首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 277 毫秒
1.
For clinical utility, cardiac grafts should be thick and compact, and contain physiologic density of metabolically active, differentiated cells. This involves the need to control the levels of nutrients, and most critically oxygen, throughout the construct volume. Most culture systems involve diffusional transport within the constructs, a situation associated with gradients of oxygen concentration, cell density, cell viability, and function. The goal of our study was to measure diffusional gradients of oxygen in statically cultured cardiac constructs, and to correlate oxygen gradients to the spatial distributions of cell number and cell viability. Using microelectrodes, we measured oxygen distribution in a disc-shaped constructs (3.6 mm diameter, 1.8 mm thickness) based on neonatal rat cardiomyocytes cultured on collagen scaffolds for 16 days in static dishes. To rationalize experimental data, a mathematical model of oxygen distribution was derived as a function of cell density, viability, and spatial position within the construct. Oxygen concentration and cell viability decreased linearly and the live cell density decreased exponentially with the distance from the construct surface. Physiological density of live cells was present only within the first 128 microm of the construct thickness. Medium flow significantly increased oxygen concentration within the construct, correlating with the improved tissue properties observed for constructs cultured in convectively mixed bioreactors.  相似文献   

2.
The heart is the first formed organ in the developing fetus. During fetal and postnatal development cardiomyocytes become terminally differentiated muscular cells that are connected end to end by gap junctions, allowing concerted contractile activity. The contraction-relaxation cycle of cardiomyocytes is orchestrated by cyclic increases and decreases in intracellular Ca(2+) initiated by depolarization of the sarcolemma and sustained by Ca(2+) release and re-uptake by the sarcoplasmic reticulum. When stressed, cardiomyocytes undergo hypertrophic growth and apoptotic responses in vivo as well as in cell culture models. Such changes predispose to heart failure in the longer term.  相似文献   

3.
Embryonic stem cells (ESCs) are an important source of cardiomyocytes for regenerating injured myocardium. The successful use of ESC-derived cardiomyocytes in cardiac tissue engineering requires an understanding of the important scaffold properties and culture conditions to promote cell attachment, differentiation, organization, and contractile function. The goal of this work was to investigate how scaffold architecture and coculture with fibroblasts influences the differentiated phenotype of murine ESC-derived cardiomyocytes (mESCDCs). Electrospinning was used to process an elastomeric biodegradable polyurethane (PU) into aligned or unaligned fibrous scaffolds. Bioreactor produced mESCDCs were seeded onto the PU scaffolds either on their own or after pre-seeding the scaffolds with mouse embryonic fibroblasts (MEFs). Viable mESCDCs attached to the PU scaffolds and were functionally contractile in all conditions tested. Importantly, the aligned scaffolds led to the anisotropic organization of rod-shaped cells, improved sarcomere organization, and increased mESCDC aspect ratio (length-to-diameter ratio) when compared to cells on the unaligned scaffolds. In addition, pre-seeding the scaffolds with MEFs improved mESCDC sarcomere formation compared to mESCDCs cultured alone. These results suggest that both fiber alignment and pre-treatment of scaffolds with fibroblasts improve the differentiation of mESCDCs and are important parameters for developing engineered myocardial tissue constructs using ESC-derived cardiac cells.  相似文献   

4.
Tissue engineering of 1- to 5-mm-thick, functional constructs based on cells that cannot tolerate hypoxia for prolonged time periods (e.g., cardiac myocytes) critically depends on our ability to seed the cells at a high and spatially uniform initial density and to maintain their viability and function. We hypothesized that rapid gel-cell inoculation in conjunction with direct medium perfusion through the seeded scaffold would increase the rate, yield, viability, and uniformity of cell seeding. Two cell types were studied: neonatal rat cardiomyocytes for feasibility studies of seeding and cultivation with direct medium perfusion, and C2C12 cells (a murine myoblast cell line) for detailed seeding studies. Cells were seeded at densities corresponding to those normally present in the adult rat heart ([0.5-1] x 10(8) cells/cm(3)), into collagen sponges (13 mm x 3 mm discs), using Matrigel as a vehicle for rapid cell delivery. Scaffolds inoculated with cell-gel suspension were seeded either in perfused cartridges with alternating medium flow or in orbitally mixed Petri dishes. The effects of seeding time (1.5 or 4.5 h), initial cell number (6 or 12 million cells per scaffold), and seeding set-up (medium perfusion at 0.5 and 1.5 mL/min; orbitally mixed dishes) were investigated using a randomized three-factor factorial experimental design with two or three levels and three replicates. The seeding cell yield was consistently high (over 80%), and it appeared to be determined by the rapid gel inoculation. The decrease in cell viability was markedly lower for perfused cartridges than for orbitally mixed dishes (e.g., 8.8 +/- 0.8% and 56.3 +/- 4%, respectively, for 12 million cells at 4.5 h post-seeding). Spatially uniform cell distributions were observed in perfused constructs, whereas cells were mainly located within a thin (100-200 microm) surface layer in dish seeded constructs. Over 7 days of cultivation, medium perfusion maintained the viability and differentiated function of cardiac myocytes, and the constructs contracted synchronously in response to electrical stimulation. Direct perfusion can thus enable seeding of hypoxia-sensitive cells at physiologically high and spatially uniform initial densities and maintain cell viability and function.  相似文献   

5.
The success of cellular cardiomyoplasty, a novel therapy for the repair of postischemic myocardium, depends on the anatomical integration of the engrafted cells with the resident cardiomyocytes. Our aim was to investigate the interaction between undifferentiated mouse skeletal myoblasts (C2C12 cells) and adult rat ventricular cardiomyocytes in an in vitro coculture model. Connexin43 (Cx43) expression, Lucifer yellow microinjection, Ca2+ transient propagation, and electrophysiological analysis demonstrated that myoblasts and cardiomyocytes were coupled by functional gap junctions. We also showed that cardiomyocytes upregulated gap junctional communication and expression of Cx43 in myoblasts. This effect required direct cell-to-cell contact between the two cell types and was potentiated by treatment with relaxin, a cardiotropic hormone with potential effects on cardiac development. Analysis of the gating properties of gap junctions by dual cell patch clamping showed that the copresence of cardiomyocytes in the cultures significantly increased the transjunctional current and conductance between myoblasts. Relaxin enhanced this effect in both the myoblast-myoblast and myoblast-cardiomyocyte cell pairs, likely acting not only on gap junction formation but also on the electrical properties of the preexisting channels. Our findings suggest that myoblasts and cardiomyocytes interact actively through gap junctions and that relaxin potentiates the intercellular coupling. A potential role for gap junctional communication in favoring the intercellular exchange of regulatory molecules, including Ca2+, in the modulation of myoblast differentiation is discussed. gap junctions; connexin43  相似文献   

6.
Summary Different models of isolated cardiomyocytes are generally used for biochemical, biophysical, and pharmacological studies. Fetal cardiomyocytes can be easily cultured for several weeks regaining their ability for rhythmical and synchronous contractions. For investigations, differentiated myocytes derived from adult hearts are closer to the in situ situation. Unfortunately, these cells at best exhibit irregular and asynchronous contractions at very low frequencies. Already 1 d after seeding calcium-tolerant rod-shaped adult cardiomyocytes on a suitable substrate, the differentiated cells begin to dedifferentiate forming a confluent monolayer. After 7–10 d their beating activities are like those of fetal cells. Therefore, we tried to combine the advantages of both cell types to achieve fully differentiated cardiomyocytes, rod-shaped and rhythmically beating, isolated from adult hearts. Using contractile fetal cells as a substrate for the adult cardiomyocytes, freshly seeded differentiated adult myocytes are paced by the contraction frequency of the fetal monolayer. As a consequence, the rod-shaped adult cardiomyocytes reach frequencies of more than 140 cycles/min without external electrical stimulation. This model enables us to study cardiomyocytes in a state very similar to the in situ situation with respect to morphology, integrity, and contractile behavior. An abstract of this article was previously published in Eur. J. Cell Biol. 57 (Suppl.36): 86; 1992.  相似文献   

7.
This study examined whether triiodo-L-thyronine (T3) affects the expression of the major intercellular channel protein, connexin-43, and contractile protein alpha-sarcomeric actin. Cultured cardiomyocytes from newborn rats were treated on day three in culture with 10 or 100 nM T3 and examined 48 and 72 h thereafter. Treated and untreated cells were examined by immunofluorescence and electron microscopy. Expression levels of Cx43 and sarcomeric alpha-actin were monitored by Western blot analysis. Immunofluorescence labeling showed cell membrane location of Cx43 in punctuate gap junctions, whereby fluorescence signal area was significantly higher in cultured cardiomyocytes exposed to T3. This correlated with electron microscopical findings showing increased numbers and size of gap junction profiles, as well as with a significant dose-dependent increase of Cx43 expression detected by Western blot. Immunofluorescence of sarcomeric a-actin was enhanced and its expression increased dose- and time-dependently in T3-treated cultured heart myocytes. However, exposure to the higher dosage (100 nM) of T3 caused mild disintegration of sarcomeric a-actin in some myocytes, suggesting an over-dosage. The results indicate that T3 up-regulates Cx43 and accelerates gap junction formation in cultured neonatal cardiomyocytes. They suggest that thyroid status cannot only modulate the mechanical function of cardiomyocytes but also cell-to-cell communication essential for myocardial electrical and metabolic synchronizations.  相似文献   

8.
Cardiomyocytes are generated from the precardiac mesoderm and the size of the heart increases dramatically during embryogenesis. However, it is unclear how differentiation and proliferation correlate in the cardiac cell line during development. Here, we show that cardiomyocytes re-entered into a proliferative state after differentiation with a concomitant cell cycle arrest in chick embryo. The cells in the course of differentiation from Isl1-positive cardiac precursors to cardiomyocytes did not proliferate, but differentiated cardiomyocytes proliferated even after the acquisition of contractile function. After differentiation, cardiomyocytes developed a proliferative potential to contribute to the increase in cell numbers during heart development. Almost all differentiated cardiomyocytes (82.8%) incorporated bromodeoxyuridine (BrdU) in vitro, indicating the ability of DNA replication. Furthermore, mitotic chromosomes were observed in the cardiomyocytes in which a sarcomeric structure was sustained in the cytoplasm. We conclude that the sequential events of the differentiation to contractile myocytes and the re-entry into the cell cycle are strictly regulated during cardiac cell maturation. These results provide an insight into the maturation mechanism of the cardiac cell line.  相似文献   

9.
In failing hearts cardiomyocytes undergo alterations in cytoskeleton structure, contractility and viability. It is not known presently, how stress-induced changes of myofibrils correlate with markers for cell death and contractile function in cardiomyocytes. Therefore, we have studied the progression of contractile dysfunction, myofibrillar damage and cell death in cultured adult cardiomyocytes exposed to the cancer therapy doxorubicin. We demonstrate, that long-term cultured adult cardiomyocytes, a well-established model for the study of myofibrillar structure and effects of growth factors, can also be used to assess contractility and calcium handling. Adult rat ventricular myocytes (ARVM) were isolated and cultured for a total of 14 days in serum containing medium. The organization of calcium-handling proteins and myofibrillar structure in freshly isolated and in long-term cultured adult cardiomyocytes was studied by immunofluorescence and electron microscopy. Excitation contraction-coupling was analyzed by fura 2 and video edge detection in electrically paced cardiomyocytes forming a monolayer, and cell death and viability was measured by TUNEL assay, LDH release, MTT assay, and Western blot for LC3. Adult cardiomyocytes treated with Doxo showed apoptosis and necrosis only at supraclinical concentrations. Treated cells displayed merely alterations in cytoskeleton organization and integrity concomitant with contractile dysfunction and up-regulation of autophagosome formation, but no change in total sarcomeric protein content. We propose, that myofibrillar damage contributes to contractile dysfunction prior to cell death in adult cardiomyocytes exposed to clinically relevant concentrations of anthracyclines.  相似文献   

10.
Neuronostatin, a recently discovered peptide encoded by somatostatin gene, is involved in regulation of neuronal function, blood pressure, food intake, and drinking behavior. However, the biological effects of neuronostatin on cardiac myocytes are not known, and the intracellular signaling mechanisms induced by neuronostatin remain unidentified. We analyzed the effect of neuronostatin in isolated perfused rat hearts and in cultured primary cardiomyocytes. Neuronostatin infusion alone had no effect on left ventricular (LV) contractile function or on isoprenaline- or preload-induced increase in cardiac contractility. However, infusion of neuronostatin significantly decreased the positive inotropic response to endothelin-1 (ET-1). This was associated with an increase in phosphorylation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase (JNK). Treatment of both neonatal and adult cardiomyocytes with neuronostatin resulted in reduced cardiomyocyte viability. Inhibition of JNK further increased the neuronostatin-induced cell death. We conclude that neuronostatin regulates cardiac contractile function and cardiomyocyte survival. Receptors for neuronostatin need to be identified to further characterize the biological functions of the peptide.  相似文献   

11.
We previously described cultures of chick embryo lens cells which displayed a marked degree of differentiation. In this report, the junctions found between the lens fiber-like cells in the differentiated "lentoids" are characterized in several ways. Thin-section methods with electron microscopy first demonstrated that numerous, large junctions between lentoid cells accompanied the other differentiated features of these cells. Freeze-fracture techniques, including quantitative analysis, then revealed that (a) junctional particles were loosely arranged as is typical of fiber cells, (b) the population of individual junctional areas in culture was indistinguishable from that found in 10- to 12-day chick embryo lenses, and (c) apparent junction formation occurred during the development of the lens cells, with lacy arrays of particles being associated with fiber-like junctions. In addition, gap junctions with hexagonally packed particles, typical of lens epithelial cells, largely disappeared during the course of differentiation. Injection of tracer dyes into lentoid cells resulted in rapid intercellular movement of dye, consistent with functional cell-to-cell channels connecting lentoid cells. During the development of the lens cells in culture, as junction formation occurred, an increase of approximately eight-fold in MP28 protein was observed within the cells. These combined results indicate that (a) extensive lens fiber junctions and functional cell-to-cell channels are found between differentiated lentoid lentoid cells in vitro, (b) lens fiber junctions appear to form during the course of lens cell differentiation in culture, (c) a significant increase occurs in the putative junctional protein before the cultures are highly developed, (d) the increased levels of MP28 and junction formation may be required for the full expression of the differentiated state in the lens fiber cell, and (e) this culture system should prove to be valuable for additional experiments on lens junctions and for other studies requiring the development of lens fiber cells in vitro.  相似文献   

12.
Even though endothelin is recognized as an important vasoregulatory molecule, the roles of endothelin receptors in specific cell types are not yet fully understood. Mice with a null mutation in endothelin A receptor gene (ET(A)) or in the gene of its ligand (endothelin 1) die neonatally due to craniofacial and cardiac abnormalities. This early lethality has in the past hindered studies on the role of endothelin in cardiovascular physiology and pathophysiology. To overcome this obstacle, we utilized the cre/loxP technology to generate mice in which the ET(A) gene could be deleted specifically in cardiomyocytes. The cre recombinase transgene driven by the alpha-myosin heavy-chain promoter deleted the floxed ET(A) allele specifically in the hearts of these mice, resulting in a 78% reduction in cardiac ET(A) mRNA level compared to wild-type controls. Cardiomyocyte-specific ET(A) knockout animals are viable and exhibit normal growth, cardiac anatomy, and cardiac contractility, as assessed by echocardiography. In addition, these animals exhibit hypertrophic and contractile responses to 10-day infusion of angiotensin II or isoproterenol similar to those observed in control animals. These results indicate that in adult mice cardiac ET(A) receptors are not necessary for either baseline cardiac function or stress-induced response to angiotensin II or isoproterenol.  相似文献   

13.
Abnormalities in cardiac gap junction expression have been postulated to contribute to arrhythmias and ventricular dysfunction. We investigated the role of cardiac gap junctions by generating a heart-specific conditional knock-out (CKO) of connexin43 (Cx43), the major cardiac gap junction protein. While the Cx43 CKO mice have normal heart structure and contractile function, they die suddenly from spontaneous ventricular arrhythmias. Because abnormalities in gap junction expression in the diseased heart can be focal, we also generated chimeric mice formed from Cx43-null embryonic stem (ES) cells and wildtype recipient blastocysts. Heterogeneous Cx43 expression in the chimeric mice resulted in conduction defects and depressed contractile function. These novel genetic murine models of Cx43 loss of function in the adult mouse heart define gap junctional abnormalities as a key molecular feature of the arrhythmogenic substrate and an important factor in heart dysfunction.  相似文献   

14.
Abnormalities in cardiac gap junction expression have been postulated to contribute to arrhythmias and ventricular dysfunction. We investigated the role of cardiac gap junctions by generating a heart-specific conditional knock-out (CKO) of connexin43 (Cx43), the major cardiac gap junction protein. While the Cx43 CKO mice have normal heart structure and contractile function, they die suddenly from spontaneous ventricular arrhythmias. Because abnormalities in gap junction expression in the diseased heart can be focal, we also generated chimeric mice formed from Cx43-null embryonic stem (ES) cells and wildtype recipient blastocysts. Heterogeneous Cx43 expression in the chimeric mice resulted in conduction defects and depressed contractile function. These novel genetic murine models of Cx43 loss of function in the adult mouse heart define gap junctional abnormalities as a key molecular feature of the arrhythmogenic substrate and an important factor in heart dysfunction.  相似文献   

15.
An experimental model of mouse embryonic stem cell (ESC) differentiation into cells with contractile activity (similar to that of cardiomyocytes) without embryoid body formation has been obtained. The main factor inducing ESC differentiation along the cardiomyocyte pathway is recombinant cytokine LIF added in the course of long-term culturing. The contractile cells respond positively to treatment with isoproterenol, a cardioactive drug, which is evidence for the presence in these cells of β-adrenoreceptors characteristic of terminally differentiated mammalian cardiomyocytes.  相似文献   

16.
Endothelin (ET-1) is found at elevated concentrations in the plasma of patients with heart failure and in animal models of cardiomyopathy. The peptide is a potent positive inotropic agent, the effects of which are mediated by increases in cytosolic Ca2+ in cardiomyocytes. The object of this study was to investigate at the cellular level, the actions of ET-1 on contractile function and on Ca2+ currents in heart-failed ventricular myocardium. Male New Zealand White rabbits (8 wks) were treated with twice weekly injections of epirubicin (4 mg/kg/wk, n=7) or with saline (n=7) for 6 wks, followed by a washout period of 2 wks. Ventricular cardiomyocytes were isolated from rabbit hearts using Langendorff perfusion with collagenase; contractile function was examined using a video microscopy method, and L-type Ca2+ currents were recorded using a whole-cell patch-clamp technique. ET-1 produced a concentration-dependent increase in contractile response (% increase from basal value) to a maximum at 1 nM ET-1 of 69 ± 11% (mean ± S.D.) in control cardiomyocytes and 33 ± 6% in heart-failed cells. However, there was no significant change in the EC50 obtained with ET-1 for healthy (0.31 ± 0.1 nM) and for failed cardiomyocytes (0.24 ± 0.1 nM). The effects of ET-1 on L-type Ca2+ channels were similar with a peak amplitude at 1 nM ET-1 of –3.26 ± 0.8 in control cardiomyocytes and –3.32 ± 0.9 nA in heart-failed cells. The attenuation of the contractile response to ET-1 in heart-failed cells may reflect a desensitization of ET receptors as a consequence of elevated circulating levels of ET and was not reflected by alteration of transmembrane Ca2+ conductance. It is probable, therefore, that multiple signalling pathways are involved in the actions of ET on ventricular myocardium.Recipient of Servier Investigator Award  相似文献   

17.
The pore-forming gap junctional protein connexin 43 (Cx43) has a short (1-3 h) half-life in cells in tissue culture and in whole tissues. Although critical for cellular function in all tissues, the process of gap junction turnover is not well understood because treatment of cells with a proteasomal inhibitor results in larger gap junctions but little change in total Cx43 protein whereas lysosomal inhibitors increase total, mostly nonjunctional Cx43. To better understand turnover and identify potential sites of Cx43 ubiquitination, we prepared constructs of Cx43 with different lysines converted to arginines. However, when transfected into cells, a mutant version of Cx43 with all lysines converted to arginines behaved similarly to wild type in the presence of proteasomal and lysosomal inhibitors, indicating that ubiquitination of Cx43 did not appear to be playing a role in gap junction stability. Through the use of inhibitors and dominant negative constructs, we found that Akt (protein kinase B) activity controlled gap junction stability and was necessary to form larger stable gap junctions. Akt activation was increased upon proteasomal inhibition and resulted in phosphorylation of Cx43 at Akt phosphorylation consensus sites. Thus, we conclude that Cx43 ubiquitination is not necessary for the regulation of Cx43 turnover; rather, Akt activity, probably through direct phosphorylation of Cx43, controls gap junction stability. This linkage of a kinase involved in controlling cell survival and growth to gap junction stability may mechanistically explain how gap junctions and Akt play similar regulatory roles.  相似文献   

18.
Although endothelin-1 (ET-1) stimulates vascular endothelial growth factor (VEGF) expression in a variety of cells, including endothelial cells and vascular smooth muscle cells, the effects of ET-1 on expression of VEGF and its receptors in cardiomyocytes are unknown. In the present study, we found that treatment of neonatal rat cardiomyocytes with ET-1 for 24 h resulted in upregulation of VEGF and its two principal receptors, fetal liver kinase 1 and fms-like tyrosine kinase 1, in a concentration-dependent manner (10(-12) to 10(-6) M). ET-1 treatment also caused significant cardiomyocyte hypertrophy, as indicated by increases in cell surface area and [(14)C]leucine uptake by cardiomyocytes. Treatment with TA-0201 (10(-6) M), an ET(A)-selective blocker, eliminated ET-1-induced overexpression of VEGF and its receptors as well as cardiomyocyte hypertrophy. Treatment with VEGF neutralizing peptides (5-10 mug/ml) partially but significantly inhibited ET-1-induced cardiomyocyte hypertrophy. These results suggest that ET-1 treatment of cardiomyocytes promotes overexpression of VEGF and its receptors via activation of ET(A) receptors, and consequently the upregulated VEGF signaling system appears to contribute, at least in part, to ET-1-induced cardiomyocyte hypertrophy.  相似文献   

19.
The behaviour of primary cultures of dissociated embryonic chick pigmented retina epithelial (PRE) cells has been investigated. Isolated PRE cells have a mean speed of locomotion of 7-16 mum/h. Collisions between the cells normally result in the development of stable contacts between the cells involved. This leads to a gradual reduction in the number of isolated cells and an increase in the number of cells incorporated into islands. Ultrastructural observations of islands of cells after 24 h in culture show that junctional complexes are present between the cells. These complexes consist of 2 components: (a) an apically situated region of focal tight junctions and/or gap junctions, and (b) a more ventrally located zonula adhaerens with associated cytoplasmic filaments forming a band running completely around the periphery of each cell. The intermembrane gap in the region of the zonula is 6-0-12-0 nm. The junctional complexes become more differentiated with time and after 48 h in culture consist of an extensive region of tight junctions and/or gap junctions and a more specialized zonula adhaerens. It is suggested that the development of junctional complexes may be responsible for the stable contacts that the cells display in culture.  相似文献   

20.
Glial cells in the brain are known to provide structural and functional supports to neurons. To sustain such a supportive role, they have developed cell-to-cell communicating gap junctional channels. The authors studied the effect of dbcAMP on gap junctional channels mediated communication in C6 cells, a rat glioma cell line. Quantitative assessment of coupled cells under microscope after microinjection of a fluorescent dye was taken as a measure of junctional permeability. An enhanced coupling between cells was observed following dbcAMP treatment and this elevated coupling was found to be dependent on the duration of exposure of cells to dbcAMP. The studies have focused on a subtle shift in the spatial organization of the functional channels to the processes of dbcAMP induced differentiated cells from the cell cytoplasms and membranes of dbcAMP untreated cells. Immunofluorescence study with affinity purified antibody against gap junction further confirmed the spatial distribution of gap junctional protein(s) in the processes and also showed an increase in the density of the protein at the intercellular spaces in dbcAMP induced differentiated C6 glioma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号