首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A minimum of 37 genes corresponding to tRNAs for 17 different amino acids have been localized on the restriction endonuclease cleavage site map of theZea mays chloroplast DNA molecule. Of these, 14 genes corresponding to tRNAs for 11 amino acids are located in the larger of the two single-copy regions which separate the two inverted copies of the repeat region. One tRNA gene is in the smaller single-copy region. Each copy of the large repeated sequence contains, in addition to the ribosomal RNA genes, 11 tRNA genes corresponding to tRNAs for 8 amino acids. The genes for tRNA2 Ile and tRNAAla map in the ribosomal spacer sequence separating the 16S and 23S ribosomal RNA genes. The three isoaccepting species for the tRNAsLeu and the three for tRNAsSer, as well as the two isoaccepting species for tRNAAsn, tRNAGly, tRNAsIle, tRNAsMet, tRNAsThr, are shown to be encoded at different loci. Two independent methods have been used for the localization of tRNA genes on the physical map of the maize chloroplast DNA molecule: (a) cloned chloroplast DNA fragments were hybridized with radioactively-labelled total 4S RNAs, the hybridized RNAs were then eluted, and identified by two-dimensional polyacrylamide gel electrophoresis, and (b) individual tRNAs were32P-labelledin vitro and hybridized to DNA fragments generated by digestion of maize chloroplast DNA with various restriction endonucleases.  相似文献   

2.
Three mononuclear CuII complexes, [CuCl(naph‐pa)] ( 1 ), [Cu(bipy)(naph‐pa)]Cl ( 2 ), and [Cu(naph‐pa)(phen)]Cl ( 3 ) ((naph‐pa)=Schiff base derived from the condensation of 2‐hydroxynaphthalene‐1‐carbaldehyde and 2‐picolylamine (=2‐(aminomethyl)pyridine), bipy=2,2′‐bypiridine, and phen=1,10‐phenanthroline) were synthesized and characterized. Complex 1 exhibits square‐planar geometry, and 2 and 3 exhibit square pyramidal geometry, where Schiff base and bipy/phen act as NNO and as NN donor ligands, respectively. CT (Calf thymus)‐DNA‐binding studies revealed that the complexes bind through intercalative mode and show good binding propensity (intrinsic binding constant Kb: 0.98×105, 2.22×105, and 2.67×105 M ?1 for 1 – 3 , resp.). The oxidative and hydrolytic DNA‐cleavage activity of these complexes has been studied by gel electrophoresis: all the complexes displayed chemical nuclease activity in the presence and absence of H2O2. From the kinetic experiments, hydrolytic DNA cleavage rate constants were determined as 2.48, 3.32, and 4.10 h?1 for 1 – 3 , respectively. It amounts to (0.68–1.14)×108‐fold rate enhancement compared to non‐catalyzed DNA cleavage, which is impressive. The complexes display binding and cleavage propensity to DNA in the order of 3 > 2 > 1 .  相似文献   

3.
The synthetic copolypeptide (Lys33, Leu67)100-Orn20, modeled on some general features of the histone sequences, has been found to supercoil the DNA double helix, wrapping it into a micelle, as a result of cohesive interactions between the polypeptide hydrophobic moieties. X-ray low-angle diffraction of complexes between the polypeptide and DNA is characterized by maxima at 50, 32, and 23 A, reminiscent of the chromatin pattern. The existence of a nucleosome-like structure along the DNA is suggested by gel electrophoresis analysis of DNA fragments after micrococcal nuclease digestion, showing the presence of a fragment of about 100 basepairs (bp) long. Topological experiments on the complexes with supercoiled as well as relaxed circular DNA by two-dimensional gel electrophoresis show the presence of left-handed superhelical turns. The results are in agreement with an intrinsic propensity of B-DNA to writhe into left-handed supercoils.  相似文献   

4.
Solubilization of barley (Hordeum vulgare L.) thylakoid membranes with sodium dodecylsulphate plus sodium deoxycholate with or without Triton X-100 and subsequent fractionation in the polyacrylamide gel electrophoresis system described in this paper resulted: (1) in the resolution of the chlorophyll-proteins and chlorophyll-protein complexes commonly known as CP1a, CP1, LHCP1, LHCP2, CPa and LHCP3; (2) in the highly increased stability of CP1 and CP1a, as judged by their chlorophyll content, (3) at the expense of the free pigment concentration (4) which could be reduced to a negligible amount. Some 40% of the total chlorophyll contained in the mature higher plant thylakoid membrane is associated with CP1 and CP1a and as already suggested before [19] no significant amount of free chlorophyll occurs in vivo.  相似文献   

5.
A Gram-stain negative, non-flagellated, non-gliding and rod-shaped bacterium, strain JHH-2T, was isolated from seawater collected in Jeju Island, Korea. The novel isolate was found to grow at 25–30 °C, at pH 6.5–7.0 and in the presence of 1–2 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain JHH-2T is closely related to Siansivirga zeaxanthinifaciens JCM 17682T, with 16S rRNA gene sequence similarity of 96.6 %. The predominant respiratory quinone was identified as menaquinone-6 and the major cellular fatty acids were detected as iso-C15:0, C16:0 and iso-C17:0 3-OH. Polar lipid profiling revealed the presence of phosphatidylethanolamine, an unidentified glycolipid, four unidentified aminolipids and two unidentified lipids. The DNA G+C content of the chromosomal DNA of the type strain is 35.6 mol%. On the basis of several distinct phenotypic characteristics and phylogenetic analysis, a new species of the genus Siansivirga, Siansivirga jejunensis JHH-2T sp. nov. is proposed. The type strain is JHH-2T (= KCCM 92030T = JCM 19228T).  相似文献   

6.
7.
A highly active amide hydrolase (DamH) was purified from Delftia sp. T3-6 using ammonium sulfate precipitation, diethylaminoethyl anion exchange, hydrophobic interaction chromatography, and Sephadex G-200 gel filtration. The molecular mass of the purified enzyme was estimated to be 32 kDa by sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis. The sequence of the N-terminal 15 amino acid residues was determined to be Gly-Thr-Ser-Pro-Gln-Ser-Asp-Phe-Leu-Arg-Ala-Leu-Phe-Gln-Ser. Based on the N-terminal sequence and results of peptide mass fingerprints, the gene (damH) was cloned by PCR amplification and expressed in Escherichia coli BL21(DE3). DamH was a bifunctional hydrolase showing activity to amide and ester bonds. The specific activities of recombinant DamH were 5,036 U/mg for 2′-methyl-6′-ethyl-2- chloroacetanilide (CMEPA) (amide hydrolase function) and 612 U/mg for 4-nitrophenyl acetate (esterase function). The optimum substrate of DamH was CMEPA, with K m and k cat values of 0.197 mM and 2,804.32 s?1, respectively. DamH could also hydrolyze esters such as 4-nitrophenyl acetate, glycerol tributyrate, and caprolactone. The optimal pH and temperature for recombinant DamH were 6.5 and 35 °C, respectively; the enzyme was activated by Mn2+ and inhibited by Cu2+, Zn2+, Ni2+, and Fe2+. DamH was inhibited strongly by phenylmethylsulfonyl and SDS and weakly by ethylenediaminetetraacetic acid and dimethyl sulfoxide.  相似文献   

8.
The interaction of enantiomerically pure dinuclear complexes of the form [Ru2(L-L)4L1]4+ (where L-L = 2,2-bipyridine (bpy) or 1,10-phenanthroline (phen) and L1 = bis(pyridylimine) ligand ((C5H4N)CN(C6H4))2CH2)) with ct-DNA have been investigated by absorbance, circular dichroism, fluorescence displacement assays, thermal analysis, linear dichroism and gel electrophoresis. The complexes all bind more strongly to DNA than ethidium bromide, stabilise DNA and have a significant bending effect on DNA. The data for Δ,Δ-[Ru2(bpy)4L1]4+ are consistent with it binding to DNA outside the grooves wrapping the DNA about it. By way of contrast the other complexes are groove-binders. The phen complexes provide a chemically and enantiomerically stable alternative to the DNA-coiling di-iron triple-helical cylinder previously studied. In contrast to the di-iron helicates, the phen complexes show DNA sequence effects with Δ,Δ-[Ru2(phen)4L1]4+ binding preferentially to GC and Λ,Λ-[Ru2(phen)4L1]4+ to AT.  相似文献   

9.
10.
A series of new silver(I) saccharinate (sac) complexes, [Ag2(sac)2(μ-dppm)H2O]·H2O (1), {[Ag2(μ-sac)2(μ-dppe)]·3H2O·CH2Cl2} n (2), [Ag2(μ-sac)2(μ-dppp)] n (3), and [Ag(sac)(μ-dppb)] n (4) [dppm is 1,1-bis(diphenylphosphino)methane, dppe is 1,2-bis(diphenylphosphino)ethane, dppp is 1,3-bis(diphenylphosphino)propane, and dppb is 1,4-bis(diphenylphosphino)butane], have been synthesized and characterized by C, H, N elemental analysis, IR spectroscopy, 1H NMR, 13C NMR, and 31P NMR spectroscopy, electrospray ionization mass spectrometry, and thermogravimetry–differential thermal analysis. Single-crystal X-ray studies show that the diphosphanes act as bridging ligands to yield a dinuclear complex (1) and one-dimensional coordination polymers (2 and 4), whereas the sac ligand adopts a μ2-N/O bridging mode in 2, and is N-coordinated in 1 and 4. The interaction of the silver(I) complexes with fish sperm DNA was investigated using UV–vis spectroscopy, fluorescence spectroscopy, and agarose gel electrophoresis. The binding studies indicate that the silver(I) complexes can interact with fish sperm DNA through intercalation, and complexes 1 and 3 have the highest binding affinity. The gel electrophoresis assay further confirms the binding of the complexes with the pBR322 plasmid DNA. The minimum inhibitory concentrations of the complexes indicate that complex 1 exhibits very high antibacterial activity against standard bacterial strains of Escherichia coli, Salmonella typhimurium, and Staphylococcus aureus, being much higher than those of AgNO3, silver sulfadiazine, ciprofloxacin, and gentamicin. Moreover, complexes 13 exhibit very high cytotoxic activity against A549 and MCF-7 cancer cell lines, compared with AgNO3 and cisplatin. The bacterial and cell growth inhibitions of the silver(I) complexes are closely related to their DNA binding affinities.  相似文献   

11.
Two novel, neutral and water soluble Pd(II) complexes of formula [Pd(Gly)(Ala)] (1) and [Pd(Gly)(Val)] (2) (Gly, Ala, and Val are anionic forms of glycine, alanine, and valine amino acids, respectively) have been synthesized and characterized by FT-IR, UV–Vis, 1H-NMR, elemental analysis, and molar conductivity measurement. The data revealed that each amino acid binds to Pd(II) through the nitrogen of –NH2 and the oxygen of –COO groups and acts as a bidentate chelate. These complexes have been assayed against leukemia cells (K562) using MTT method. The results indicated that both of the complexes display more cytotoxicity than the well-known anticancer drug, cisplatin. The interaction of the compounds with calf thymus DNA (CT-DNA) and human serum albumin (HSA) were assayed by a series of experimental techniques including electronic absorption, fluorescence, viscometry, gel electrophoresis, and FT-IR. The results indicated that the two complexes have interesting binding propensities toward CT-DNA as well as HSA and the binding affinity of (1) is more than (2). The fluorescence data indicated that both complexes strongly quench the fluorescence of ethidium bromide–DNA system as well as the intrinsic fluorescence of HSA via static quenching procedures. The thermodynamic parameters (ΔH°, ΔS°, and ΔG°) calculated from the fluorescence studies showed that hydrogen bonds and van der Waals interactions play a major role in the binding of the complexes to DNA and HSA. We suggest that both of the Pd(II) complexes exhibit the groove binding mode with CT-DNA and interact with the main binding pocket of HSA.

Communicated by Ramaswamy H. Sarma  相似文献   


12.
Thylakoid membranes obtained from bean chloroplasts treated with bean galactolipase or phospholipase A2 (from Crotalus terr. terr.) showed marked changes in their polypeptide patterns when separated on SDS-PAGE. The obtained results have been discussed with regard to the relationship between chloroplast lipids and polypeptides originating from chlorophyll-protein complexes of bean thylakoids. A coexistence between galactolipids and the peripheral antennae in PS I complex and LHCP3 as well as a conspicuous role of phospholipids in PSI and PSII centre chlorophyll-protein complexes has to be underlined.Abbreviations CP1 chlorophyll a-protein complex of PSI - CPa chlorophyll a-protein complex of PSII - D10 digitonin subchloroplast particles enriched in PSII - D144 digitonin subchloroplast particles enriched in PSI - DCMU 3-(3,4-dichlorophenyl)-1, 1-dimethylurea - LHCP1-3 light harvesting chlorophyll a/b protein complexes - PAGE polyacrylamide gel electrophoresis - PSI photosystem I - PSII photosystem II - SDS sodium dodecyl sulphate - TCA trichloroacetic acid - Tricine N-Tris-(hydroxymethyl)-methylglycine - Tris Tris-(hydroxymethyl)-aminomethan  相似文献   

13.
Four new Co(III) complexes, namely [Co(cq)3](PF6)3, [Co(phen)2(cq)](PF6)3, [Co(bnp)3] (PF6)3, and [Co(phen)2(bnp)](PF6)3 (where cq = chromeno[2,3-b]quinoline, phen = 1,10-phenanthroline and bnp = dibenzo[b,g][1,8]naphthyridine), were synthesized and structurally characterized. Spectroscopic data suggested an octahedral geometry for all the complexes. Binding studies of these complexes with double-stranded (ds)DNA were analyzed by absorption spectra, viscosity, and thermal denaturation studies. The results revealed that the metal complex intercalates into the DNA base stack as intercalator. The oxidative cleavage activities of the complexes were studied with supercoiled pUC19 DNA using gel electrophoresis and the results show that the complexes have potent nuclease activity.  相似文献   

14.
Agarose gel electrophoresis is the most effective way of separating DNA fragments of varying sizes ranging from 100 bp to 25 kb1. Agarose is isolated from the seaweed genera Gelidium and Gracilaria, and consists of repeated agarobiose (L- and D-galactose) subunits2. During gelation, agarose polymers associate non-covalently and form a network of bundles whose pore sizes determine a gel''s molecular sieving properties. The use of agarose gel electrophoresis revolutionized the separation of DNA. Prior to the adoption of agarose gels, DNA was primarily separated using sucrose density gradient centrifugation, which only provided an approximation of size. To separate DNA using agarose gel electrophoresis, the DNA is loaded into pre-cast wells in the gel and a current applied. The phosphate backbone of the DNA (and RNA) molecule is negatively charged, therefore when placed in an electric field, DNA fragments will migrate to the positively charged anode. Because DNA has a uniform mass/charge ratio, DNA molecules are separated by size within an agarose gel in a pattern such that the distance traveled is inversely proportional to the log of its molecular weight3. The leading model for DNA movement through an agarose gel is "biased reptation", whereby the leading edge moves forward and pulls the rest of the molecule along4. The rate of migration of a DNA molecule through a gel is determined by the following: 1) size of DNA molecule; 2) agarose concentration; 3) DNA conformation5; 4) voltage applied, 5) presence of ethidium bromide, 6) type of agarose and 7) electrophoresis buffer. After separation, the DNA molecules can be visualized under uv light after staining with an appropriate dye. By following this protocol, students should be able to: 1. Understand the mechanism by which DNA fragments are separated within a gel matrix 2. Understand how conformation of the DNA molecule will determine its mobility through a gel matrix 3. Identify an agarose solution of appropriate concentration for their needs 4. Prepare an agarose gel for electrophoresis of DNA samples 5. Set up the gel electrophoresis apparatus and power supply 6. Select an appropriate voltage for the separation of DNA fragments 7. Understand the mechanism by which ethidium bromide allows for the visualization of DNA bands 8. Determine the sizes of separated DNA fragments    相似文献   

15.
A Gram-positive, catalase and oxidase positive, rod-shaped bacteria, and spore-forming, designated as J20-3T was isolated from a peat soil, collected near a coal mine at Prokopyevsk, (GPS; N53°52′51″, E86°43′39″) Kemerovo Oblast, Russia. A polyphasic taxonomy study using phenotypic, phylogenetic, and genotypic method was performed to characterize strain J20-3T. Comparative 16S rRNA gene sequence analysis indicated that strain J20-3T represented a novel subline within the genus Cohnella in the family Paenibacillaceae. According to 16S rRNA gene sequence, strain J20-3T showed 93.7–97.2 % similarity levels with other Cohnella species. Strain J20-3T exhibited relatively low level of DNA–DNA hybridization value with type strains KACC 11643T (40 %), KACC 11771T (37.5 %), and KACC 15372T (30.5 %). The strain showed typical chemotaxonomic characteristic of the genus Cohnella, with the presence of predominant respiratory quinone MK-7; major fatty acids are C15:0, C16:0, iso, and C16:0. The DNA G+C content of the strain J20-3T was 56.3 mol%. The polar lipid profile of the strain J20-3T included major amount of diphosphatidylglycerol, phosphatidylglycerol, and phosphoatidylethanolamine. On the basis of its phenotypic and genotypic properties, and its phylogenetic distinctiveness, strain J20-3T should be classified as a novel species in the genus Cohnella, for which the name Cohnella humi sp. nov. is proposed.  相似文献   

16.
While T cells from SJL and from F1 hybrids of SJL that do not express I-E antigens give strong proliferative responses to RCS, T cells from F1 hybrids expressing surface I-E do not. The nature of the stimulating antigen on the RCS cell surface was examined using monoclonal antibodies. Complete inhibition of the T-cell proliferative response was obtained with antibodies to I-A antigens, whereas antibodies to I-E antigens did not inhibit at all. This inhibition was mediated via an effect of the antibodies on the stimulating cells. Biochemical characterization of immunoprecipitated 125I- and 's S-labeled RCS antigens was performed using two-dimensional gel electrophoresis. Using this technique, I-A antigens were readily detected. However, neither Ia.7-specific antibodies nor antibodies specific for Eα : E β complexes precipitated any E alpha or E beta chains. Comparison of I-A antigens from RCS and normal SJL spleen cells revealed minor mobility differences in the gels, possibly due to differences in glycosylation, the significance of which needs to be further evaluated. Examination of RNA extracted from RCS, using E alpha and A alpha cDNA probes showed that RCS cells do not transcribe the E alpha gene as has been shown previously for normal H-2 s cells. Furthermore, DNA from RCS cells showed a defect in the E alpha gene similar to that known to exist in normal H-2 s cells. Our findings exclude the presence of E alpha on RCS cells and suggest a major role for I-A, either alone or in conjunction with another as yet unidentified cell surface antigen, in the stimulation of T cells.  相似文献   

17.
Five metal complexes of the third-generation quinolone antimicrobial agent sparfloxacin with Fe3+, VO2+, Mn2+, Ni2+ and have been prepared and characterized with physicochemical and spectroscopic techniques. In these complexes, sparfloxacin acts as a bidentate deprotonated ligand bound to the metal through the ketone oxygen and a carboxylate oxygen. The complexes are six-coordinate with distorted octahedral geometry. For VO(sparfloxacinato)2(H2O) the axial position, trans to the vanadyl oxygen, is occupied by a ketone oxygen atom. Molecular mechanics calculations have been performed in order to propose a model for the structure of each complex. The antimicrobial activity of the complexes has been tested against three microorganisms showing that they exhibit lower activity than free sparfloxacin. UV spectroscopic titration with calf-thymus DNA (CT DNA) has shown that the complexes can bind to CT DNA and the binding constants to CT DNA have been calculated. The cyclic voltammograms of the complexes in the presence of CT DNA have shown that they bind to CT DNA probably by the intercalative binding mode. Fluorescence competitive studies with ethidium bromide (EB) have revealed the ability of the complexes to displace the DNA-bound EB. The complexes exhibit good binding propensity to human and bovine serum albumin proteins having relatively high binding constant values.  相似文献   

18.
A Gram-stain positive, facultative anaerobic endospore-forming bacterium, designated strain YIM h-19T, was isolated from a tobacco sample. Cells were observed to be motile rods by means of peritrichous flagella and colonies were observed to be convex, yellow, circular and showed catalase-positive and oxidase-negative reactions. Strain YIM h-19T was able to grow at 4–45 °C, pH 6.0–8.0 and 0–3 % NaCl (w/v). The predominant respiratory quinone was identified as MK-7. Major fatty acids were identified as anteiso-C15:0, anteiso-C17:0 and C16:0. The polar lipids were found to be phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and two unidentified polar lipids. The genomic DNA G+C content was determined to be 54 mol%. 16S rRNA gene sequence analysis showed the strain YIM h-19T was most closely related to Paenibacillus hordei RH-N24T and Paenibacillus hunanensis FeL05T with similarities of 98.30 and 94.64 % respectively. However, DNA–DNA hybridization data indicated that the isolate represented a novel genomic species with the genus Paenibacillus. All data from genotypic and phenotypic analyses support the conclusion that strain YIM h-19T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus nicotianae sp. nov. is proposed. The type strain is YIM h-19T (=CGMCC1.12819T = NRRL B-59112T).  相似文献   

19.
An assay was developed to measure the proteolysis of cyanophycin granule polypeptide in crude extracts of a unicellular cyanobacterium. The substrate was radioactively labeled cyanophycin granule polypeptide formed by an unicellular cyanobacterium grown in the presence of chloramphenicol. Substrate polypeptide displayed identical chemical properties with polypeptide isolated from non-chloramphenicol-treated cells. Solubilization of radioactivity as arginine indicated hydrolysis of polypeptide. Radioactively labeled aspartate and arginine from hydrolyzed polypeptide was related to nmol amino acid using a combination of paper chromatography, liquid scintillation analysis, and ninhydrin quantitation. Protease activity was found in extracts of nitrogen-limited cells harvested 16–24 h after a nitrogen source was added back. Optimal pH for protease activity was 8.0 and optimum temperature was 35°C. Protease activity in crude extracts followed Michaelis-Menten kinetics with a V max of 92 nmol arginine per 15 min/mg protein and a K m of 2.1×103 nmol arginine. Protease activity was inhibited by arginine and by high concentrations of aspartate.  相似文献   

20.
The high-affinity fusicoccin-binding protein (FCBP) was solubilized from plasma-membrane vesicles prepared from leaves of Vicia faba L. by aqueous two-phase partitioning. Conditions for the solubilization of intact FCBP-radioligand complexes were worked out. About 60–70% of the complexes can be solubilized with 50–60 mM nonanoyl-N-methylglucamide in the presence of 1 mg· ml-1 soybean phosphatidylcholine, type IV S, and 20% (v/v) glycerol at pH 5.5. The slow dissociation of the radioligand, 9-nor-fusicoccin-8-alcohol-[3H] from the FCBP at low temperatures permits the purification of FCBP-radioligand complexes at 4–10° C by fast protein liquid chromatography on anion-exchange and gel permeation columns. The FCBP, extracted from plasma membranes with cholate and chromatographed in the presence of this detergent, gave an apparent molecular mass (Mr) of 80±20 kDa on gel permeation columns under the conditions used. By comparison of the elution profiles of the fraction most enriched in FCBP-radioligand complexes with polypeptide patterns obtained on sodium dodecyl sulfate-polyacrylamide gels, a polypeptide with an Mr of approx. 34kDa co-separated with the radioactivity profile. A second, faint band of approx. 31 kDa was sometimes also observed co-electrophoresing. Photoaffinity labeling of plasma-membrane vesicles with the new compound 9-nor-8[(3,5-[3H]-4-azidobenzoy)ethylenediamine]-fusicoccin ([3H]ABE-FC) and subsequent separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis labeled a single band with an Mr of 35±1 kDa. Labeling in this band was strongly reduced when the membranes were incubated with [3H]ABE-FC in the presence of 0.1–1 M fusicoccin. From our data, we conclude (i) that the 34-35-kDa polypeptide represents the FCBP and (ii) that in detergent extracts of plasma membranes this polypeptide is probably present as a di- or trimeric structure.Abbreviations ABE-FC [(4-azidobenzoyl)-ethylenediamine]-fusicoccin - ABE-NHS (4-azidobenzoyl)-N-hydroxysuccinimide ester - FC fusicoccin - FCBP fusicoccin-binding protein - FCol 9-norfusicoccin-8-alcohol - MAB monoclonal antibody - Mega-9(10) nonanoyl(decanoyl)-N-methylglucamide - Mr apparent molecular mass - PMSF phenylmethyl-sulfonyl fluoride - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - TCA trichloroacetic acid - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号