首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellular slime mould Dictyostelium discoideum propagates as single haploid cells and under certain environmental conditions enters into a sexual cycle called macrocyst formation. There are homothallic and heterothallic strains reported, the former being able to form macrocysts in clonal cell populations while the latter to do so only in the presence of opposite mating-type strains. Molecular basis for differential mating systems is an intersting subject totally unknown yet. In the present study, sexual cell interactions in AC4, a homothallic strain of D. discoideum, was studied in comparison with the heterothallic mating system. The conditoned medium of AC4 cells was found to promote the sexual cell fusion among themselves. In addition, it also enhanced the cell fusion between heterothallic strains. Furthermore, the conditioned medium obtained from the mated culture of heterothallic strains reported to induce the sexual cell fusion in the heterothallic strains (Saga and Yanagisawa, 1983) was found also to promote the cell fusion in AC4. These results suggest that common regulatory mechanisms operate for sexual cell fusion among different mating systems in D. discoideum.  相似文献   

2.
Cell recognition plays a central part in the sexual process. Although cell-surface molecules involved in gamete recognition have been identified in several organisms, our knowledge of the molecular basis of sexual cell recognition is still limited. We have been studying molecular mechanisms of sexual cell fusion using the lower eukaryote Dictyostelium discoideum . There are homothallic, heterothallic, bisexual and asexual strains in D. discoideum , and how they distinguish between each other to find out proper partners is an interesting and important question. However, analytical studies of sexuality in D. discoideum have been carried out mostly on heterothallic strains, and the polymorphism of the mating system has not yet been thoroughly investigated. In the present study, we extended our analysis to the bisexual mating phenomenon paying special attention to the mechanism of self-incompatibility. We showed that a bisexual strain WS2162 was self-incompatible at the step of sexual cell fusion. Results of antibody inhibition of cell fusion and detection of gp138, a cell-fusion-related protein found in heterothallic strains, suggest that a molecular basis for bisexual and heterothallic mating are common. We propose two models to clarify the mechanisms of self- and non-self discrimination in bisexual mating patterns of D. discoideum .  相似文献   

3.
A. Amagai  Y. Maeda 《Protoplasma》1992,167(3-4):159-168
Summary The cellular slime moldDictyostelium mucoroides-7 (Dm 7) and its mutant (MF 1) exhibit sexual or asexual development depending upon culture conditions. During the sexual cycle macrocyst formation occurs, whereas sorocarps containing spores and stalk cells are asexually formed. As previously reported, the macrocyst formation is marked by the emergence of true zygotes, and is induced by a potent plant hormone, ethylene. The concentration of ethylene required for macrocyst induction was determined to establish the similarity of ethylene action between this organism and higher plants. Macrocysts are induced by low (1 l/l) exogenous concentrations of ethylene. Higher concentrations (10–1,000 ul/l) also gave essentially the same inductive activity. Ethionine, an analogue of methionine, was found to inhibit zygote formation during sexual development through its interference with ethylene production by Dm 7 and MF 1 cells. In fact, the inhibitory effect of ethionine was mostly nullified by the application of ethylene, S-adenosyl-L-methionine, or 1-aminocyclopropane-1-carboxylic acid. Taken together these results suggest that both the effective concentration of ethylene and the pathway of ethylene biosynthesis inD. mucoroides may be similar to those in higher plants. Ethylene was also found to be produced in various species and strains of cellular slime molds, even during the asexual process. The possible functions of ethylene in the asexual development are discussed in relation to cell aggregation and differentiation.Abbreviations SAM S-adenosyl-L-methionine - ACC 1-aminocyclopropane-1-carboxylic acid - AOA (aminooxy) acetic acid - BSS Bonner's salt solution - DAPI 4,6-diamidino-2-phenylindole  相似文献   

4.
Sexual cell fusion is an initial step of macrocyst formation in Dictyostelium discoideum and requires environmental conditions such as darkness, plenty of water and the presence of calcium ions. We have been analyzing the mechanism of sexual cell fusion between HM1 and NC4, heterothallic strains in D. discoideum. Cells of these strains have been shown to be fusion competent when cultured in a liquid medium in darkness, but not so when cultured on agar plates or in a liquid medium in the light. Two cell-surface proteins, gp70 and gp138, have been identified as target molecules for fusion-blocking antibodies and therefore as relevant to sexual cell fusion. In the present study, gp70 was shown to be present in HM1 cells cultured in the light, and fusion incompetent. Intact HM1 cells cultured in the light were unable to absorb the fusion-blocking activity of antibodies against membrane components of fusion-competent HM1 cells, whose activity had been shown to be absorbed by gp70, but they did so after separation of proteins in the SDS-PAGE. In addition, fusion-competent HM1 cells were found to lose their fusion competence by subsequent cultivation in the light. This loss of competence was cycloheximide sensitive, indicating that de novo synthesis of proteins was necessary for this inhibition. From these results, we presume that light induces a protein that hinders the interaction of gp70 in HM1 cells with its receptor on the NC4 cell surface and thereby inhibits the sexual process between these strains.  相似文献   

5.
The sexual development, macrocyst formation, of Dictyostelium discoideum is initiated by sexual fusion of cells. The sexual fusion is only taken place under the culture conditions of excess water and darkness. Under these conditions, cells acquire the fusion competence, but lose it when cell density is high. The loss of the fusion competence is caused by accumulation of ammonia excreted by cells in a culture. Ammonia suppresses the fusion competence of cells at a certain concentration, and consequently inhibits formation of macrocysts and induces fruiting-body formation. Thus, excess water induces the sexual development by diluting ammonia and lack of water induces the asexual development.  相似文献   

6.
The development of Dictyostelium discoideum may proceed by two pathways, macrocyst or fruiting-body formation, the former being the sexual and the latter the asexual cycle. The pathway of development depends on the presence or absence of zygote giant cells which are produced through fusion of opposite mating-type cells in a population, in heterothallic strains. During the early stages of macrocyst development the patterns of developmentally regulated proteins were noted to differ considerably from those during fruiting-body development. Furthermore, the haploid cells around zygote giant cells synthesized a large number of specific proteins for macrocyst development through the influence of giant cells.  相似文献   

7.
Sexual cell fusion in the cellular slime mold Dictyostelium discoideum occurs between cells of opposite (heterothallic system) or same (homothallic system) mating types. It also requires certain environmental conditions such as darkness and abundance of water, and thus offers an interesting model system for analyzing mechanisms of cell recognition and of cellular response to environmental factors. We have been studying the mechanism of sexual cell fusion, using two heterothallic strains, NC4 and HM1 of D. discoideum. Two cell-surface glycoproteins, gp70 and gp138, have been identified as relevant molecules in the cell fusion of these strains. The former is specific to mat a cells (HM1) and the latter, common to both mat a and mat A (NC4). Involvement of cell-surface carbohydrates has also been suggested. However, the fuctions of the above fusion-related molecules are still elusive. In the present study, we isolated fusion-deficient mutants from a mutagenized mat A strain of D. discoideum to set up combined genetic and biochemical analyses. Among the three nonconditional mutants obtained, two were normal in the fruiting-body formation, asexual development, but one was aggregateless ( agg ). Further analysis of these mutants would provide detailed information on the mechanism of sexual cell fusion.  相似文献   

8.
Dictyostelium discoideum was used as a model system for elucidating the molecular mechanism of sexual cell fusion. In heterothallic strains NC4 and HM1 of D. discoideum, complements in mating type, amoeboid cells acquire fusion competence only under certain environmental conditions, such as the presence of excess water and a certain period of darkness, to fuse sexually. The surface of cells which acquired fusion competence was found to possess specific antigens. Monovalent antibodies prepared from rabbit antiserum against fusion-competent NC4 cells inhibit the sexual cell fusion of these cells completely. Two specific antigenic proteins, 39 and 138 k Da in relative molecular mass and specific for fusion-competent cells, were detected. Only one, the 138-k Da protein, was capable of neutralizing the fusion-inhibitory activity of the monovalent antibody. These results show that the 139-k Da protein is the one involved in the sexual cell fusion of NC4 and HM1 strains in D. discoideum.  相似文献   

9.
To analyze the mechanism of the sexual process (macrocyst formation) in the cellular slime mold Dictyostelium mucoroides-7 (Dm7), the effects of 3',5'-cyclic adenosine monophosphate (cAMP), conditioned medium (CM) factors, and various ions including Ca2+ on zygote formation were examined. The application of cAMP was found to inhibit the sexual cell fusion. In addition, the activity of fusion inhibitor(s) contained in CM was heat stable and lost by phosphodiesterase (PDE)-treatment, thus indicating that cAMP is the inhibitor, being in contrast to ethylene as a fusion activator. Pulse experiments using two cAMP analogues, 2'-deoxy-cAMP and 8-bromo-cAMP suggested that the signal transduction system through the cell surface cAMP receptor is of particular importance for regulation of the sexual fusion process. Among several ions having effects on zygote formation, Ca2+ seemed to be necessary both for the acquisition of fusion competence and for cell fusion itself. In the presence of Ca2+, K+ and Na+ had the opposite effects on zygote formation; K+ was stimulative, while Na+ inhibitory. The significance of these findings is discussed in relation to the regulatory mechanism of zygote formation.  相似文献   

10.
A novel and critical function of ethylene, a potent plant hormone, has been well documented in Dictyostelium, because it leads cells to the sexual development (macrocyst formation) by inducing zygote formation. Zygote formation (sexual cell fusion) and the subsequent nuclear fusion are the characteristic events occurring during macrocyst formation. A novel gene, zyg1 was found to be predominantly expressed during the sexual development, and its enforced expression actually induces zygote formation. As expected, the zygote inducer, ethylene enhances the expression of zyg1. Thus the function of ethylene has been verified at all of individual (macrocyst formation), cellular (zygote formation), and molecular levels (zyg1 expression). Based on our recent studies concerning the behavior and function of the zyg1 product (ZYG1 protein), the signal transduction pathways involved in zygote formation are proposed in this review.  相似文献   

11.
The social amoebozoans have a life tricycle consisting of asexual multicellular development leading to fruiting bodies, sexual multicellular development resulting in macrocysts, and unicellular development generating microcysts. This review covers the events of sexual development in the best‐studied heterothallic (Dictyostelium discoideum) and homothallic (D. mucoroides) mating systems. Sexual development begins with pheromonal interactions that produce fusion‐competent cells (gametes) which undergo cell and pronuclear fusion. Calcium‐ and calmodulin‐mediated signalling mediates these early events. As they initiate chemotactic signalling, each zygote increases in size becoming a zygote giant cell. Using cyclic AMP (cAMP), the zygote chemotactically lures in amoebae and engulfs them in an act of cannibalistic phagocytosis. Chemotaxis proceeds more quickly than endocytosis because the breakdown products of cAMP (5‐AMP, adenosine) bind to a presumptive adenosine receptor to inhibit sexual phagocytosis. This slowing of phagocytosis allows amoebae to accumulate around the zygote to form a precyst aggregate. Zygote giant cells also produce several other signalling molecules that feed back to regulate early events. The amoebae surrounding the zygote seal their fate as zygotic foodstuff by secreting a primary cellulose wall, the extracellular sheath, around the zygote and aggregated amoebae, which prevents their escape. Phagocytosis within this precyst continues until all peripheral amoebae are internalized as endocytes and the final macrocyst wall is formed. Endocyte digestion results in a mature macrocyst with a uniform cytoplasm containing a diploid nucleus. After detailing the morphological events of heterothallic and homothallic mating, we review the various intercellular signalling events and other mechanisms involved in each stage. This complete and comprehensive review sets the stage for future research on the unique events that characterize sex in the social amoebozoans.  相似文献   

12.
The cellular slime mold Dictyostelium mucoroides-7 (Dm7) and a mutant (MF1) derived from it exhibit clear dimorphism in development depending upon environmental conditions: macrocyst formation occurs during the sexual cycle, and sorocarp formation during the asexual process. As previously reported, exposure of cells to ethylene gas is favorable to macrocyst formation, while exogenously added 3',5'-cyclic adenosine monophosphate (cAMP) induces sorocarp formation. The significance of ethylene and cAMP for the mechanism involved in selection of the developmental pathways was further confirmed by determining the amounts of these substances in macrocyst- or sorocarp-forming cells. Aminooxy-acetic acid (AOA), an inhibitor of ethylene synthesis, was found to switch development of Dm7 and MF1 cells from macrocyst to sorocarp formation by decreasing ethylene production. The cAMP content was shown to be always higher in cells destined for sorocarp formation than in those destined for macrocyst formation, particularly at the aggregation stage. All of the results obtained strongly suggested that the amounts of cAMP and ethylene present, and possibly the ratio between them, may be of great importance for determining which mode of development will be realized.  相似文献   

13.
D. discoideum has two alternative developmental pathways. If cells of two complement mating-type strains, NC4 and HM1, fuse sexually, a giant cell is produced which subsequently develops into a macrocyst, the sexual structure of this organism. However, if fusion fails to occur and cells are starved, a fruiting-body is produced instead of a macrocyst. In this paper, a two-dimensional polypeptide gel electrophoresis study showed that giant cells produce specific polypeptides which may possibly be involved in macrocyst development. Out of total 497 polypeptides which appeared in a giant cell during an incubation period of 13 hr, 92 were the specific for giant cells. Four of these polypeptides were appeared within only 1 hr after the cell fusion. The other 405 were non-specific polypeptides which appeared in both giant cells and NC4 or/and HM1 cells. However, the patterns and the rates of production of each polypeptide during the incubation period were different between these cells.  相似文献   

14.
A microcinematographic analysis of the behaviour and movements of cells and cell masses in mated cultures (NC4 X VI2) of Dictyostelium discoideum indicates that a chemotactic process directs cell aggregation during macrocyst development. Zygote giant cells form before aggregation begins and act as the aggregation centres. Young multicellular macrocyst stages are sources of cyclic AMP, and amoebae from macrocyst cultures orient chemotactically to cyclic AMP. The data, coupled with other characteristics such as pulsatile streaming, suggest that the aggregation process leading to macrycyst development is the same as that occurring during fruit construction. Other aspects of sexual development are also discussed. Based upon these data, we propose a model for the sequence of events leading to macrocyst development in D. discoideum.  相似文献   

15.
The social amoebae possess a sexual cycle that involves transient mutlicellularity: first a zygote attracts surrounding haploid amoebae to form a walled aggregate around it, and then cannibalizes these peripheral cells, eventually forming a dormant single-celled macrocyst. Self-fertile homothallic isolates occur as well as breeding groups of self-infertile heterothallic cells, which commonly have more than two mating types. The mating-type locus of the widely studied model organism Dictyostelium discoideum, which has three mating types, has recently been identified. Two of the three mating types are determined by single putative regulatory genes bearing no mutual similarity, while the third is specified by homologues of both of these genes. This is the first sex-determining locus of an Amoebozoan to be described and, since none of the key regulators show homology to known proteins, may be a first glimpse of a novel mode of regulation used in these organisms. The sexual cycle of dictyostelids has been relatively neglected, but continues to yield much interesting biology as well as having the potential to add to the genetic tools available for the study of these organisms.  相似文献   

16.
In order to analyze the molecular mechanism of sexual cell fusion between cells of HM1 and NC4 (opposite mating type strains in Dictyostelium discoideum ), monoclonal antibodies were raised against partially-purified gp 70, a fusion-related protein of HM1 cells. The antibodies were screened for activity to inhibit cell fusion and 9 hybridoma clones were obtained. One of the fusion-blocking monoclonal antibodies, mAb1G7, was used for further analysis. It recognized nearly ten bands in an immunoblot of fusion competent HM1 cells, but no bands when HM1 membrane proteins had been deglycosylated. These results suggest the importance of carbohydrates in the cell fusion process. To confirm this possibility, effects of sugars or lectins on cell fusion were examined. Although inhibition by the sugars was incomplete, Con A, WGA, LCA, strongly inhibited cell fusion. Furthermore, tunicamycin inhibited the acquisition of fusion competence in HM1 cells, indicating the importance of N-linked glycosylation of proteins in cell fusion. All above results suggest that N-linked carbohydrates on HM1 cell surface are involved in the sexual cell fusion of D. discoideum .  相似文献   

17.
N. Iijima  A. Amagai  Y. Maeda 《Protoplasma》1991,160(2-3):72-76
Summary Dictyostelium mucoroides-7 (Dm 7) and a mutant MF 1 derived from it exhibit two developmental pathways: sorocarp formation occurs during the asexual process, and macrocyst formation during the sexual cycle. The two developmental pathways are mainly regulated by two chemical substances: 3,5-cyclic adenosine monophosphate (cAMP) and ethylene. Recently, we have demonstrated that cytoplasmic pH (pHi) has a critical role for the choice of developmental pathways, higher pHi being favourable to macrocyst formation. Thereupon, attention was riveted to the relation of pHi to biosynthesis of cAMP and ethylene. Effect of pHi on the production and release of ethylene, a potent inducer of macrocyst formation, was examined, using the two facing culture method. The result showed that lowered pHi inhibits ethylene production, thus resulting in a failure of cells to form macrocysts. The accumulation of cAMP, an inhibitor of macrocyst formation, was found to vary depending on extracellular pH (pHo), but diethylstilbestrol (DES) that is a proton pump inhibitor and also an inhibitor of macrocyst formation had no significant effect on the accumulation. Taken together these results indicate that higher pHi may induce macrocyst formation through enhancement of ethylene production rather than inhibition of cAMP synthesis.Abbreviations cAMP 3,5-cyclic adenosine monophosphate - pHi cytoplasmic pH - pHo extracellular pH - ACC 1-1-aminocyclopropane-1-carboxylic acid  相似文献   

18.
Members of the Closterium peracerosum–strigosum–littorale (C. psl.) complex are unicellular charophycean algae in which there are two modes of zygospore formation, heterothallic and homothallic. A homothallic strain of Closterium (designation, kodama20) was isolated from a Japanese rice paddy field. Based on alignment of the 1506 group‐I introns, which interrupt nuclear SSU rDNAs, homothallic kodama20 is most closely related to the heterothallic mating group II‐B, which is partially sexually isolated from group II‐A. Time‐lapse photography of the conjugation process in kodama20 revealed that most of the observed zygospores originated from one vegetative cell. The sexual conjugation process consisted of five stages: (1) cell division resulting in the formation of two sister gametangial cells from one vegetative cell, (2) formation of a sexual pair between the two sister gametangial cells (or between gametangial cells of another adjoined individual), (3) formation of conjugation papillae, (4) release of gametic protoplasts from both members of a pair, and (5) formation of the zygospore by protoplast fusion. For conjugation to progress, the cell density and light condition in the culture was critical. We suggested the presence of a conjugation promotion factor.  相似文献   

19.
Macrocyst formation in the cellular slime moulds is a sexual process induced under dark and humid conditions. Normal development life cycle in these organisms involves proliferation by cell division and, upon starvation, formation of multicellular aggregates and fruiting bodies, consisting of spores and stalk cells. Macrocyst formation, cell division by binary fission and spore formation are thus three alternative modes of reproduction, for which it is of interest to understand how a choice is made. The genetic basis of asexual development and fruiting body formation is well known, by contrast information on the genetic control of sexual reproduction during macrocyst formation is scarce. In Dictyostelium discoideum, the most widely used species, several cell-surface proteins relevant to sexual cell fusion have been identified using cell fusion-blocking antibodies, but isolation of the relevant genes has been unsuccessful. Analysis of sexually deficient mutants, some of which are normal for asexual development, has shown that sexual reproduction is regulated by both specific genes and genes that are also involved in asexual development. Reverse genetic analysis of 24 genes highly enriched in a gamete-specific subtraction library has revealed four genes involved in the regulation of sexual cell interactions. One of them was found to be a novel regulator of the cAMP signalling pathway specific to sexual development. Studies on the molecular genetic control of the sexual cycle will be reviewed and their contribution to our understanding of the organization and function of the D. discoideum genome as a whole discussed.  相似文献   

20.
In Dictyostelium discoideum cyclic AMP (cAMP) metabolism during macrocyst development, i.e., the sexual cycle of this organism, and in giant cells, i.e., fusion products from opposite mating-type cells, was investigated. The pattern of change in cAMP levels during macrocyst development differed considerably from that observed during fruiting-body formation, i.e., the asexual cycle. Giant cells produced and excreted considerable amounts of cAMP. Adenylate cyclase activity catalyzing cAMP production in giant cells was comparable to that of unfused cells. However, the activity of membrane-bound phosphodiesterase in giant cells was extremely low, and no extracellular phosphodiesterase was excreted. A phosphodiesterase inhibitory protein was secreted in excess by giant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号