首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolating spacers introduced between solubilizing lysine regions and a polyalanine core permit rigorous characterization of context-free alanine helices. The preferred building blocks for isolating spacers are amino acids with rigid, extended conformations such as proline, isonipecotic acid, and tert-leucine. Replacing isolating spacers by conventional N- and C-caps dramatically increases the helicity of dodecaalanine. Solubilized, isolated polyalanines provide optimal tools for testing polypeptide helicity algorithms, central to resolution of the protein folding problem.  相似文献   

2.
A proper understanding of the detailed nature and mechanism of physicochemical interactions depends heavily upon our ability to design and synthesize conformationally constrained 3D structures whose intercomponent geometry (either rigorously rigid or able to undergo destructuration, if required, but in all cases precisely tunable) would be well defined. To this end we have recently reported a few initial studies and we are currently working on the exploitation of stable, short, helical peptide spacers based on achiral and/or chiral Calpha-tetrasubstituted alpha-amino acids. These building blocks are known to force the peptides either to predominantly fold into a 3(10)-helical structure or to adopt a fully extended, planar 2.0(5)-helix. The systems under investigation involve a donor and an acceptor moiety linked to the N- and C-termini of the oligopeptide spacer main chain. By increasing the number of intervening residues the donor.acceptor separation can be easily modulated. This review highlights details of these two novel peptide secondary structures and their use as molecular spacers in physicochemical investigations.  相似文献   

3.
High hydrogen capacity (up to 2.6 wt%) is reported for highly aligned structures of Graphene oxide‐Multiwalled carbon nanotubes composite at room temperature. It is demonstrated that the scalable liquid crystal route can be employed as a new method to prepare unique 3‐D framework of graphene oxide layers with proper interlayer spacing as building blocks for cost‐effective high‐capacity hydrogen storage media. The strong synergistic effect of the intercalation of MWCNTs as 1‐D spacers within graphene oxide frameworks resulted in unrivalled high hydrogen capacity at ambient temperature. The mechanisms involved in the intercalation procedure are fully discussed. The main concept behind intercalating one‐dimensional spacers in between giant GO sheets represents a versatile and highly scalable route to fabricate devices with superior hydrogen uptake.  相似文献   

4.
5.
Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach--to specifically target combinations of cell-surface receptors using heteromultivalent ligands ("receptor combination approach"). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle(4), dPhe(7)]-α-MSH) and the cholecystokinin peptide ligand (CCK-8). Binding of these ligands to cells expressing the human Melanocortin-4 receptor and the Cholecystokinin-2 receptor was analyzed. The MSH(7) and CCK(6) were tethered with linkers of varying rigidity and length, constructed from natural and/or synthetic building blocks. Modeling data suggest that a linker length of 20-50 ? is needed to simultaneously bind these two different G-protein coupled receptors (GPCRs). These ligands exhibited up to 24-fold enhancement in binding affinity to cells that expressed both (bivalent binding), compared to cells with only one (monovalent binding) of the cognate receptors. The htBVLs had up to 50-fold higher affinity than that of a monomeric CCK ligand, i.e., Ac-CCK(6)-NH(2). Cell-surface targeting of these two cell types with labeled heteromultivalent ligand demonstrated high avidity and specificity, thereby validating the receptor combination approach. This ability to noncovalently cross-link heterologous receptors and target individual cells using a receptor combination approach opens up new possibilities for specific cell targeting in vivo for therapy or imaging.  相似文献   

6.
Ligand recognition by influenza virus. The binding of bivalent sialosides.   总被引:4,自引:0,他引:4  
Infection by influenza virus is initiated by a cellular adhesion event that is mediated by the viral protein, hemagglutinin, which is exposed on the surface of the virion. Hemagglutinin recognizes and binds to cell surface sialic acid residues. Although each individual ligand binding interaction is weak, the high affinity of influenza virus for cells that bear sialic acid residues is thought to result from a multivalent attachment process involving many similar recognition events. To evaluate such binding we have synthesized three series of compounds, each containing two sialic acid residues separated by spacers of different length, and have tested them as ligands for influenza hemagglutinin. No increased binding to the bromelain-released hemagglutinin ectodomain was seen for any of the bivalent compounds as determined by 1H NMR titration. In contrast, however, a spacer length between sialic acid residues of approximately 55 A sharply increases the binding of these bidentate species to whole virus as determined by hemagglutination inhibition assays. The most effective compound containing glycines in the linking chain displayed 100-fold increased affinity for whole virus over the paradigm monovalent ligand, Neu5Ac alpha 2Me.  相似文献   

7.
8.
H Liu  Z Duan  Q Luo  Y Shi 《Proteins》1999,36(4):462-470
A structure-based ligand design method is proposed and tested. The method is based on stochastic dynamics simulation of multiple copies of molecular building blocks in the presence of a receptor molecule. The molecular building blocks are assembled into candidate compounds "on the fly" at given intervals during the simulation. In the algorithm, a special effort is made to explore different possible combinations of building blocks and to select an optimum combination. By repeating the cycle of deconstruction and reconstruction in a single simulation, a set of candidate compounds that can be built from the building blocks evolves and is dynamically optimized. The method was tested by breaking two known flexible human immunodeficiency virus type 1 protease inhibitors into building blocks and reassembling them in the active site of the enzyme. For the inhibitor L700417, a set of conformations was generated by the calculation. Among these, the original compound was recovered with the lowest energy at the experimentally observed binding site and in the correct conformation. For pepstatin, the experimentally observed binding mode of the backbone of the inhibitor was reproduced by a calculation in which the building blocks corresponding to the side-chain groups were omitted. Proteins 1999;36:462-470.  相似文献   

9.
In the emerging field of RNA-based nanotechnology there is a need for automation of the structure design process. Our goal is to develop computer methods for aiding in this process. Towards that end, we created the RNA junction database, which is a repository of RNA junctions, i.e. internal, multi-branch and kissing loops with emanating stem stubs, extracted from the larger RNA structures stored in the PDB database. These junctions can be used as building blocks for nanostructures. Two programs developed in our laboratory, NanoTiler and RNA2D3D, can combine such building blocks with idealized fragments of A-form helices to produce desired 3D nanostructures. Initially, the building blocks are treated as rigid objects and the resulting geometry is tested against the design objectives. Experimental data, however, shows that RNA accommodates its shape to the constraints of larger structural contexts. Therefore we are adding analysis of the flexibility of our building blocks to the full design process. Here we present an example of RNA-based nanostructure design, putting emphasis on the need to characterize the structural flexibility of the building blocks to induce ring closure in the automated exploration. We focus on the use of kissing loops (KL) in nanostructure design, since they have been shown to play an important role in RNA self-assembly. By using an experimentally proven system, the RNA tectosquare, we show that considering the flexibility of the KLs as well as distortions of helical regions may be necessary to achieve a realistic design.  相似文献   

10.
以自制的壳聚糖作配基载体,植物血球凝集素(PHA)作配基,通过戊二醛交联研制成一种用于淀粉糖化酶提纯的新型亲和吸附剂。对淀粉糖化酶的亲和层析研究表明:提纯倍数为1.8,酶活性收率达80%,纯度经聚丙烯酰胺凝胶等电聚焦电泳(IEF-PAGE)鉴定为一条带,没有非特异性吸附作用。具有简单、安全、快速和高收率等优点。  相似文献   

11.
Basic molecular building blocks such as benzene rings, amidines, guanidines, and amino groups have been combined in a systematic way to generate ligand candidates for HIV-1 TAR RNA. Ranking of the resulting compounds was achieved in a fluorimetric Tat-TAR competition assay. Although simple molecules such as phenylguanidine are inactive, few iteration steps led to a set of ligands with IC50 values ranging from 40 to 150 μM. 1,7-Diaminoisoquinoline 17 and 2,4,6-triaminoquinazoline 22 have been further characterized by NMR titrations with TAR RNA. Compound 22 is bound to TAR at two high affinity sites and shows slow exchange between the free ligand and the RNA complex. These results encourage investigations of dimeric ligands built from two copies of compound 22 or related heterocycles.  相似文献   

12.
Four chimera peptides composed of ORL1 receptor ligand Ac-RYYRIK-NH2 and a mu-opioid receptor agonist dermorphin YAFGYPS-NH2 or YRFB-NH2, with a spacer linking the two pharmacophores, were synthesized and tested for their receptor binding properties. Chimera peptides with long spacers (a Lys and five or eight Gly residues) showed synergistically improved affinity for both the mu-opioid receptor and ORL1 receptor, while the chimera peptides with short spacers (Lys residue only) showed decreased or similar affinity compared to the monomeric receptor ligands. Chimera peptides containing long spacers may prove to be useful tools for studying ORL1 receptor/mu-opioid receptor heterodimers.  相似文献   

13.
We have established a new protein-engineering strategy termed “directed domain-interface evolution” that generates a binding site by linking two protein domains and then optimizing the interface between them. Using this strategy, we have generated synthetic two-domain “affinity clamps” using PDZ and fibronectin type III (FN3) domains as the building blocks. While these affinity clamps all had significantly higher affinity toward a target peptide than the underlying PDZ domain, two distinct types of affinity clamps were found in terms of target specificity. One type conserved the specificity of the parent PDZ domain, and the other increased the specificity dramatically. Here, we characterized their specificity profiles using peptide phage-display libraries and scanning mutagenesis, which suggested a significantly enlarged recognition site of the high-specificity affinity clamps. The crystal structure of a high-specificity affinity clamp showed extensive contacts with a portion of the peptide ligand that is not recognized by the parent PDZ domain, thus rationalizing the improvement of the specificity of the affinity clamp. A comparison with another affinity clamp structure showed that, although both had extensive contacts between PDZ and FN3 domains, they exhibited a large offset in the relative position of the two domains. Our results indicate that linked domains could rapidly fuse and evolve as a single functional module, and that the inherent plasticity of domain interfaces allows for the generation of diverse active-site topography. These attributes of directed domain-interface evolution provide facile means to generate synthetic proteins with a broad range of functions.  相似文献   

14.
R Haring  Y Kloog 《Life sciences》1984,34(11):1047-1055
Binding of [3H]-phencyclidine ( [3H]-PCP) to acetylcholine-receptor enriched membrane from Torpedo ocellata electric organ was studied over a ligand concentration range of 1 to 200 microM. The results indicate that [3H]-PCP is bound to two classes of sites: high affinity (Kd = 6-9 microM) and low affinity (Kd = 85 microM) binding sites. In the absence of cholinergic drugs the ratio of high affinity [3H]-PCP binding sites to 125I-alpha-bungarotoxin (alpha-Bgt) binding sites is 0.37, and that of low affinity [3H]-PCP binding sites to 125I-alpha-Bgt is 1.06. Low affinity [3H]-PCP binding can be completely inhibited by alpha-bungarotoxin (alpha-Bgt), carbamylcholine and d-tubocurarine. This inhibition, together with the one to one stoichiometry with 125I-alpha-Bgt, suggests that the sites to which [3H]-PCP binds with low affinity are the acetylcholine (AcCho) binding sites. In the presence of 1 microM alpha-Bgt which blocks binding of [3H]-PCP to the AcCho binding sites, the ratio of high affinity [3H]-PCP sites to 125I-alpha-Bgt sites is 0.5, indicating the existence of one high affinity PCP site per receptor molecule, The toxin, however, decreases the apparent affinity of [3H]-PCP towards the AcCho receptor as well as the potency of tetracaine or dibucaine in inhibiting [3H]-PCP binding to that receptor. In the latter case the effect involves changes from a biphasic to a simple inhibition curve. The results suggest that non-competitive blockers to the AcCho receptors may affect their own sites as well, and that they do this also by binding to the AcCho binding sites. This is also inferred from the accelerated dissociation of [3H]-PCP from its high affinity binding sites by unlabeled PCP in the concentration range of 10(-3) to 10(-4) M, at which the drug occupies AcCho binding sites as well.  相似文献   

15.
Anti-albumin was coupled to Sepharose 4B with interposition of spacers of different lengths. The different type of immunoadsorbents obtained were used in two ways: (i) migration of human albumin through the adsorbent in an electric field; and (ii) adsorption in a first chromatographic step and then elution in a second electrophoretic step. Without a spacer or with a short one, the association between Sepharose-anti-human albumin and albumin is partially reversible under the conditions of electrophoresis. With long spacers no dissociation of the antigen-antibody complex is obtained. The effects of the different spacers and of sterid hindrance in affinity electrophoresis and in affinity chromatography are discussed.  相似文献   

16.
The actions of glucocorticoids are mediated by the glucocorticoid receptor (GR), which is activated upon ligand binding, and can alter the expression of target genes either by transrepression or transactivation. We have applied FRAP (fluorescence recovery after photobleaching) to quantitatively assess the mobility of the yellow fluorescent protein (YFP)-tagged human GR alpha-isoform (hGRalpha) in the nucleus of transiently transfected COS-1 cells and to elucidate determinants of its mobility. Addition of the high-affinity agonist dexamethasone markedly decreases the mobility of the receptor in a concentration-dependent manner, whereas low-affinity ligands like corticosterone decrease the mobility to a much lesser extent. Analysis of other hGRalpha ligands differing in affinity suggests that it is the affinity of the ligand that is a major determinant of the decrease in mobility. Similar results were observed for two hGRalpha antagonists, the low-affinity antagonist ZK98299 and the high-affinity antagonist RU486. The effect of ligand affinity on mobility was confirmed with the hGRalpha mutant Q642V, which has an altered affinity for triamcinolone acetonide, dexamethasone, and corticosterone. Analysis of hGRalpha deletion mutants indicates that both the DNA-binding domain and the ligand-binding domain of the receptor are required for a maximal ligand-induced decrease in receptor mobility. Interestingly, the mobility of transfected hGRalpha differs among cell types. Finally, the proteasome inhibitor MG132 immobilizes a subpopulation of unliganded receptors, via a mechanism requiring the DNA-binding domain and the N-terminal part of the ligand-binding domain. Ligand binding makes the GR resistant to the immobilizing effect of MG132, and this effect depends on the affinity of the ligand. Our data suggest that ligand binding induces a conformational change of the receptor which is dependent on the affinity of the ligand. This altered conformation decreases the mobility of the receptor, probably by targeting the receptor to relatively immobile nuclear domains with which it transiently associates. In addition, this conformational change blocks immobilization of the receptor by MG132.  相似文献   

17.
The features of monovalent and bivalent binding of receptors (or antibodies) with a polyvalent ligand (or with an antigen) are considered. It is shown that the rigid connection of the binding sites of the receptor brings to high increase of binding affinity for the corresponding ligand, but only in case if its epitopes are fully complementary to both sites of the receptor binding. If not, then there is no advantage of the binding of bivalent receptor before univalent binding. If the binding sites of the receptor are connected by a flexible linker, then regardless of location of epitopes of the corresponding ligand there is the successful fastening of receptor and ligand. Exactly the connection by a flexible linker is used by Nature in most cases at constructing of polyvalent receptors.  相似文献   

18.
A popular approach to the computational modeling of ligand/receptor interactions is to use an empirical free energy like model with adjustable parameters. Parameters are learned from one set of complexes, then used to predict another set. To improve these empirical methods requires an independent way to study their inherent errors. We introduce a toy model of ligand/receptor binding as a workbench for testing such errors. We study the errors incurred from the two state binding assumption--the assumption that a ligand is either bound in one orientation, or unbound. We find that the two state assumption can cause large errors in free energy predictions, but it does not affect rank order predictions significantly. We show that fitting parameters using data from high affinity ligands can reduce two state errors; so can using more physical models that do not use the two state assumption. We also find that when using two state models to predict free energies, errors are more severe on high affinity ligands than low affinity ligands. And we show that two state errors can be diagnosed by systematically adding new binding modes when predicting free energies: if predictions worsen as the modes are added, then the two state assumption in the fitting step may be at fault.  相似文献   

19.
A stochastic, spatially explicit simulation model for clonal growth is presented which relates growth patterns to the pattern of resource availability in the environment in both space and time. The effects of two simple growth rules were examined which affect the length of spacers depending on the local environmental conditions. According to one of the rules, shorter spacers were developed in resource-rich microsites than in resource-poor microsites (growth rule G-). If the other rule acted, the spacers were lengthened in resource-rich sites (growth rule G+). The neutral reference, G0, represented a plant of rigid growth form. A wide range of habitat types was used in the tests and characterized by an information theory model. It was found that the effectiveness of resource capture in most habitat types can be explained by spatio-temporal predictability of the environment, measured on the scale of spacer length. Shortening the spacers in resource-rich microsites, as hypothesized by “foraging theory”, reduced the proportion of misplaced ramets. Lengthening the spacers never reduced this proportion. However, the degree of intraclonal competition was significantly reduced by both shortening and lengthening the spacers in response to site quality. There were certain types of environment where plastic modification of spacers had no effect on the efficiency of resource capture when compared to the reference random (non-environment-dependent) search pattern. Such habitats can be identified exactly on the basis of the information content of habitat pattern, measured here by spatio-temporal predictability. This study emphasizes that a wide range of environmental types should be taken into consideration when examining the adaptive nature of a certain growth pattern. Generalizing from experimental results gained in temporally constant environments may strongly bias our view on morphological adaptation.  相似文献   

20.
According to a 'bivalent ligand approach' to increase the affinity of the potent argininamide-type NPY Y(1) receptor antagonist BIBP-3226, dimeric ligands were synthesized in which two molecules of the parent compound were linked by different spacers via N(G)-acylation at the guanidino groups. A synthetic route for the preparation of the title compounds was developed, which includes a copper(I)-catalyzed azide alkyne cycloaddition as the key step. Three bivalent analogues of BIBP-3226 were prepared showing nanomolar antagonistic activity and binding affinity to the NPY Y(1) receptor (calcium assay on HEL cells, radioligand binding assay on SK-N-MC cells), but these ligands were not superior to the parent compound and there was no correlation with the length or the chemical nature of the spacer. A trivalent BIBP-3226 derivate showed, surprisingly, no affinity to the NPY Y(1) receptor at all.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号