首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both moderate exercise and the soluble fiber beta-glucan can have beneficial effects on the initiation and growth of tumors, but the data are limited, and there is no information on their combined effects. This study tested the independent and combined effects of short-term moderate-exercise training and the soluble oat fiber beta-glucan (ObetaG) on the metatastic spread of injected tumor cells and macrophage antitumor cytotoxicity. Male C57BL/6 mice were assigned to one of four groups: exercise (Ex)-H2O, Ex-ObetaG, control (Con)-H2O, or Con-ObetaG. ObetaG was fed in the drinking water for 10 days before tumor administration and death. Exercise consisted of treadmill running (1 h/day) for 6 days. After rest or exercise on the last day of training, syngeneic B16 melanoma cells (2 x 10(5)) were administered via intravenous injection (n = 8-11 per group). Lungs were removed 14 days later, and tumor foci were counted. Additional mice (n = 8 per group) were killed, and peritoneal macrophages were assayed for cytotoxicity against the same mouse tumor cell line at various effector-to-target ratios. Both moderate exercise and ObetaG decreased lung tumor foci and increased macrophage cytotoxicity. However, there were no differences in lung tumor foci and macrophage cytotoxicity between Ex-ObetaG and either Ex-H2O or Con-ObetaG. These data suggest that, although not additive in their effects, both short-term moderate-exercise training and consumption of the soluble ObetaG can decrease the metatastic spread of injected B16 melanoma cells, and these effects may be mediated in part by an increase in macrophage cytotoxicity to B16 melanoma.  相似文献   

2.
Exercise stress is associated with an increased risk for upper respiratory tract infection (URTI). We have shown that consumption of the soluble oat fiber beta-glucan (ObetaG) can offset the increased risk for infection and decreased macrophage antiviral resistance following stressful exercise; however, the direct role of macrophages is unknown. This study examined the effect of macrophage depletion on the benefits of orally administered ObetaG on susceptibility to infection (morbidity, symptom severity, and mortality) following exercise stress. CL(2)MDP (Ex- H(2)O-CL(2)MDP, Ex-ObetaG-CL(2)MDP, Con-H(2)O-CL(2)MDP, Con-ObetaG-CL(2)MDP)-encapsulated liposomes were administered intranasally to deplete macrophages, and PBS (Ex-H(2)O-PBS, Ex-ObetaG-PBS, Con-H(2)O-PBS, Con-ObetaG-PBS)-encapsulated liposomes were given to macrophage-intact groups. Ex mice ran to volitional fatigue on a treadmill for 3 consecutive days, and ObetaG mice were fed a solution of 50% ObetaG in their drinking water for 10 consecutive days before infection. Fifteen minutes following the final bout of Ex or rest, mice were intranasally inoculated with 50 microl of a standardized dose of herpes simplex virus-1. Ex increased morbidity (P < 0.001) and symptom severity (P < 0.05) but not mortality (P = 0.09). The increase in morbidity and symptom severity was blocked by ObetaG consumption for 10 consecutive days before exercise and infection [morbidity (P < 0.001) and symptom severity (P < 0.05)]. Depletion of macrophages negated the beneficial effects of ObetaG on reducing susceptibility to infection following exercise stress, as evidenced by an increase in morbidity (P < 0.01) and symptom severity (P < 0.05). Results indicate that lung macrophages are at least partially responsible for mediating the beneficial effects of ObetaG on susceptibility to respiratory infection following exercise stress.  相似文献   

3.
Moderate exercise training is associated with a decreased risk for upper respiratory tract infection in human and animal studies, but the mechanisms have not been elucidated. Lung macrophages play an important role in resistance to respiratory infection, and moderate exercise can enhance macrophage antiviral resistance, but no studies have directly tested the role of lung macrophages in this response. This study tested the effect of lung macrophage depletion on susceptibility to infection following short-term moderate exercise training. Mice were assigned to one of four groups: exercise (Ex) and resting controls (Con) with and without clodronate encapsulated liposomes (CL(2)MDP-lip). Ex mice ran for 1 h on a treadmill for 6 days at 36 m/min, 8% grade. Fifteen minutes following exercise or rest on the last day of training, mice were intranasally inoculated with a standardized dose of herpes simplex virus type 1. Clodronate (Ex-CL(2)MDP-lip and Con-CL(2)MDP-lip) or PBS liposomes (Ex-PBS-lip and Con-PBS-lip) (100 microl) were intranasally administered following exercise or rest on the 4th day of training and again on the 4th day postinfection. Morbidity, mortality, and symptom severity were monitored for 21 days. Exercise decreased morbidity by 36%, mortality by 61%, and symptom severity score on days 5-7 (P < 0.05). Depletion of lung macrophages negated the beneficial effects of moderate exercise. This was indicated by no differences between Ex-CL(2)MDP-lip and Con-PBS-lip in morbidity (89 vs. 95%), mortality (79 vs. 95%), or symptom severity. Results indicate that lung macrophages play an important role in mediating the beneficial effects of moderate exercise on susceptibility to respiratory infection.  相似文献   

4.
The epithelial surface is often proposed to actively participate in host defense, but evidence that this is the case remains circumstantial. Similarly, respiratory paramyxoviral infections are a leading cause of serious respiratory disease, but the basis for host defense against severe illness is uncertain. Here we use a common mouse paramyxovirus (Sendai virus) to show that a prominent early event in respiratory paramyxoviral infection is activation of the IFN-signaling protein Stat1 in airway epithelial cells. Furthermore, Stat1-/- mice developed illness that resembled severe paramyxoviral respiratory infection in humans and was characterized by increased viral replication and neutrophilic inflammation in concert with overproduction of TNF-alpha and neutrophil chemokine CXCL2. Poor control of viral replication as well as TNF-alpha and CXCL2 overproduction were both mimicked by infection of Stat1-/- airway epithelial cells in culture. TNF-alpha drives the CXCL2 response, because it can be reversed by TNF-alpha blockade in vitro and in vivo. These findings pointed to an epithelial defect in Stat1-/- mice. Indeed, we next demonstrated that Stat1-/- mice that were reconstituted with wild-type bone marrow were still susceptible to infection with Sendai virus, whereas wild-type mice that received Stat1-/- bone marrow retained resistance to infection. The susceptible epithelial Stat1-/- chimeric mice also exhibited increased viral replication as well as excessive neutrophils, CXCL2, and TNF-alpha in the airspace. These findings provide some of the most definitive evidence to date for the critical role of barrier epithelial cells in innate immunity to common pathogens, particularly in controlling viral replication.  相似文献   

5.
6.
Following influenza infection, natural killer (NK) cells function as interim effectors by suppressing viral replication until CD8 T cells are activated, proliferate, and are mobilized within the respiratory tract. Thus, NK cells are an important first line of defense against influenza virus. Here, in a murine model of influenza, we show that virally-induced IL-15 facilitates the trafficking of NK cells into the lung airways. Blocking IL-15 delays NK cell entry to the site of infection and results in a disregulated control of early viral replication. By the same principle, viral control by NK cells can be therapeutically enhanced via intranasal administration of exogenous IL-15 in the early days post influenza infection. In addition to controlling early viral replication, this IL-15-induced mobilization of NK cells to the lung airways has important downstream consequences on adaptive responses. Primarily, depletion of responding NK1.1+ NK cells is associated with reduced immigration of influenza-specific CD8 T cells to the site of infection. Together this work suggests that local deposits of IL-15 in the lung airways regulate the coordinated innate and adaptive immune responses to influenza infection and may represent an important point of immune intervention.  相似文献   

7.
Davis, J. M., M. L. Kohut, L. H. Colbert, D. A. Jackson, A. Ghaffar, and E. P. Mayer. Exercise, alveolarmacrophage function, and susceptibility to respiratory infection.J. Appl. Physiol. 83(5):1461-1466, 1997.The effects of exercise on susceptibility torespiratory infection were determined by using a murine model ofintranasal challenge with herpes simplex type 1 virus (HSV-1). Twodoses of treadmill exercise were assessed: moderate short-term (30 min)exercise and prolonged strenuous exercise to voluntary fatigue(2.5-3.5 h). Morbidity and mortality among exercised and controlmice were compared after intranasal challenge with HSV-1. We alsoassessed the ability of alveolar macrophages to restrict HSV-1 viralreplication (intrinsic resistance) among exercise and control groups ofmice at several time points postexercise. Exercise to fatigue followedby exposure to viral infection resulted in greater morbidity andmortality than either no exercise or short-term moderate exercise. Inaddition, antiviral resistance of macrophages obtained from the lungsof both exercised groups was suppressed, albeit for a longer durationin the fatigued group. These data are particularly important in thatthey identify an exercise-induced decrease in antiviral resistance of aspecific component of the immune system within the lungs, inconjunction with increased susceptibility to respiratory infection invivo. The specific mechanism of decreased antiviral resistance ofalveolar macrophages and its role in respiratory infection afterexercise remains to be determined.

  相似文献   

8.
Severe acute respiratory syndrome (SARS) caused by a novel human coronavirus (CoV), designated SARS-CoV, is a highly contagious respiratory disease with the lungs as a major target. Although the exact mechanism of SARS-CoV pathogenesis remains unknown, an intense, ill-regulated local inflammatory response has been suggested as partially responsible for the devastating lung pathology. We investigated the interaction of SARS-CoV with human macrophages (Mphi) and dendritic cells (DC), two key innate immune cells of the host immune system, by focusing on their susceptibility to viral infection and subsequent responses (e.g., phenotypic maturation, T cell-priming activity, phagocytosis, and cytokine production). We found neither cell to be permissive for SARS-CoV replication. However, incubation of Mphi and DC with live, but not gamma irradiation-inactivated, viruses appeared to better sustain their viability. Also, exposure to infectious SARS-CoV led to the phenotypic and functional maturation of DC, with regard to MHC class II and costimulatory molecule expression, T cell-stimulatory capacity, and cytokine production, respectively. Cytokine production was also observed for Mphi, which were refractory to cell surface phenotypic changes. Strikingly, live SARS-CoV could further prime cell types to respond to a suboptimal dose of bacterial LPS (100 ng/ml), resulting in massive release of IL-6 and IL-12. However, the endocytic capacity (e.g., Ag capture) of Mphi was significantly compromised upon exposure to infectious SARS-CoV. This study is the first demonstration that although SARS-CoV does not productively infect human Mphi or DC, it appears to exert differential effects on Mphi and DC maturation and functions, which might contribute to SARS pathogenesis.  相似文献   

9.
Skin is a complex organ and the largest interface of the human body exposed to numerous stress and pathogens. Skin is composed of different cell types that together perform essential functions such as pathogen sensing, barrier maintenance and immunity, at once providing the first line of defense against microbial infections and ensuring skin homeostasis. Being inoculated directly through the epidermis and the dermis during a vector blood meal, emerging Dengue, Zika andWest Nile mosquito-borne viruses lead to the initiation of the innate immune response in resident skin cells and to the activation of dendritic cells, which migrate to the draining lymph node to elicit an adaptive response. This literature review aims to describe the inflammatory response and the innate immune signalization pathways involved in human skin cells during Dengue, Zika and West Nile virus infections.  相似文献   

10.
Major injury is widely thought to predispose the injured host to opportunistic infections. This idea is supported by animal studies showing that major injury causes reduced resistance to polymicrobial sepsis induced by cecal ligation and puncture. Although cecal ligation and puncture represents a clinically relevant sepsis model, we wanted to test whether injury might also lead to greater susceptibility to peritoneal infection caused by a single common pathogen, Escherichia coli. Contrary to our expectation, we show herein that the LD(50) for sham-injured mice was 10(3) CFU of E. coli, whereas the LD(50) for burn-injured mice was 50 x 10(3) CFU at 7 days postinjury. This injury-associated enhanced resistance was apparent as early as 1 day after injury, and maximal resistance was observed at days 7 and 14. We found that burn-injured mice had higher numbers of circulating neutrophils and monocytes than did sham mice before infection and that injured mice were able to recruit greater numbers of neutrophils to the site of infection. Moreover, the peritoneal neutrophils in burn-injured mice were more highly activated than neutrophils from sham mice as determined by Mac-1 expression, superoxide generation, and bactericidal activity. Our findings suggest that the enhanced innate immune response that develops following injury, although it is commonly accepted as the mediator of the detrimental systemic inflammatory response syndrome, may also, in some cases, benefit the injured host by boosting innate immune antimicrobial defenses.  相似文献   

11.
Iron metabolism and the innate immune response to infection   总被引:1,自引:0,他引:1  
Host antimicrobial mechanisms reduce iron availability to pathogens. Iron proteins influencing the innate immune response include hepcidin, lactoferrin, siderocalin, haptoglobin, hemopexin, Nramp1, ferroportin and the transferrin receptor. Numerous global health threats are influenced by iron status and provide examples of our growing understanding of the connections between infection and iron metabolism.  相似文献   

12.
Trypanosoma cruzi infection is a major public health problem in Latin America. The host innate immune system plays a pivotal role in the recognition of T. cruzi infection and the subsequent development of adaptive immunity. In this review, we focus on the TLR-dependent and -independent innate immune responses to T. cruzi.  相似文献   

13.
Macrophages restrict bacterial infection partly by stimulating phagocytosis and partly by stimulating release of cytokines and complement components. Here, we treat macrophages with LPS and a bacterial pathogen, and demonstrate that expression of cytokine IL-1β and bacterial phagocytosis increase to a transient peak 8 to 12 h post-treatment, while expression of complement component 3 (C3) continues to rise for 24 h post-treatment. Metabolomic analysis suggests a correlation between the cellular concentrations of succinate and IL-1β and of inosine and C3. This may involve a regulatory feedback mechanism, whereby succinate stimulates and inosine inhibits HIF-1α through their competitive interactions with prolyl hydroxylase. Furthermore, increased level of inosine in LPS-stimulated macrophages is linked to accumulation of adenosine monophosphate and that exogenous inosine improves the survival of bacterial pathogen-infected mice and tilapia. The implications of these data suggests potential therapeutic tools to prevent, manage or treat bacterial infections.  相似文献   

14.
The early life environment can be crucial in influencing the development of an animal's long-term physiology. There is now much evidence to suggest that perinatal challenges to an animal's immune system will result in changes in adult rat behavior, physiology, and molecular pathways following a single inflammatory event during development caused by the bacterial endotoxin lipopolysaccharide (LPS). In particular, it is now apparent that neonatal LPS administration can influence the adult neuroimmune response to a second LPS challenge through hypothalamic-pituitary-adrenal axis modifications, some of which are caused by alterations in peripheral prostaglandin synthesis. These pronounced changes are accompanied by a variety of alterations in a number of disparate aspects of endocrine physiology, with significant implications for the health and well-being of the adult animal. In this review, we discuss the newly elucidated mechanisms by which neonatal immune challenge can permanently alter an animal's endocrine and metabolic physiology and the implications this has for various disease states.  相似文献   

15.
Apoptosis: an innate immune response to virus infection   总被引:1,自引:0,他引:1  
Viruses can induce apoptosis of infected cells either directly, to assist virus dissemination, or by inadvertently triggering cellular sensors that initiate cell death. Cellular checkpoints that can function as 'alarm bells' to transmit pro-apoptotic signals in response to virus infections include death receptors, protein kinase R, mitochondrial membrane potential, p53 and the endoplasmic reticulum.  相似文献   

16.
17.
To understand the pathogenesis of chronic inflammatory disease, we analyzed an experimental mouse model of chronic lung disease with pathology that resembles asthma and chronic obstructive pulmonary disease (COPD) in humans. In this model, chronic lung disease develops after an infection with a common type of respiratory virus is cleared to only trace levels of noninfectious virus. Chronic inflammatory disease is generally thought to depend on an altered adaptive immune response. However, here we find that this type of disease arises independently of an adaptive immune response and is driven instead by interleukin-13 produced by macrophages that have been stimulated by CD1d-dependent T cell receptor-invariant natural killer T (NKT) cells. This innate immune axis is also activated in the lungs of humans with chronic airway disease due to asthma or COPD. These findings provide new insight into the pathogenesis of chronic inflammatory disease with the discovery that the transition from respiratory viral infection into chronic lung disease requires persistent activation of a previously undescribed NKT cell-macrophage innate immune axis.  相似文献   

18.
19.
Exercise stress is associated with increased risk for upper respiratory tract infection. We have shown that exercise stress can increase susceptibility to infection. Quercetin, a flavonoid present in a wide variety of fruits and vegetables, has been reported to inhibit infectivity and replication of a broad spectrum of viruses and may offset the increase in susceptibility to infection associated with stressful exercise. This study examined the effects of quercetin feedings on susceptibility to the influenza virus A/Puerto Rico/8/34 (H1N1) following stressful exercise. Mice were randomly assigned to one of four treatment groups: exercise-placebo, exercise-quercetin, control-placebo, or control-quercetin. Exercise consisted of a run to fatigue (approximately 140 min) on a treadmill for 3 consecutive days. Quercetin (12.5 mg/kg) was administered via gavage for 7 days before viral challenge. At 30 min after the last bout of exercise or rest, mice (n=23-30) were intranasally inoculated with a standardized dose of influenza virus (0.04 hemagglutinating units). Mice were monitored daily for morbidity (time to sickness), symptom severity, and mortality (time to death) for 21 days. Exercise stress was associated with an increased susceptibility to infection [morbidity, mortality, and symptom severity on days 5-7 (P<0.05)]; quercetin offset the increase in susceptibility to infection [morbidity, mortality, and symptom severity on days 5-7 (P<0.05)] that was associated with stressful exercise. These data suggest that short-term quercetin feedings may prove to be an effective strategy to lessen the impact of stressful exercise on susceptibility to respiratory infection.  相似文献   

20.
NK dendritic cells (NKDC) are recently described immunologic cells that possess both lytic and Ag-presenting function and produce prolific quantities of IFN-gamma. The role of NKDC in innate immunity to bacterial infection is unknown. Because IFN-gamma is important in the immune response to Listeria monocytogenes (LM), we hypothesized that NKDC play a critical role during LM infection in mice. We found that LM increased the frequency and activation state of NKDC in vivo. Using in vivo intracellular cytokine analysis, we demonstrated that NKDC are a major source of early IFN-gamma during infection with LM. Adoptive transfer of wild-type NKDC into IFN-gamma-deficient recipients that were subsequently infected with LM decreased bacterial burden in the liver and spleen and prolonged survival. In contrast, NK cells were depleted early during LM infection, produced less IFN-gamma, and conferred less protection upon adoptive transfer into IFN-gamma-deficient mice. In vitro, LM induction of IFN-gamma secretion by NKDC depended on TLR9, in addition to IL-18 and IL-12. Our study establishes NKDC as innate immune responders to bacterial infection by virtue of their ability to secrete IFN-gamma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号