首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本研究为从云南腾冲热泉中分离纯化得到一株产高温蛋白酶的菌株并对其进行驯化培养,用以探究该菌株的生长条件及酶学特性,通过选择培养基筛选能够分解脱脂奶粉产蛋白酶的菌株,应用常规方法液体培养菌体,探究温度、pH、碳源、氮源对菌株生长情况的影响,并采用福林酚法测蛋白酶活性。并提取蛋白酶液对酶的最适pH、温度以及热稳定性、pH稳定性进行研究。结果发现通过含脱脂奶粉的固体培养基筛选得到一株产蛋白酶菌株A-2,经过生理生化试验和16S rDNA鉴定知该菌种属于Aneurinibacillus属。酵母粉、葡萄糖、55℃、pH值7.5分别为菌株生长的最适氮源、碳源、温度和pH。此外该菌株所产的蛋白酶最适温度为60℃,在pH值7~9具有较好的酶活性。因此,该菌株为嗜热芽孢杆菌,所产的碱性蛋白酶具有较高的耐受温度和pH稳定性,为进一步开发利用提供参考的价值。  相似文献   

2.
An organic solvent-tolerant bacterium designated as 146 capable of producing an organic solvent-stable alkaline protease was isolated from contaminated soil of a wood factory. The strain was a Gram-positive, spore-forming, nitrate-positive, rod-shaped organism capable of hydrolysing gelatine, starch, skim milk and identified asBacillus cereus. Activity of the protease was drastically increased in the presence of 1–decanol, isooctane, n-dodecane and n-tetradecane, but reduced in the presence of ethyl acetate, benzene, toluene, 1-heptanol, ethylbenzene and hexane. The bacterium was shown to require lactose as a carbon source and peptone as a nitrogen source. The optimum fermentation condition for the production of alkaline protease was in the presence of beef and yeast extract. Optimum pH was determined to be at 10.0 at incubation temperature of 37 °C for 48 h. Results from the studies suggest that 146 is a new strain of Bacillus cereus capable of producing organic solvent-tolerant alkaline protease with potential use in industries.  相似文献   

3.
beta-D-Galactosidase (EC 3.2.1.23) was extracted from Streptococcus thermophilus grown in deproteinized cheese whey. Cultural conditions optimum for maximum enzyme production were pH 7.0, 40 degrees C, and 24 h. Proteose peptone (2.0%, wt/vol) and corn steep liquor (2.8%, wt/vol) were highly stimulatory, increasing the enzyme units available in their absence from 660 U/liter of medium to 18,200 and 10,000 U/liter of medium, respectively, in their presence. There was an insignificant increase in the production of enzyme in the presence of added inorganic nitrogen and phosphorus sources. Enzymatic hydrolysis for recuction of lactose content in aqueous solution and in skim milk was studied.  相似文献   

4.
beta-D-Galactosidase (EC 3.2.1.23) was extracted from Streptococcus thermophilus grown in deproteinized cheese whey. Cultural conditions optimum for maximum enzyme production were pH 7.0, 40 degrees C, and 24 h. Proteose peptone (2.0%, wt/vol) and corn steep liquor (2.8%, wt/vol) were highly stimulatory, increasing the enzyme units available in their absence from 660 U/liter of medium to 18,200 and 10,000 U/liter of medium, respectively, in their presence. There was an insignificant increase in the production of enzyme in the presence of added inorganic nitrogen and phosphorus sources. Enzymatic hydrolysis for recuction of lactose content in aqueous solution and in skim milk was studied.  相似文献   

5.
目的 确定培养条件对产表面活性剂菌株BS-5的生长及降解特性的影响。方法 利用紫外分光光度法、表面张力测定法和气相色谱‒质谱联用仪(GC-MS),分别以菌体浓度、培养液表面张力及原油降解率为评价指标。结果 菌体生长与产表面活性物质的能力及降解能力呈正相关,且确定最优碳源为0.5%的可溶性淀粉,氮源为1.0%的玉米浆,降解时间为6 d,在此条件下原油降解率最高达42.3%。结论 菌株培养条件的优化提高了菌株自身生长、产表面活性剂及降解原油的能力,为石油污染修复提供理论依据。  相似文献   

6.
Summary Cheese whey ultrafiltrate (WU) was used as the carbon source for the production of lactic acid by batch fermentation with Lactobacillus helveticus strain milano. The fermentation was conducted in a 400 ml fermentor at an agitation rate of 200 rpm and under conditions of controlled temperature (42° C) and pH. In the whey ultrafiltrate-corn steep liquor (WU-CSL) medium, the optimal pH for fermentation was 5.9. Inoculum propagated in skim milk (SM) medium or in lactose synthetic (LS) medium resulted in the best performance in fermentation (in terms of growth, lactic acid production, lactic acid yield and maximum productivity of lactic acid), as compared to that propagated in glucose synthetic (GS) medium. The yeast extract ultrafiltrate (YEU) used as the nitrogen/growth factor source in the WU medium at 1.5% (w/v) gave the highest maximum productivity of lactic acid of 2.70 g/l-h, as compared to the CSL and the tryptone ultrafiltrate (TU). L. helveticus is more advantageous than Streptococcus thermophilus and Lactobacillus delbrueckii for the production of lactic acid from WU. The L. helveticus process will provide an alternative solution to the phage contamination in dairy industries using Lactobacillus bulgaricus.  相似文献   

7.
An organic solvent-tolerant bacterium producing an organic solvent-stable protease was isolated from soil and identified as Pseudomonas aeruginosa strain K. Nutritional requirements for optimized protease production by this strain were investigated. Maximum protease activity was achieved with sorbitol as the sole carbon source, followed by starch and lactose at pH 7.0 and 37 °C. Dextrose, sucrose and glycerol greatly reduced the protease production. The best organic nitrogen source was casamino acid. Tryptone, soytone and yeast extract supported protease production while corn steep liquor and beef extract inhibited the protease activity. Significant protease production was observed with sodium nitrate as a sole nitrogen source however, ammonium nitrate completely inhibit it. More than 62% drop in production occurred in the presence of amino acids. Addition of metal ions such as K+, Mg2+ and Ca2+ maximized the enzyme production.  相似文献   

8.
Summary Fifty strains were isolated from different soil samples on synthetic medium containing inulin as a sole carbon source for the production of extracellular inulinase. Of them, five isolates showed high inulinase activity and one of them was selected for identification and medium optimization studies. The isolate was identified as Aspergillus niger. Various physical and chemical parameters were optimized for inulinase production. Maximum productivity of inulinase (176 U ml−1) was achieved by employing medium containing 5% (w/v) inulin, galactose as additional carbon source, corn steep liquor and (NH4)H2PO4 as nitrogen sources, incubation period of 72 h, incubation temperature of 28 °C, pH 6.5, inoculum load at 10% (v/v) level and medium volume to flask volume ratio of 1:20 (v/v) with indented flasks.  相似文献   

9.
The aim of the present investigation was to comparatively evaluate the behaviour of A. niger and its derepressed mutant in production of α-galactosidase in submerged (SmF) and solid state fermentation (SSF) using basal Vogel’s medium or corn steep liquor as nitrogen source and observe the response of latter source under both cultural techniques under different temperature regimes, and determine if SSF can be exploited in a wide range of temperature expected to vary in this fermentation system. All studies were performed in both systems under pre-optimized cultural conditions. Higher melting temperature and negative values of entropy of activation in SSF indicated that the genetic system of both organisms was thermodynamically resistant in the presence of corn steep liquor but sensitive to inactivation in the presence of Vogel’s nitrogen sources in submerged fermentation. This was reflected as the organisms demanded higher magnitudes of energy for product formation in the presence of ammonium salts. Studies on influence of corn steep liquor revealed that it had stabilizing effect too in both fermentation systems but the mutant strain was more stable in both fermentation systems. Because of these properties, the mutant organism may be exploited for bulk production of α-galactosidase in SSF under condition where temperature may fluctuate during fermentation.  相似文献   

10.
A recombinant E. coli strain (K24K) was constructed and evaluated for poly(3-hydroxybutyrate) (PHB) production from whey and corn steep liquor as main carbon and nitrogen sources. This strain bears the pha biosynthetic genes from Azotobacter sp. strain FA8 expressed from a T5 promoter under the control of the lactose operator. K24K does not produce the lactose repressor, ensuring constitutive expression of genes involved in lactose transport and utilization. PHB was efficiently produced by the recombinant strain grown aerobically in fed-batch cultures in a laboratory scale bioreactor on a semisynthetic medium supplemented with the agroindustrial by-products. After 24 h, cells accumulated PHB to 72.9% of their cell dry weight, reaching a volumetric productivity of 2.13 g PHB per liter per hour. Physical analysis of PHB recovered from the recombinants showed that its molecular weight was similar to that of PHB produced by Azotobacter sp. strain FA8 and higher than that of the polymer from Cupriavidus necator and that its glass transition temperature was approximately 20°C higher than those of PHBs from the natural producer strains.  相似文献   

11.
The production of extracellular proteinase by Pseudomonas fragi ATCC 4973 grown in a defined citrate medium, containing glutamine as the sole nitrogen source, was determined under varying cultural conditions. Simultaneous evaluation of cultural conditions using a 'centroid search' optimization technique showed that the optimum cultural conditions for proteinase production by Ps. fragi were: incubation temperature, 12.5 degrees C; incubation time, 38 h; initial pH, 6.8; organic nitrogen concentration, 314 mmol nitrogen/l (glutamine); a gas mixture containing 16.4% oxygen flowing over the medium (7.42 ppm dissolved oxygen). Oxygen was the major factor influencing proteinase production by Ps. fragi. The results may have applications in the storage of fluid milk. Centroid search optimization was shown to be suitable for microbiological experiments.  相似文献   

12.
Lysozyme is an antimicrobial compound, which has been used in pharmaceutical and food industries. Chicken egg is the commercial source of lysozyme. However, human lysozyme is more effective and safer than egg-white lysozyme. Human milk is an important source for human lysozyme, but it is not feasible to provide the needed lysozyme commercially. Biofilm reactors provide passive immobilization of cells onto the solid support, which may lead to higher productivity. The aim was to evaluate the fermentation medium composition for enhanced human lysozyme production by Kluyveromyces lactis K7 in biofilm reactor with plastic composite supports. Yeast nitrogen base was selected as the best nitrogen source when compared to the yeast extract and corn steep liquor. Moreover, inhibition effect of NaCl and NH4Cl at the concentrations of 25 and 50 mM was observed. Three factors Box–Behnken response surface design was conducted and the results suggested 16.3% lactose, 1.2% casamino acid, 0.8% yeast nitrogen base as optimum medium composition for maximum human lysozyme production. Overall, the human lysozyme production by K. lactis K7 was increased to 173 U/ml, which is about 23% improvement in biofilm reactor and 57% improvement compared to the suspended-cell fermentation.  相似文献   

13.
Syncephalastrum racemosum grown as a static culture showed maximum lipase production at 30°C in 2d at pH 8.0. When the medium was supplemented with fructose, maximum production of lipase per unit of growth was achieved, followed by raffinose, sucrose, ribose, galactose, maltose, lactose, mannitol and glucose. Amongst the nitrogen sources tested, corn steep liquor at 8% (v/v) produced maximum enzyme; there was evidence of catabolite repression by glucose when groundnut protein, soybean meal, milk casein or wheat bran were the sources of nitrogen. Calcium, potassium and sodium citrates, each at 0.1% (w/v), increased the yield of lipase.  相似文献   

14.
溶剂稳定性蛋白酶产生菌Bacillus licheniformis YP1分离自油田土样。考察了碳源、氮源、金属离子等营养因素对YP1菌株发酵产溶剂稳定性蛋白酶的影响。YP1菌株发酵产胞外蛋白酶的最佳碳源为淀粉,果糖、甘露糖和乳糖显著抑制产酶;最佳氮源为酵母膏,干酪素、酵母粉和牛肉膏促进产酶,玉米浆和尿素显著抑制产酶。Mn^2+可以显著促进酶活,Mg^2+可以促进产酶,在初步优化的培养条件下,YP1菌株的胞外蛋白酶产量达980U。  相似文献   

15.
The influence of carbon, nitrogen, and phosphate concentrations on growth and proteinase production by Pseudomonas fluorescens 32A was examined. In mineral salts medium containing dialyzed skim milk supernatant as an inducer, maximum growth was obtained at 1.0 and 2.5 mM orthophosphate at 20 and 5°C, respectively. At both temperatures, 5 mM orthophosphate was required for maximum proteinase production, whereas significant inhibition was found at 10 mM. Orthophosphate was the only phosphate compound able to support growth. With sodium pyruvate as the carbon source, maximum enzyme synthesis was at 100 mM carbon at both temperatures. At both 20 and 5°C maximum growth and enzyme production was found with 10 mM NH4Cl. A bioassay for available phosphate based on the growth of P. fluorescens 32A in phosphate-limited mineral salts medium showed that skim milk and skim milk supernatant contained 50 and 10 mM orthophosphate, respectively. Proteinase production in skim milk was 2.6- and 12-fold greater than that in optimal mineral salts medium at 20 and 5°C, respectively. These results suggest that proteinase production in milk does not occur as a result of nutrient limitation and may be regulated in part by milk phosphates.  相似文献   

16.
An extracellular lipase-producing fungus was isolated from the garden soil of the Post Graduate Department of Botany, Utkal University, Bhubaneswar, Odisha, India and identified as Aspergillus terreus. The A. terreus strain isolated was found to be capable of producing lipase in both solid state culture and liquid static surface culture. Experiments aimed at evaluating and improving the production of lipase and at studying the culture conditions revealed that of the many different materials tested as substrates, mustard oil cake (MoC) was the best substrate for extracellular lipase production. A correlation was found between the lipase production profile and biomass development. In a study aimed at continuing this line of research, we have investigated the influence of various culture conditions, such as environmental (i.e. temperature and pH), nutritional (i.e. carbon, nitrogen, metal ions, vitamins, combined agro-wastes and growth regulators) and other factors (inoculum size and initial moisture content) on the production of lipase by A. terreus in solid state and liquid static surface cultures. We observed that optimum lipase biosynthesis occurred under the following conditions: initial pH of 6.0, 30 °C, a 96-h incubation, lactose and ammonium persulphate as the carbon and nitrogen source respectively and 80 % moisture content. Changes in the vitamins (vitamin C, riboflavin, folic acid and vitamin E) and growth regulators (gibberellic acid, kinetin, 6-benzylaminopurine and 2,4-dichlorophenoxyacetic acid) did not support enhanced lipase production. MoC and neem oil cake (NoC) added to the media at a ratio of 9:1 respectively, supported maximum lipase production. Based on these results, we concluded that controlling the various culture conditions, supplementing MoC as a substrate and nutrient source modification of the medium can spectacularly enhance lipase biosynthesis by A. terreus.  相似文献   

17.
Chitinase is one of the important mycolytic enzymes with industrial significance, and is produced by a number of organisms, including bacteria. In this study, we describe isolation, characterization and media optimization for chitinase production from a newly isolated thermotolerant bacterial strain, BISR-047, isolated from desert soil and later identified as Paenibacillus sp. The production of extracellularly secreted chitinase by this strain was optimized by varying pH, temperature, incubation period, substrate concentrations, carbon and nitrogen source,etc. The maximum chitinase production was achieved at 45 °C with media containing (in g/l) chitin 2.0, yeast extract 1.5, glycerol 1.0, and ammonium sulphate 0.2 % (media pH 7.0). A three-fold increase in the chitinase production (712 IU/ml) was found at the optimized media conditions at 6 days of incubation. The enzyme showed activity at broad pH (3–10) and temperature (35–100 °C) ranges, with optimal activity displayed at pH 5.0 and 55 °C, respectively. The produced enzyme was found to be highly thermostable at higher temperatures, with a half-life of 4 h at 100 °C.  相似文献   

18.
Improved medium for lactic streptococci and their bacteriophages   总被引:234,自引:140,他引:94       下载免费PDF全文
Incorporation of 1.9% β-disodium glycerophosphate (GP) into a complex medium resulted in improved growth by lactic streptococci at 30 C. The medium, called M17, contained: Phytone peptone, 5.0 g; polypeptone, 5.0 g; yeast extract, 2.5 g; beef extract, 5.0 g; lactose, 5.0 g; ascorbic acid, 0.5 g; GP, 19.0 g; 1.0 M MgSO4·7H2O, 1.0 ml; and glass-distilled water, 1,000 ml. Based on absorbance readings and total counts, all strains of Streptococcus cremoris, S. diacetilactis, and S. lactis grew better in M17 medium than in a similar medium lacking GP or in lactic broth. Enhanced growth was probably due to the increased buffering capacity of the medium, since pH values below 5.70 were not reached after 24 h of growth at 30 C by S. lactis or S. cremoris strains. The medium also proved useful for isolation of bacterial mutants lacking the ability to ferment lactose; such mutants formed minute colonies on M17 agar plates, whereas wild-type cells formed colonies 3 to 4 mm in diameter. Incorporation of sterile GP into skim milk at 1.9% final concentration resulted in enhanced acid-producing activity by lactic streptococci when cells were inoculated from GP milk into skim milk not containing GP. M17 medium also proved superior to other media in demonstrating and distinguishing between lactic streptococcal bacteriophages. Plaques larger than 6 mm in diameter developed with some phage-host combinations, and turbid plaques, indicative of lysogeny, were also easily demonstrated for some systems.  相似文献   

19.
A strain of Penicillium patulum, isolated from cheddar cheese, produced patulin when grown on liquid media containing lactose and milk nitrogen sources. Patulin production was affected by the temperature of incubation, the type and amount of carbohydrate, and the type of nitrogen source present. Patulin levels generally were depressed by incubation at 5 C and low carbohydrate levels. Patulin was produced at low levels in the absence of sugars at 5 C when the mold was grown on milk nitrogen sources. No patulin was detected in cultures grown on 25% casein slurries or cheddar cheese, even though growth of the mold was extensive.  相似文献   

20.
Production of Bakers' Yeast in Cheese Whey Ultrafiltrate   总被引:2,自引:1,他引:1       下载免费PDF全文
A process for the production of bakers' yeast in whey ultrafiltrate (WU) is described. Lactose in WU was converted to lactic acid and galactose by fermentation. Streptococcus thermophilus was selected for this purpose. Preculturing of S. thermophilus in skim milk considerably reduced its lag. Lactic fermentation in 2.3×-concentrated WU was delayed compared with that in unconcentrated whey, and fermentation could not be completed within 60 h. The growth rate of bakers' yeast in fermented WU differed among strains. The rate of galactose utilization was similar for all strains, but differences in lactic acid utilization occurred. Optimal pH ranges for galactose and lactic acid utilization were 5.5 to 6.0 and 5.0 to 5.5, respectively. The addition of 4 g of corn steep liquor per liter to fermented WU increased cell yields. Two sources of nitrogen were available for growth of Saccharomyces cerevisiae: amino acids (corn steep liquor) and ammonium (added during the lactic acid fermentation). Ammonium was mostly assimilated during growth on lactic acid. This process could permit the substitution of molasses by WU for the industrial production of bakers' yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号