首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Buforin II is a histone-derived antimicrobial peptide that readily translocates across lipid membranes without causing significant membrane permeabilization. Previous studies showed that mutating the sole proline of buforin II dramatically decreases its translocation. As well, researchers have proposed that the peptide crosses membranes in a cooperative manner by forming transient toroidal pores. This paper reports molecular dynamics simulations designed to investigate the structure of buforin II upon membrane entry and evaluate whether the peptide is able to form toroidal pore structures. These simulations showed a relationship between protein–lipid interactions and increased structural deformations of the buforin N-terminal region promoted by proline. Moreover, simulations with multiple peptides show how buforin II can embed deeply into membranes and potentially form toroidal pores. Together, these simulations provide structural insight into the translocation process for buforin II in addition to providing more general insight into the role proline can play in antimicrobial peptides.  相似文献   

2.
Jang JH  Kim MY  Lee JW  Kim SC  Cho JH 《Peptides》2011,32(5):895-899
Buforin IIb is a novel cell-penetrating anticancer peptide derived from histone H2A. In this study, we enhanced the cancer targeting specificity of buforin IIb using a tumor-associated enzyme-controlled activation strategy. Buforin IIb was fused with an anionic peptide (modified magainin intervening sequence, MMIS), which neutralizes the positive charge of buforin IIb and thus renders it inactive, via a matrix metalloproteinases (MMPs)-cleavable linker. The resulting MMIS:buforin IIb fusion peptide was completely inactive against MMPs-nonproducing cells. However, when the fusion peptide was administrated to MMPs-producing cancer cells, it regained the killing activity by releasing free buforin IIb through MMPs-mediated cleavage. Moreover, the activity of the fusion peptide toward MMPs-producing cancer cells was significantly decreased when the cells were pretreated with a MMP inhibitor. Taken together, these data indicate that the cancer targeting specificity of MMIS:buforin IIb is enhanced compared to the parent peptide by reactivation at the specialized areas where MMPs are pathologically produced.  相似文献   

3.
Buforin 2 is an antimicrobial peptide discovered in the stomach tissue of the Asian toad Bufo bufo gargarizans. The 21-residue peptide with +6 net charge shows antimicrobial activity an order of magnitude higher than that of magainin 2, a membrane-permeabilizing antimicrobial peptide from Xenopus laevis [Park, C. B., Kim, M. S., and Kim, S. C. (1996) Biochem. Biophys. Res. Commun. 218, 408-413]. In this study, we investigated the interactions of buforin 2 with phospholipid bilayers in comparison with magainin 2 to obtain insight into the mechanism of action of buforin 2. Equipotent Trp-substituted peptides were used to fluorometrically monitor peptide-lipid interactions. Circular dichroism measurements showed that buforin 2 selectively bound to liposomes composed of acidic phospholipids, assuming a secondary structure similar to that in trifluoroethanol/water, which is an amphipathic helix distorted around Pro(11) with a flexible N-terminal region [Yi, G. S., Park, C. B., Kim, S. C., and Cheong, C. (1996) FEBS Lett. 398, 87-90]. Magainin 2 induced the leakage of a fluorescent dye entrapped within lipid vesicles coupled to lipid flip-flop. These results have been interpreted as the formation of a peptide-lipid supramolecular complex pore [Matsuzaki, K. (1998) Biochim. Biophys. Acta 1376, 391-400]. Buforin 2 exhibited much weaker membrane permeabilization activity despite its higher antimicrobial activity. In contrast, buforin 2 was more efficiently translocated across lipid bilayers than magainin 2. These results suggested that the ultimate target of buforin 2 is not the membrane but intracellular components. Furthermore, buforin 2 induced no lipid flip-flop, indicating that the mechanism of translocation of buforin 2 is different from that of magainin 2. The role of Pro was investigated by use of a P11A derivative of buforin 2. The derivation caused a change to magainin 2-like secondary structure and membrane behavior. Pro(11) was found to be a very important structural factor for the unique properties of buforin 2.  相似文献   

4.
Buforin II is a 21-amino acid polycationic antimicrobial peptide derived from a peptide originally isolated from the stomach tissue of the Asian toad Bufo bufo gargarizans. It is hypothesized to target a wide range of bacteria by translocating into cells without membrane permeabilization and binding to nucleic acids. Previous research found that the structure and membrane interactions of buforin II are related to lipid composition. In this study, we used molecular dynamics (MD) simulations along with lipid vesicle experiments to gain insight into how buforin II interacts differently with phosphatidylcholine (PC), phosphatidylglycerol (PG), and phosphatidylethanolamine (PE) lipids. Fluorescent spectroscopic measurements agreed with the previous assertion that buforin II does not interact with pure PC vesicles. Nonetheless, the reduced entry of the peptide into anionic PG membranes versus neutral PC membranes during simulations correlates with the experimentally observed reduction in BF2 translocation through pure PG membranes. Simulations showing membrane entry into PC also provide insight into how buforin II may initially penetrate cell membranes. Our MD simulations also allowed us to consider how neutral PE lipids affect the peptide differently than PC. In particular, the peptide had a more helical secondary structure in simulations with PE lipids. A change in structure was also apparent in circular dichroism measurements. PE also reduced membrane entry in simulations, which correlates with decreased translocation in the presence of PE observed in previous studies. Together, these results provide molecular-level insight into how lipid composition can affect buforin II structure and function and will be useful in efforts to design peptides with desired antimicrobial and cell-penetrating properties.  相似文献   

5.
Cationic antimicrobial peptides play important roles in innate immunity. Compared with extensive studies on peptide-bacteria interactions, little is known about peptide-human cell interactions. Using human cervical carcinoma HeLa and fibroblastic TM12 cells, we investigated the cellular uptake of fluorescent analogues of the two representative antimicrobial peptides magainin 2 and buforin 2 in comparison with the representative Arg-rich cell-penetrating Tat-(47-57) peptide (YGRKKRRQRRR). The dose, time, temperature, and energy dependence of translocation suggested that the three peptides cross cell membranes through different mechanisms. The magainin peptide was internalized within a time scale of tens of minutes. The cooperative concentration dependence of uptake suggested that the peptide forms a pore as an intermediate similar to the observations in model membranes. Furthermore, the translocation was coupled with cytotoxicity, which was larger for tumor HeLa cells. In contrast, the buforin peptide translocated within 10 min by a temperature-independent, less concentration-dependent passive mechanism without showing any significant cytotoxicity at the highest concentration investigated (100 microm). The uptake of the Tat peptide was proportional to the peptide concentration, and the concentration dependence was lost upon ATP depletion. The peptide exhibited a moderate cytotoxicity at higher concentrations. The time course did not show saturation even after 120 min. The buforin peptide, covalently attached to the 28-kDa green fluorescent protein, also entered cells, suggesting a potency of the peptide as a vector for macromolecular delivery into cells. However, the mechanism appeared to be different from that of the parent peptide.  相似文献   

6.
The interactions of cationic amphipathic antimicrobial peptides (AMPs) with anionic biological membranes have been the focus of much research aimed at improving the activity of such compounds in the search for therapeutic leads. However, many of these peptides are thought to have other polyanions, such as DNA or RNA, as their ultimate target. Here a combination of fluorescence and circular dichroism (CD) spectroscopies has been used to assess the structural properties of amidated versions of buforin II, pleurocidin and magainin 2 that support their varying abilities to translocate through bacterial membranes and bind to double stranded DNA. Unlike magainin 2 amide, a prototypical membrane disruptive AMP, buforin II amide adopts a poorly helical structure in membranes closely mimicking the composition of Gram negative bacteria, such as Escherichia coli, and binds to a short duplex DNA sequence with high affinity, ultimately forming peptide-DNA condensates. The binding affinities of the peptides to duplex DNA are shown to be related to the structural changes that they induce. Furthermore, CD also reveals the conformation of the bound peptide buforin II amide. In contrast with a synthetic peptide, designed to adopt a perfect amphipathic α-helix, buforin II amide adopts an extended or polyproline II conformation when bound to DNA. These results show that an α-helix structure is not required for the DNA binding and condensation activity of buforin II amide.  相似文献   

7.
Wang Q  Zhu F  Xin Y  Liu J  Luo L  Yin Z 《Biotechnology letters》2011,33(11):2121-2126
A novel production method in Escherichia coli for an antimicrobial peptide of 21 amino acids, buforin IIb, which is a synthetic analog of buforin II, has been developed. The buforin IIb gene was cloned into the vector pET32a to construct an expression vector pET32a–buforin IIb. The fusion protein Trx-buforin IIb, purified by nickel nitrilo-triacetic acid (Ni-NTA) resin chromatography, was cleaved by hydroxylamine hydrochloride to release recombinant buforin IIb. Purification of recombinant buforin IIb was achieved by HPLC: about 3.1 mg/l active recombinant buforin IIb with purity >99% was obtained. The recombinant buforin IIb showed antimicrobial activities that were similar to the synthetic one.  相似文献   

8.
The intestinal epithelium forms a first line of innate host defense by secretion of proteins with antimicrobial activity against microbial infection. Despite the extensive studies on the antimicrobial host defense in many gastrointestinal tracts, little is known about the antimicrobial defense system of the stomach. The potent antimicrobial peptide buforin I, consisting of 39 aa, was isolated recently from the stomach tissue of an Asian toad, Bufo bufo gargarizans. In this study we examined the mechanism of buforin I production in toad stomach tissue. Buforin I is produced by the action of pepsin isozymes, named pepsin Ca and Cb, cleaving the Tyr39-Ala40 bond of histone H2A. Immunohistochemical analysis revealed that buforin I is present extracellularly on the mucosal surface, and unacetylated histone H2A, a precursor of buforin I, is localized in the cytoplasm of gastric gland cells. Furthermore, Western blot analysis showed that buforin I is also present in the gastric fluids, and immunoelectron microscopy detected localization of the unacetylated histone H2A in the cytoplasmic granules of gastric gland cells. The distinct subcellular distribution of the unacetylated histone H2A and the detection of the unacetylated buforin I both on the mucosal surface and in the lumen suggest that buforin I is produced from the cytoplasmic unacetylated histone H2A secreted into the gastric lumen and subsequently processed by pepsins. Our results indicate that buforin I along with pepsins in the vertebrate stomach may contribute to the innate host defense of the stomach against invading microorganisms.  相似文献   

9.
Buforin IIb, a novel cell-penetrating anticancer peptide derived from histone H2A, has been reported to induce mitochondria-dependent apoptosis in tumor cells. However, increasing evidence suggests that endoplasmic reticulum and mitochondria cooperate to signal cell death. In this study, we investigated the mechanism of buforin IIb-induced apoptosis in human cervical carcinoma HeLa cells by focusing on ER stress-mediated mitochondrial membrane permeabilization. Two-dimensional PAGE coupled with MALDI-TOF and western blot analysis showed that buforin IIb treatment of HeLa cells resulted in upregulation of ER stress proteins. PBA (ER stress inhibitor) and BAPTA/AM (Ca2+ chelator) pretreatment rescued viability of buforin IIb-treated cells through abolishing phosphorylation of SAPK/JNK and p38 MAPK. SP600125 (SAPK/JNK inhibitor) and SB203580 (p38 MAPK inhibitor) attenuated down-regulation of Bcl-xL/Bcl-2, mitochondrial translocation of Bax, and cytochrome c release from mitochondria. Taken together, our data suggest that the ER stress pathway has an important role in the buforin IIb-induced apoptosis in HeLa cells.  相似文献   

10.
Hipposin is a potent 51-mer antimicrobial peptide (AMP) from Atlantic halibut with sequence similarity to parasin (19-mer catfish AMP), buforin I (39-mer toad AMP), and buforin II (an active 21-mer fragment of buforin I), suggesting that the antimicrobial activity of these peptides might all be due to a common antimicrobial sequence motif. In order to identify the putative sequence motif, the antimicrobial activity of hipposin fragments against 20 different bacteria was compared to the activity of hipposin, parasin and buforin II. Neither parasin nor the 19-mer parasin-like fragment HIP(1-19) (differs from parasin in only three residues) that is derived from the N-terminal part (residues 1-19) of hipposin had marked antimicrobial activity. In contrast, the fragment HIP(16-36) (identical to buforin II) that is derived from the middle part of hipposin (residues 16-36) had such activity, indicating that this part of hipposin contained an antimicrobial sequence motif. The activity was enhanced when the parasin-like N-terminal sequence was also present, as the fragment HIP(1-36) which consists of residues 1-36 in hipposin was more potent than HIP(16-36). Extending HIP(1-36) with three C-terminal residues-thereby constructing the buforin I-like peptide HIP(1-39) (differs from buforin I in only three residues)-increased the activity further. Also, the presence of the C-terminal part of hipposin (residues 40-51) increased the activity, as hipposin was clearly the most potent of all the peptides that were tested. Circular dichroism structural analysis of the peptides revealed that they were all non-structured in aqueous solution. However, trifluoroethanol and the membrane-mimicking entities dodecylphosphocholine micelles and negatively charged liposomes induced (amphiphilic) alpha-helical structuring in hipposin. Judging from the structuring of the individual fragments, the tendency for alpha-helical structuring appeared to be greater in the C-terminal and the buforin II-like middle region of hipposin than in the parasin-like N-terminal region.  相似文献   

11.
Antimicrobial peptides continue to garner attention as potential alternatives to conventional antibiotics. Hipposin is a histone-derived antimicrobial peptide (HDAP) previously isolated from Atlantic halibut. Though potent against bacteria, its antibacterial mechanism had not been characterized. The mechanism of this peptide is particularly interesting to consider since the full hipposin sequence contains the sequences of parasin and buforin II (BF2), two other known antimicrobial peptides that act via different antibacterial mechanisms. While parasin kills bacteria by inducing membrane permeabilization, buforin II enters cells without causing significant membrane disruption, harming bacteria through interactions with intracellular nucleic acids. In this study, we used a modular approach to characterize hipposin and determine the role of the parasin and buforin II fragments in the overall hipposin mechanism. Our results show that hipposin kills bacteria by inducing membrane permeabilization, and this membrane permeabilization is promoted by the presence of the N-terminal domain. Portions of hipposin lacking the N-terminal sequence do not cause membrane permeabilization and function more similarly to buforin II. We also determined that the C-terminal portion of hipposin, HipC, is a cell-penetrating peptide that readily enters bacterial cells but has no measurable antimicrobial activity. HipC is the first membrane active histone fragment identified that does not kill bacterial or eukaryotic cells. Together, these results characterize hipposin and provide a useful starting point for considering the activity of chimeric peptides made by combining peptides with different antimicrobial mechanisms. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   

12.
The inhibitory effect of buforin IIb on different types of cancer, although not liver cancer, has been demonstrated previously. The aim of the present study was to investigate the effects of buforin IIb on the progression of liver cancer. The human liver cancer cell line HepG2 was treated with purified buforin IIb and the cell activity was determined by MTT, colony formation and transwell assays. The protein expression levels of cyclin-dependent kinases (CDKs) and cyclins were analyzed by western blotting and immunofluorescent cell staining. A tumor growth model was constructed using nude mice, and buforin IIb treatment was administered. The levels of CDK2 and cyclin A in the tumor tissues were detected by western blotting. Buforin IIb treatment depressed cell viability and colony formation and induced apoptosis significantly, and 1.0?µM concentration of buforin IIb was found to be the optimal dosage. The cell cycle was arrested at the G2/M phase following buforin IIb treatment. CDK2 and cyclin A were downregulated by treatment of the cells with 1.0?µM buforin IIb for 24?h. Treatment with buforin IIb also inhibited the migration of liver cancer cells in vitro. Furthermore, 50?nmol buforin IIb injection suppressed HepG2 cell subcutaneous tumor growth in the nude mouse model. Similar to the in vitro results, buforin IIb injection reduced the expression of CDK2 and cyclin A in the tumor tissue. these results demonstrate that buforin IIb inhibited liver cancer cell growth via the regulation of CDK2 and cyclin A expression.  相似文献   

13.
Jang SA  Kim H  Lee JY  Shin JR  Kim da J  Cho JH  Kim SC 《Peptides》2012,34(2):283-289
Buforin IIb-a synthetic analog of buforin II that contains a proline hinge between the two α-helices and a model α-helical sequence at the C-terminus (3× RLLR)-is a potent cell-penetrating antimicrobial peptide. To develop novel antimicrobial peptides with enhanced activities and specificity/therapeutic index, we designed several analogs (Buf III analogs) by substitutions of amino acids in the proline hinge region and two α-helices of buforin IIb, and examined their antimicrobial activity and mechanism of action. The substitution of hydrophobic residues ([F(6)] and [V(8)]) in the proline hinge region with other hydrophobic residues ([W(6)] and [I(8)]) did not affect antimicrobial activity, while the substitution of the first four amino acids RAGL with a model α-helical sequence increased the antimicrobial activity up to 2-fold. Like buforin IIb, Buf III analogs penetrated the bacterial cell membranes without significantly permeabilizing them and were accumulated inside Escherichia coli. Buf III analogs were shown to bind DNA in vitro and the DNA binding affinity of the peptides correlated linearly with their antimicrobial potency. Among the Buf III analogs, the therapeutic index of Buf IIIb and IIIc (RVVRQWPIG[RVVR](3) and KLLKQWPIG[KLLK](3), respectively) were improved 7-fold compared to that of buforin IIb. These results indicate that Buf III analogs appear to be promising candidates for future development as novel antimicrobial agents.  相似文献   

14.
Solid-state NMR spectroscopy is used to determine the membrane-bound topological structure of a cationic β-hairpin antimicrobial peptide in which the number of Arg residues has been halved. The parent peptide, PG-1, was previously found to form transmembrane β-barrels in anionic membranes where the Arg residues complex with the lipid phosphate groups to cause toroidal pore defects in the membrane. In comparison, the charge-attenuated and less active mutant studied here forms β-sheets that lie on the surface of the zwitterionic membrane and only partially insert into the anionic membrane. The mutant also exhibits much looser contact with the lipid headgroups. These results indicate that transmembrane insertion and tight Arg-phosphate association are two important elements for strong antimicrobial activities of this class of peptides. Comparison with other β-hairpin antimicrobial peptides studied so far further suggests a relative potency scale for the various mechanisms of action for the β-sheet family of antimicrobial peptides. The transmembrane insertion-toroidal pore mechanism is the most potent in disrupting the lipid bilayer, followed by the large-amplitude in-plane motional mechanism. The carpet model, where peptides aggregate on the membrane surface to cause lateral expansion and eventual micellization of the membrane, is a weaker mechanism of action.  相似文献   

15.
The role of vertebrate histone proteins or histone derived peptides as innate immune effectors has only recently been appreciated. In this study, high levels of core histone proteins H2A, H2B, H3 and H4 were found in hemocytes from the Pacific white shrimp, Litopenaeus vannamei. The proteins were identified by in-gel digestion, mass spectrometry analysis, and homology searching. The L. vannamei histone proteins were found to be highly homologous to histones of other species. Based on this homology, histone H2A was cloned and its N-terminus was found to resemble the known antimicrobial histone peptides buforin I, parasin, and hipposin. Consequently, a 38 amino acid synthetic peptide identical to the N-terminus of shrimp H2A was synthesized and assayed, along with endogenous histones H2A, H2B, and H4, for growth inhibition against Micrococcus luteus. Histone H2A, purified to homogeneity, completely inhibited growth of the Gram-positive bacterium at 4.5 microm while a mixture of histones H2B and H4 was active at 3 microm. In addition, a fraction containing a fragment of histone H1 was also found to be active. The synthetic peptide similar to buforin was active at submicromolar concentrations. These data indicate, for the first time, that shrimp hemocyte histone proteins possess antimicrobial activity and represent a defense mechanism previously unreported in an invertebrate. Histones may be a component of innate immunity more widely conserved, and of earlier origin, than previously thought.  相似文献   

16.
17.
Melittin is a short cationic peptide that exerts cytolytic effects on bacterial and eukaryotic cells. Experiments suggest that in zwitterionic membranes, melittin forms transmembrane toroidal pores supported by four to eight peptides. A recently constructed melittin variant with a reduced cationic charge, MelP5, is active at 10-fold lower concentrations. In previous work, we performed molecular dynamics simulations on the microsecond timescale to examine the supramolecular pore structure of a melittin tetramer in zwitterionic and partially anionic membranes. We now extend that study to include the effects of peptide charge, initial orientation, and number of monomers on the pore formation and stabilization processes. Our results show that parallel transmembrane orientations of melittin and MelP5 are more consistent with experimental data. Whereas a MelP5 parallel hexamer forms a large stable pore during the 5-μs simulation time, a melittin hexamer and an octamer are not fully stable, with several monomers dissociating during the simulation time. Interaction-energy analysis shows that this difference in behavior between melittin and MelP5 is not due to stronger electrostatic repulsion between neighboring melittin peptides but to peptide-lipid interactions that disfavor the isolated MelP5 transmembrane monomer. The ability of melittin monomers to diffuse freely in the 1,2-dimyristoyl-SN-glycero-3-phosphocholine membrane leads to dynamic pores with varying molecularity.  相似文献   

18.
The antimicrobial activity of amphipathic alpha-helical peptides is usually attributed to the formation of pores in bacterial membranes, but direct structural information about such a membrane-bound state is sparse. Solid state (2)H-NMR has previously shown that the antimicrobial peptide PGLa undergoes a concentration-dependent realignment from a surface-bound S-state to a tilted T-state. The corresponding change in helix tilt angle from 98 to 125 degrees was interpreted as the formation of PGLa/magainin heterodimers residing on the bilayer surface. Under no conditions so far, has an upright membrane-inserted I-state been observed in which a transmembrane helix alignment would be expected. Here, we have demonstrated that PGLa is able to assume such an I-state in a 1:1 mixture with magainin 2 at a peptide-to-lipid ratio as low as 1:100 in dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol model membranes. This (2)H-NMR analysis is based on seven orientational constraints from Ala-3,3,3-d(3) substituted in a non-perturbing manner for four native Ala residues as well as two Ile and one Gly. The observed helix tilt of 158 degrees is rationalized by the formation of heterodimers. This structurally synergistic effect between the two related peptides from the skin of Xenopus laevis correlates very well with their known functional synergistic mode of action. To our knowledge, this example of PGLa is the first case where an alpha-helical antimicrobial peptide is directly shown to assume a transmembrane state that is compatible with the postulated toroidal wormhole pore structure.  相似文献   

19.
Antimicrobial peptides (AMPs) constitute an important component of the innate immune system in a variety of organisms. Buforin I is a 39-amino acid AMP that was first isolated from the stomach tissue of the Asian toad Bufo bufo gargarizans. Buforin II is a 21-amino acid peptide that is derived from buforin I and displays an even more potent antimicrobial activity than its parent AMP. Both peptides share complete sequence identity with the N-terminal region of histone H2A that interacts directly with nucleic acids. Buforin I is generated from histone H2A by pepsin-directed proteolysis in the cytoplasm of gastric gland cells. After secretion into the gastric lumen, buforin I remains adhered to the mucous biofilm that lines the stomach, thus providing a protective antimicrobial coat. Buforins, which house a helix-hinge-helix domain, kill a microorganism by entering the cell without membrane permeabilization and thus binding to nucleic acids. The proline hinge is crucial for the cell penetrating activity of buforins. Buforins also are known to possess anti-endotoxin and anticancer activities, thus making these peptides attractive reagents for pharmaceutical applications. This review describes the role of buforins in innate host defense; future research paradigms; and use of these agents as human therapeutics.  相似文献   

20.
Melittin interactions with lipid bilayers and melittin formed pores are extensively studied to understand the mechanism of the toroidal pore formation. Early experimental studies suggested that melittin peptide molecules are anchored by their positively charged residues located next to the C-terminus to only one leaflet of the lipid bilayer (asymmetric arrangement). However, the recent non-linear spectroscopic experiment suggests a symmetric arrangement of the peptides with the C-terminus of the peptides anchored to both bilayers. Therefore, we present here a computational study that compares the effect of symmetric and asymmetric arrangements of melittin peptides in the toroidal pore formation. We also investigate the role of the peptide secondary structure during the pore formation. Two sets of the symmetric and asymmetric pores are prepared, one with a helical peptide from the crystal structure and the other set with a less helical peptide. We observe a stable toroidal pore being formed only in the system with a symmetric arrangement of the less helical peptides. Based on the simulation results we propose that the symmetric arrangement of the peptides might be more favorable than the asymmetric arrangement, and that the helical secondary structure is not a prerequisite for the formation of the toroidal pore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号