or denaturing gradient gel electrophoresis and then sequenced. We found evidence of a high diversity of bacteria related to Chloroflexus which exhibit different distributions along a gradient of salinity from 5.5 to 16%.  相似文献   

15.
We investigated the genotypic diversity of oxygenic and anoxygenic phototrophic microorganisms in microbial mat samples collected from three hot spring localities on the east coast of Greenland. These hot springs harbour unique Arctic microbial ecosystems that have never been studied in detail before. Specific oligonucleotide primers for cyanobacteria, purple sulfur bacteria, green sulfur bacteria and Choroflexus/Roseiflexus-like green non-sulfur bacteria were used for the selective amplification of 16S rRNA gene fragments. Amplification products were separated by denaturing gradient gel electrophoresis (DGGE) and sequenced. In addition, several cyanobacteria were isolated from the mat samples, and classified morphologically and by 16S rRNA-based methods. The cyanobacterial 16S rRNA sequences obtained from DGGE represented a diverse, polyphyletic collection of cyanobacteria. The microbial mat communities were dominated by heterocystous and non-heterocystous filamentous cyanobacteria. Our results indicate that the cyanobacterial community composition in the samples were different for each sampling site. Different layers of the same heterogeneous mat often contained distinct and different communities of cyanobacteria. We observed a relationship between the cyanobacterial community composition and the in situ temperatures of different mat parts. The Greenland mats exhibited a low diversity of anoxygenic phototrophs as compared with other hot spring mats which is possibly related to the photochemical conditions within the mats resulting from the Arctic light regime.  相似文献   

16.
Two form ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) genes from the obligately autotrophic, marine hydrogen oxidizer Hydrogenovibrio marinus were sequenced. The deduced amino acid sequences of both RuBisCOs revealed that they are similar to those of sulfur oxidizers (Thiobacillus) and a purple sulfur bacterium (Chromatium vinosum). According to the 16S rRNA gene sequences, H. marinus is also affiliated with these microorganisms, members of Thiomicrospira being the closest relatives. Sequence similarities of the 16S rRNA genes and of the RuBisCO genes among these γ-Proteobacteria suggest a common autotrophic ancestry. An ancestor of purple sulfur bacteria might be a common root of H. marinus and related sulfur oxidizers. Received: 17 June 1997 / Accepted: 14 November 1997  相似文献   

17.
The community structure of pink-colored microbial mats naturally occurring in a swine wastewater ditch was studied by culture-independent biomarker and molecular methods as well as by conventional cultivation methods. The wastewater in the ditch contained acetate and propionate as the major carbon nutrients. Thin-section electron microscopy revealed that the microbial mats were dominated by rod-shaped cells containing intracytoplasmic membranes of the lamellar type. Smaller numbers of oval cells with vesicular internal membranes were also found. Spectroscopic analyses of the cell extract from the biomats showed the presence of bacteriochlorophyll a and carotenoids of the spirilloxanthin series. Ubiquinone-10 was detected as the major quinone. A clone library of the photosynthetic gene, pufM, constructed from the bulk DNA of the biomats showed that all of the clones were derived from members of the genera Rhodobacter and Rhodopseudomonas. The dominant phototrophic bacteria from the microbial mats were isolated by cultivation methods and identified as being of the genera Rhodobacter and Rhodopseudomonas by studying 16S rRNA and pufM gene sequence information. Experiments of oxygen uptake with lower fatty acids revealed that the freshly collected microbial mats and the Rhodopseudomonas isolates had a wider spectrum of carbon utilization and a higher affinity for acetate than did the Rhodobacter isolates. These results demonstrate that the microbial mats were dominated by the purple nonsulfur bacteria of the genera Rhodobacter and Rhodopseudomonas, and the bioavailability of lower fatty acids in wastewater is a key factor allowing the formation of visible microbial mats with these phototrophs.  相似文献   

18.
The diazotrophic community in microbial mats growing along the shore of the North Sea barrier island Schiermonnikoog (The Netherlands) was studied using microscopy, lipid biomarkers, stable carbon (δ(13) C(TOC) ) and nitrogen (δ(15) N) isotopes as well as by constructing and analyzing 16S rRNA gene libraries. Depending on their position on the littoral gradient, two types of mats were identified, which showed distinct differences regarding the structure, development and composition of the microbial community. Intertidal microbial mats showed a low species diversity with filamentous non-heterocystous Cyanobacteria providing the main mat structure. In contrast, supratidal microbial mats showed a distinct vertical zonation and a high degree of species diversity. Morphotypes of non-heterocystous Cyanobacteria were recognized as the main structural component in these mats. In addition, unicellular Cyanobacteria were frequently observed, whereas filamentous heterocystous Cyanobacteria occurred only in low numbers. Besides the apparent visual dominance of cyanobacterial morphotpyes, 16S rRNA gene libraries indicated that both microbial mat types also included members of the Proteobacteria and the Cytophaga-Flavobacterium-Bacteroides group as well as diatoms. Bulk δ(15) N isotopes of the microbial mats ranged from +6.1‰ in the lower intertidal to -1.2‰ in the supratidal zone, indicating a shift from predominantly nitrate utilization to nitrogen fixation along the littoral gradient. This conclusion was supported by the presence of heterocyst glycolipids, representing lipid biomarkers for nitrogen-fixing heterocystous Cyanobacteria, in supratidal but not in intertidal microbial mats. The availability of combined nitrogen species might thus be a key factor in controlling and regulating the distribution of the diazotrophic microbial community of Schiermonnikoog.  相似文献   

19.
High-throughput sequencing was used for comparative analysis of microbial communities of the water and mat from the Hoito-Gol mesothermal mineral sulfide spring (Eastern Sayan Mountains, Buryat Republic). Activity of microbial communities was determined. While both spring biotopes were dominated by members of three bacterial phyla—Proteobacteria, Bacteroidetes, and Firmicutes—they differed drastically in the composition of predominant phylotypes (at the genus level). In the water, the organisms widespread in aquatic environments were predominant, mostly aerobic chemoorganotrophs of the genera Acinetobacter, Pedobacter, and Flavobacterium. In the microbial mat, the organisms actively involved in the sulfur cycle predominated, including sulfur-reducing bacteria Sulfurospirillum, sulfate-reducing deltaproteobacteria, sulfuroxidizing chemoautotrophic bacteria, anoxygenic phototrophic bacteria of the phyla Chloroflexi and Chlorobi, as well as purple bacteria belonging to the α-, ß-, and γ-Proteobacteria. Microbial mats of the spring exhibited higher phylogenetic diversity compared to high-temperature mats containing photosynthetic microorganisms.  相似文献   

20.
Chemolithoautotrophic nitrite oxidizers of the genus Nitrospira are a monophyletic but diverse group of organisms, are widely distributed in many natural habitats, and play a key role in nitrogen elimination during biological wastewater treatment. Phylogenetic analyses of cloned 16S rRNA genes and fluorescence in situ hybridization with newly developed rRNA-targeted oligonucleotide probes revealed coexistence of uncultured members of sublineages I and II of the genus Nitrospira in biofilm and activated sludge samples taken from nitrifying wastewater treatment plants. Quantitative microscopic analyses of their spatial arrangement relative to ammonia oxidizers in the biofilm and activated sludge flocs showed that members of the Nitrospira sublineage I occurred significantly more often in immediate vicinity to ammonia oxidizers than would be expected from random community assembly while such a relationship was not observed for Nitrospira sublineage II. This spatial distribution suggested a niche differentiation of these coexisting Nitrospira populations with respect to their preferred concentrations of nitrite. This hypothesis was tested by mathematical modelling of nitrite consumption and resulting nitrite gradients in nitrifying biofilms and by quantifying the abundance of sublineage I and II Nitrospira in activated sludge during incubations with nitrite in different concentrations. Consistent with the observed localization patterns, a higher nitrite concentration selected for sublineage I but suppressed sublineage II Nitrospira.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号