首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Administration of nitric oxide (NO) donors during ischemia and reperfusion protects from myocardial injury. However, whether administration of an NO donor during a brief period prior to ischemia protects the myocardium and the endothelium against ischemia-reperfusion injury in vivo is unknown. To study this possibility anesthetized pigs were subjected to 45-min ligation of the left anterior descending coronary artery (LAD) followed by 4h of reperfusion. In initial dose-finding experiments, vehicle or three different doses of the NO donor S-nitroso-N-acetyl-D,L-penicillamin (SNAP; 0.1; 0.5; 2.5 micromol) were infused into the LAD for 3 min starting 13 min during ischemia. Only the 0.5 micromol dose of SNAP reduced infarct size (from 85+/-3% of the area at risk in the vehicle group to 63+/-3% in the SNAP-treated group; p<0.01). There were no significant differences in hemodynamics in the vehicle and SNAP groups during ischemia-reperfusion. Endothelium-dependent dilatation of coronary microvasculature induced by substance P was larger in the SNAP group than in the vehicle group. Myeloperoxidase activity was lower in the ischemic/reperfused myocardial area of pigs given SNAP (4.97+/-0.61 U/g) than in vehicle-treated pigs (8.45+/-0.25 U/g; p<0.05). It is concluded that intracoronary administration of the NO donor SNAP for a brief period before ischemia reduces infarct size, attenuates neutrophil accumulation, and improves endothelial function. These results suggest that NO exerts a classic preconditioning-like protection against ischemia-reperfusion injury in vivo in a narrow concentration range.  相似文献   

2.
Postconditioning, i.e., brief intermittent episodes of myocardial ischemia-reperfusion performed at the onset of reperfusion, reduces infarct size after prolonged ischemia. Our goal was to determine whether postconditioning is protective against myocardial stunning. Accordingly, conscious chronically instrumented dogs (sonomicrometry, coronary balloon occluder) were subjected to a control sequence (10 min coronary artery occlusion, CAO, followed by coronary artery reperfusion, CAR) and a week apart to postconditioning with four cycles of brief CAR and CAO performed at completion of the 10 min CAO. Three postconditioning protocols were investigated, i.e., 15 s CAR/15 s CAO (n=5), 30 s CAR/30 s CAO (n=7), and 1 min CAR/1 min CAO (n=6). Left ventricular wall thickening was abolished during CAO and similarly reduced during subsequent stunning in control and postconditioning sequences (e.g., at 1 h CAR, 33+/-4 vs. 34+/-4%, 30+/-4 vs. 30+/-4%, and 33+/-4 vs. 32+/-4% for 15 s postconditioning, 30 s postconditioning, and 1 min postconditioning vs. corresponding control, respectively). We confirmed this result in anesthetized rabbits by demonstrating that shortening of left ventricular segment length was similarly depressed after 10 min CAO in control and postconditioning sequences (4 cycles of 30 s CAR/30 s CAO). In additional rabbits, the same postconditioning protocol significantly reduced infarct size after 30 min CAO and 3 h CAR (39+/-7%, n=6 vs. 56+/-4%, n=7 of the area at risk in postconditioning vs. control, respectively). Thus, contrasting to its beneficial effects on myocardial infarction, postconditioning does not protect against myocardial stunning in dogs and rabbits. Conversely, additional episodes of ischemia-reperfusion with postconditioning do not worsen myocardial stunning.  相似文献   

3.
The purpose of this study was to determine whether the adenosine A1/A2a receptor agonist AMP-579 induces acute and delayed preconditioning against in vivo myocardial stunning. Regional stunning was produced by 15 min of coronary artery occlusion and 3 h of reperfusion (RP) in anesthetized open-chest pigs. In acute protection studies, animals were pretreated with saline, low-dose AMP-579 (15 microg/kg iv bolus 10 min before ischemia), or high-dose AMP-579 (50 microg/kg iv at 14 microg/kg bolus + 1.2 microg.kg(-1).min(-1) for 30 min before coronary occlusion). The delayed preconditioning effects of AMP-579 were evaluated 24 h after administration of saline vehicle or high-dose AMP-579 (50 microg/kg iv). Load-insensitive contractility was assessed by measuring regional preload recruitable stroke work (PRSW) and PRSW area. Acute preconditioning with AMP-579 dose dependently improved regional PRSW: 129 +/- 5 and 100 +/- 2% in high- and low-dose AMP-579 groups, respectively, and 78 +/- 5% in the control group at 3 h of RP. Administration of the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (0.7 mg/kg) blocked the acute protective effect of high-dose AMP-579, indicating that these effects are mediated through A1 receptor activation. Delayed preconditioning with AMP-579 significantly increased recovery of PRSW area: 64 +/- 5 vs. 33 +/- 5% in control at 3 h of RP. In isolated perfused rat heart studies, kinetics of the onset and washout of AMP-579 A1 and A2a receptor-mediated effects were distinct compared with those of other adenosine receptor agonists. The unique nature of the adenosine agonist AMP-579 may play a role in its ability to induce delayed preconditioning against in vivo myocardial stunning.  相似文献   

4.
This study was conducted to examine the relationship between myocardial ATP-sensitive potassium (K(ATP)) channels and sex differences in myocardial infarct size after in vitro ischemia-reperfusion (I/R). Hearts from adult male and female Sprague-Dawley rats were excised and exposed to an I/R protocol (1 h of ischemia, followed by 2 h of reperfusion) on a modified Langendorff apparatus. Hearts from female rats showed significantly smaller infarct sizes than hearts from males (23 +/- 4 vs. 40 +/- 5% of the zone at risk, respectively; P < 0.05). Administration of HMR-1098, a sarcolemmal K(ATP) channel blocker, abolished the sex difference in infarct size (42 +/- 4 vs. 45 +/- 5% of the zone at risk in hearts from female and male rats, respectively; P = not significant). Further experiments showed that blocking the K(ATP) channels in ischemia, and not reperfusion, was sufficient to increase infarct size in female rats. These data demonstrate that sarcolemmal K(ATP) channels are centrally involved in mechanisms that underlie sex differences in the susceptibility of the intact heart to I/R injury.  相似文献   

5.
Phillips AB  Ko W 《Life sciences》2007,81(17-18):1355-1361
Preconditioning (PC) is a potential approach to myocardial protection. We hypothesize that brief ischemia or adenosine given prior to an extended period of warm ischemia may prevent myocardial stunning by altering myocardial metabolism. Using a global ischemia model, 19 dogs were subjected to no PC(control), two episodes of ischemia (2 min of global ischemia followed by 3 min of reperfusion) (IPC), or 30 min of pulmonary artery adenosine infusion (AP), to a maximum of 350 microg/kg/min, followed by 20 min of global warm ischemia on cardiopulmonary bypass. Left ventricular pressure-volume loops and myocardial oxygen consumption (MVO(2)) were measured at baseline and after 60 min of reperfusion, on right heart bypass. All data were compared between baseline and reperfusion. Load independent left ventricular function, defined as preload recruitable stroke work (PRSW), decreased in control and IPC groups (72+/-7%, 71+/-12%, respectively). AP blunted the decrease in PRSW (45+/-9%, p<.05 compared to control). Myocardial energetic conversion efficiency, defined as the slope of the MVO(2)-Stroke work relationship was not significantly changed for controls (2.17+/-0.47 to 1.84+/-0.68) and IPC (2.99+/-0.45 to 2.16+/-0.65), but was for AP (1.16+/-0.88 to 5.71+/-1.66, p<0.04). IPC did not prevent ventricular stunning or alter myocardial energetics. AP reduced ventricular stunning but resulted in worsened myocardial energy efficiency. The benefits to ventricular function of the adenosine pretreatment protocol used in this study were only possible at a cost of higher metabolic requirements.  相似文献   

6.
Reactive oxygen species (ROS) contribute to ischemia-reperfusion injury of the heart. This study investigates the effects of tempol, a membrane-permeable radical scavenger on (i) the infarct size caused by regional myocardial ischemia and reperfusion of the heart in vivo (rat, rabbit) and in vitro (rat), and (ii) the cell injury caused by hydrogen peroxide (H2O2) in rat cardiac myoblasts (H9c2 cells). In the anesthetized rat, tempol reduced the infarct size caused by regional myocardial ischemia (25 min) and reperfusion (2 h) from 60 +/- 3% (control, n = 8) to 24 +/- 5% (n = 6, p < .05). In the anesthetized rabbit, tempol also attenuated the infarct size caused by myocardial ischemia (45 min) and reperfusion (2 h) from 59 +/- 3% (control, n = 6) to 39 +/- 5% (n = 5, p < .05). Regional ischemia (35 min) and reperfusion (2 h) of the isolated, buffer-perfused heart of the rat resulted in an infarct size of 54 +/- 4% (control n = 7). Reperfusion of hearts with buffer containing tempol (n = 6) caused a 37% reduction in infarct size (n = 6, p < .05). Pretreatment of rat cardiac myoblasts with tempol attenuated the impairment in mitochondrial respiration caused by H2O2 (1 mM for 4 h). Thus, the membrane-permeable radical scavenger tempol reduces myocardial infarct size in rodents.  相似文献   

7.
The present study was conducted to determine whether the infarct sparing effect of short-term exercise is dependent on the operation of the myocardial sarcolemmal ATP-sensitive K(+) (K(ATP)) channel. Adult male and female Sprague-Dawley rats were exercised on a motorized treadmill for 5 days. Twenty-four hours following the training or sedentary period, hearts were isolated and exposed to 1 h of regional ischemia followed by 2 h of reperfusion on a modified Langendorf apparatus in the presence or absence of the sarcolemmal K(ATP) channel antagonist HMR-1098 (30 microM). Following the ischemia-reperfusion protocol, infarct size was determined as a percentage of the total ischemic zone at risk (ZAR). Short-term exercise reduced infarct size by 24% in males (32 +/- 2% of ZAR; P < 0.01) and by 18% in females (26 +/- 2% of ZAR; P < 0.05). Sarcolemmal K(ATP) channel blockade abolished the training-induced cardioprotection in both males and females, increasing infarct size to 43 +/- 3% and 52 +/- 4% of ZAR, respectively. In the absence of HMR-1098, infarct size was significantly lower in sedentary females than in males (33 +/- 4% vs. 42 +/- 2% of ZAR, respectively; P < 0.01). However, the presence of HMR-1098 abolished this sex difference, increasing infarct size by 58% in the sedentary females (P < 0.01) but having no effect on infarct size in sedentary males. This study demonstrates that the sex-specific and exercise-acquired resistance to myocardial ischemia-reperfusion injury is dependent on sarcolemmal K(ATP) activity during ischemia.  相似文献   

8.
Hydroxymethyl glutaryl (HMG)-coenzyme A (CoA) reductase inhibitors (statins) protect the myocardium against ischemia-reperfusion injury via a mechanism unrelated to cholesterol lowering. Statins may inhibit isoprenylation and thereby prevent activation of proteins such as RhoA. We hypothesized that statins protect the myocardium against ischemia-reperfusion injury via a mechanism involving inhibition of geranylgeranyl pyrophosphate synthesis and translocation of RhoA to the plasma membrane. Sprague-Dawley rats were given either the HMG-CoA reductase inhibitor rosuvastatin, geranylgeranyl pyrophosphate dissolved in methanol, the combination of rosuvastatin and geranylgeranyl pyrophosphate, rosuvastatin and methanol, or distilled water (control) by intraperitoneal injection for 48 h before ischemia-reperfusion. Animals were anesthetized and either subjected to 30 min of coronary artery occlusion followed by 2 h of reperfusion where at infarct size was determined, or the expression of RhoA protein was determined in cytosolic and membrane fractions of nonischemic myocardium. There were no significant differences in hemodynamics between the control group and the other groups before ischemia or during ischemia and reperfusion. The infarct size was 80 +/- 3% of the area at risk in the control group. Rosuvastatin reduced infarct size to 64 +/- 2% (P<0.001 vs. control). Addition of geranylgeranyl pyrophosphate (77 +/- 2%, P<0.01 vs. rosuvastatin) but not methanol (65 +/- 2%, not significant vs. rosuvastatin) abolished the cardioprotective effect of rosuvastatin. Geranylgeranyl pyrophosphate alone did not affect infarct size per se (84 +/- 2%). Rosuvastatin increased the cytosol-to-membrane ratio of RhoA protein in the myocardium (P<0.05 vs. control). These changes were abolished by addition of geranylgeranyl pyrophosphate. We conclude that the cardioprotection and the increase of the RhoA cytosol-to-membrane ratio induced by rosuvastatin in vivo are blocked by geranylgeranyl pyrophosphate. The inhibition of geranylgeranyl pyrophosphate formation and subsequent modulation of cytosol/membrane-bound RhoA are of importance for the protective effect of statins against myocardial ischemia-reperfusion injury.  相似文献   

9.
This study compared the effects of rosuvastatin on left ventricular infarct size in mice after permanent coronary occlusion vs. 60 min of ischemia followed by 24 h of reperfusion. Statins can inhibit neutrophil adhesion, increase nitric oxide synthase (NOS) expression, and mobilize progenitor stem cells after ischemic injury. Mice received blinded and randomized administration of rosuvastatin (20 mg.kg(-1).day(-1)) or saline from 2 days before surgery until death. After 60 min of ischemia with reperfusion, infarct size was reduced by 18% (P = 0.03) in mice randomized to receive rosuvastatin (n = 18) vs. saline (n = 22) but was similar after permanent occlusion in rosuvastatin (n = 17) and saline (n = 20) groups (P = not significant). Myocardial infarct size after permanent left anterior descending coronary artery occlusion (n = 6) tended to be greater in NOS3-deficient mice than in the wild-type saline group (33 +/- 4 vs. 23 +/- 2%, P = 0.08). Infarct size in NOS3-deficient mice was not modified by treatment with rosuvastatin (34 +/- 5%, n = 6, P = not significant vs. NOS3-deficient saline group). After 60 min of ischemia-reperfusion, neutrophil infiltration was similar in rosuvastatin and saline groups as was the percentage of CD34(+), Sca-1(+), and c-Kit(+) cells. Left ventricular NOS3 mRNA and protein levels were unchanged by rosuvastatin. Rosuvastatin reduces infarct size after 60 min of ischemia-reperfusion but not after permanent coronary occlusion, suggesting a potential anti-inflammatory effect. Although we were unable to demonstrate that the myocardial protection was due to an effect on neutrophil infiltration, stem cell mobilization, or induction of NOS3, these data suggest that rosuvastatin may be particularly beneficial in myocardial protection after ischemia-reperfusion injury.  相似文献   

10.
Our laboratory showed previously that cardiac-specific overexpression of FGF-2 [FGF-2 transgenic (Tg)] results in increased recovery of contractile function and decreased infarct size after ischemia-reperfusion injury. MAPK signaling is downstream of FGF-2 and has been implicated in other models of cardioprotection. Treatment of FGF-2 Tg and wild-type hearts with U-0126, a MEK-ERK pathway inhibitor, significantly reduced recovery of contractile function after global low-flow ischemia-reperfusion injury in FGF-2 Tg (86 +/- 2% vehicle vs. 66 +/- 4% U-0126; P < 0.05) but not wild-type (61 +/- 7% vehicle vs. 67 +/- 7% U-0126) hearts. Similarly, MEK-ERK inhibition significantly increased myocardial infarct size in FGF-2 Tg (12 +/- 3% vehicle vs. 31 +/- 2% U-0126; P < 0.05) but not wild-type (30 +/- 4% vehicle vs. 36 +/- 7% U-0126) hearts. In contrast, treatment of FGF-2 Tg and wild-type hearts with SB-203580, a p38 inhibitor, did not abrogate FGF-2-induced cardioprotection from postischemic contractile dysfunction. Instead, inhibition of p38 resulted in decreased infarct size in wild-type hearts (30 +/- 4% vehicle vs. 11 +/- 2% SB-203580; P < 0.05) but did not alter infarct size in FGF-2 Tg hearts (12 +/- 3% vehicle vs. 14 +/- 1% SB-203580). Western blot analysis of ERK and p38 activation revealed signaling alterations in FGF-2 Tg and wild-type hearts during early ischemia or reperfusion injury. In addition, MEK-independent ERK inhibition by p38 was observed during early ischemic injury. Together these data suggest that activation of ERK and inhibition of p38 by FGF-2 is cardioprotective during ischemia-reperfusion injury.  相似文献   

11.
Rodent studies suggest that peroxisome proliferator-activated receptor-alpha (PPAR-alpha) activation reduces myocardial ischemia-reperfusion (I/R) injury and infarct size; however, effects of PPAR-alpha activation in large animal models of myocardial I/R are unknown. We determined whether chronic treatment with the PPAR-alpha activator fenofibrate affects myocardial I/R injury in pigs. Domestic farm pigs were assigned to treatment with fenofibrate 50 mg.kg(-1).day(-1) orally or no drug treatment, and either a low-fat (4% by weight) or a high-fat (20% by weight) diet. After 4 wk, 66 pigs underwent 90 min low-flow regional myocardial ischemia and 120 min reperfusion under anesthetized open-chest conditions, resulting in myocardial stunning. The high-fat group received an infusion of triglyceride emulsion and heparin during this terminal experiment to maintain elevated arterial free fatty acid (FFA) levels. An additional 21 pigs underwent 60 min no-flow ischemia and 180 min reperfusion, resulting in myocardial infarction. Plasma concentration of fenofibric acid was similar to the EC50 for activation of PPAR-alpha in vitro and to maximal concentrations achieved in clinical use. Myocardial expression of PPAR-alpha mRNA was prominent but unaffected by fenofibrate treatment. Fenofibrate increased expression of carnitine palmitoyltransferase (CPT)-I mRNA in liver and decreased arterial FFA and lactate concentrations (each P < 0.01). However, fenofibrate did not affect myocardial CPT-I expression, substrate uptake, lipid accumulation, or contractile function during low-flow I/R in either the low- or high-fat group, nor did it affect myocardial infarct size. Despite expression of PPAR-alpha in porcine myocardium and effects of fenofibrate on systemic metabolism, treatment with this PPAR-alpha activator does not alter myocardial metabolic or contractile responses to I/R in pigs.  相似文献   

12.
Oxidative stress may play a causative role in myocardial ischemia-reperfusion injury. However, it is a relatively understudied aspect regarding an optimal timing of antioxidant intervention during ischemia-reperfusion. The present study investigates the effect of different treatment regimens of Salvia miltiorrhiza (SM) herb extracts containing phenolic compounds that possess potent antioxidant properties on postischemic myocardial functional recovery in the setting of global myocardial ischemia and reperfusion. Langendorff-perfused rat hearts were subjected to 40 min of global ischemia at 37 degrees C followed by 60 min of reperfusion, and were randomly assigned into the untreated control and 2 SM-treated groups (n = 7 per group). In treatment 1 (SM1), 3 mg/mL of water soluble extract of SM was given for 10 min before ischemia and continued during ischemia through the aorta at a reduced flow rate of 60 microL/min, but not during reperfusion. In treatment 2 (SM2), SM (3 mg/mL) was given during the first 15 min of reperfusion. During ischemia, hearts in the control and SM2 groups were given physiological saline at 60 microL/min. The SM1 treatment reduced the production of 15-F2t-isoprostane, a specific index of oxidative stress-induced lipid peroxidation, during ischemia (94 +/- 20, 43 +/- 6, and 95 +/- 15 pg/mL in the coronary effluent in control, SM1, and SM2 groups, respectively; p < 0.05, SM1 vs. control or SM2) and postponed the onset of ischemic contracture. However, SM2, but not the SM1 regimen, significantly reduced 15-F2t-isoprostane production during early reperfusion and led to optimal postischemic myocardial functional recovery (left ventricular developed pressure 51 +/- 4, 46 +/- 4, and 60 +/- 6 mmHg in the control, SM1, and SM2 groups, respectively, at 60 min of reperfusion; p < 0.05, SM2 vs. control or SM1) and reduced myocardial infarct size as measured by triphenyltetrazolium chloride staining (26% +/- 2%, 22% +/- 2%, and 20% +/- 2% of the total area in the control, SM1, and SM2 groups, respectively, p < 0.05, SM2 vs. control). It is concluded that S. miltiorrhiza could be beneficial in the treatment of myocardial ischemic injury and the timing of administration seems important.  相似文献   

13.
Although there are conflicting results on whether adenosine infusion during reperfusion alters infarct size, there are several reports that indicate adenosine A(2a) agonists reduce infarct size. There are also reports that the A(2a) agonist CGS-21680 increases cAMP and contractility in ventricular myocytes. The purpose of this study was to determine whether low-dose intracoronary infusions of CGS-21680 during reperfusion exert any beneficial effects in irreversibly and reversibly injured myocardium. Open-chest pigs were submitted to 60 min of coronary artery occlusion and 3 h of reperfusion. Treated pigs were administered intracoronary CGS-21680 (0.2 microg x kg(-1) x min(-1)) for the first 60 min of reperfusion. Pigs submitted to regional stunning (15 min ischemia) were treated with intracoronary CGS-21680 (0.15 microg x kg(-1) x min(-1)) after 2 h of reperfusion. In the infarct protocol, CGS-21680 reduced infarct size from 62 +/- 2% of the region at risk to 36 +/- 2%. In stunned myocardium, CGS increased load-independent regional preload recruitable stroke work and area by > or =70%, but the same infusion in normal myocardium was associated with no inotropic effect. Both beneficial effects were associated with little systemic hemodynamic effects. These findings suggest that reperfusion infusions of low doses of the A(2a) agonist CGS-21680 exert beneficial effects in reversibly and irreversibly injured myocardium.  相似文献   

14.
A(3) adenosine receptors (A(3)ARs) have been implicated in regulating mast cell function and in cardioprotection during ischemia-reperfusion injury. The physiological role of A(3)ARs is unclear due to the lack of widely available selective antagonists. Therefore, we examined mice with targeted gene deletion of the A(3)AR together with pharmacological studies to determine the role of A(3)ARs in myocardial ischemia-reperfusion injury. We evaluated the functional response to 15-min global ischemia and 30-min reperfusion in isovolumic Langendorff hearts from A(3)AR(-/-) and wild-type (A(3)AR(+/+)) mice. Loss of contractile function during ischemia was unchanged, but recovery of developed pressure in hearts after reperfusion was improved in A(3)AR(-/-) compared with wild-type hearts (80 +/- 3 vs. 51 +/- 3% at 30 min). Tissue viability assessed by efflux of lactate dehydrogenase was also improved in A(3)AR(-/-) hearts (4.5 +/- 1 vs. 7.5 +/- 1 U/g). The adenosine receptor antagonist BW-A1433 (50 microM) decreased functional recovery following ischemia in A(3)AR(-/-) but not in wild-type hearts. We also examined myocardial infarct size using an intact model with 30-min left anterior descending coronary artery occlusion and 24-h reperfusion. Infarct size was reduced by over 60% in A(3)AR(-/-) hearts. In summary, targeted deletion of the A(3)AR improved functional recovery and tissue viability during reperfusion following ischemia. These data suggest that activation of A(3)ARs contributes to myocardial injury in this setting in the rodent. Since A(3)ARs are thought to be present on resident mast cells in the rodent myocardium, we speculate that A(3)ARs may have proinflammatory actions that mediate the deleterious effects of A(3)AR activation during ischemia-reperfusion injury.  相似文献   

15.
Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl, TPL), a low molecular weight stable nitroxyl radical (nitroxide), has been demonstrated in many in vitro and in vivo models to have protective effects against oxidative stress. The beneficial effect of TPL, however, is limited because of its short life-time in tissues. We have previously shown that polynitroxylated macromolecules such as polynitroxyl-human serum albumin (PNA) enable maintaining a sustained concentration of TPL for longer periods in tissues. PNA itself has previously been shown to inhibit ischemia-reperfusion (I/R) injury in the gut and to potentiate the activity of TPL. The aim of the present study was (i) to select an optimum formulation of PNA + TPL for therapeutic applications using in vivo EPR spectroscopy and (ii) to evaluate the efficacy of the PNA + TPL formulation in preventing I/R injury to heart, in an in vivo rat model. Rats were subjected to 45 min occlusion of the left anterior descending (LAD) coronary artery followed by 120 min reperfusion. PNA (100 mg/ml) + TPL (10 mg/ml), human serum albumin (HSA, 100 mg/ml) + TPL (10 mg/ml), or saline were injected 5 min before ischemia (3 ml/kg BW, i.v.) and 5 min before reperfusion (3 ml/kg BW, i.v.), followed by a 4 ml/kg BW infusion over 2 h reperfusion. Myocardial risk and infarct regions were then estimated. The results showed that the infarct volume, expressed as a percentage of the risk region, in the group treated with PNA + TPL was 39.7 +/- 3.1%, which was significantly smaller than for the saline (51.3 +/- 3.5%) or HSA + TPL (48.4 +/- 1.4%) groups. The results demonstrate that the PNA + TPL combination is very effective in reducing myocardial ischemia-reperfusion injury.  相似文献   

16.
Postconditioning (PoC) with brief intermittent ischemia after myocardial reperfusion has been shown to lessen some elements of postischemic injury including arrhythmias and, in some studies, the size of myocardial infarction. We hypothesized that PoC could improve reflow to the risk zone after reperfusion. Anesthetized, open-chest rabbits were subjected to 30 min of coronary artery occlusion followed by 3 h of reperfusion. In protocol 1, rabbits were randomly assigned to the control group (n = 10, no further intervention after reperfusion) or to the PoC group, which consisted of four cycles of 30-s reocclusions with 30 s of reperfusion in between starting at 30 s after the initial reperfusion (4 x 30/30, n = 10). In protocol 2, rabbits were assigned to the control group (n = 7) or the PoC group, which received PoC consisting of four cycles of 60-s intervals of ischemia and reperfusion starting at 30 s after the initial reperfusion (4 x 60/60, n = 7). No reflow was determined by injecting thioflavine S (a fluorescent marker of capillary perfusion), risk zone by blue dye, and infarct size by triphenyltetrazolium chloride. In protocol 1, there were no statistical differences in hemodynamics, ischemic risk zone, or infarct size (35 +/- 6% of the risk zone in the PoC group vs. 29 +/- 4% in the control group, P = 0.38) between the groups. Similarly, in protocol 2, PoC failed to reduce infarct size compared with the control group (45 +/- 4% of the risk zone in the PoC group vs. 42 +/- 6% in the control group, P = 0.75). There was a strong correlation in both protocols between the size of the necrotic zone and the portion of the necrotic zone that contained an area of no reflow. However, PoC did not affect this relationship. PoC did not reduce infarct size in this model, nor did it reduce the extent of the anatomic zone of no reflow, suggesting that this intervention may not impact postreperfusion microvascular damage due to ischemia.  相似文献   

17.
We examined the effect of the A3 adenosine receptor (AR) agonist IB-MECA on infarct size in an open-chest anesthetized dog model of myocardial ischemia-reperfusion injury. Dogs were subjected to 60 min of left anterior descending (LAD) coronary artery occlusion and 3 h of reperfusion. Infarct size and regional myocardial blood flow were assessed by macrohistochemical staining with triphenyltetrazolium chloride and radioactive microspheres, respectively. Four experimental groups were studied: vehicle control (50% DMSO in normal saline), IB-MECA (100 microg/kg iv bolus) given 10 min before the coronary occlusion, IB-MECA (100 microg/kg iv bolus) given 5 min before initiation of reperfusion, and IB-MECA (100 microg/kg iv bolus) given 10 min before coronary occlusion in dogs pretreated 15 min earlier with the ATP-dependent potassium channel antagonist glibenclamide (0.3 mg/kg iv bolus). Administration of IB-MECA had no effect on any hemodynamic parameter measured including heart rate, first derivative of left ventricular pressure, aortic pressure, LAD coronary blood flow, or coronary collateral blood flow. Nevertheless, pretreatment with IB-MECA before coronary occlusion produced a marked reduction in infarct size ( approximately 40% reduction) compared with the control group (13.0 +/- 3.2% vs. 25.2 +/- 3.7% of the area at risk, respectively). This effect of IB-MECA was blocked completely in dogs pretreated with glibenclamide. An equivalent reduction in infarct size was observed when IB-MECA was administered immediately before reperfusion (13.1 +/- 3.9%). These results are the first to demonstrate efficacy of an A3AR agonist in a large animal model of myocardial infarction by mechanisms that are unrelated to changes in hemodynamic parameters and coronary blood flow. These data also demonstrate in an in vivo model that IB-MECA is effective as a cardioprotective agent when administered at the time of reperfusion.  相似文献   

18.
Acute myocardial ischemia was induced by occluding the LAD in Clawn miniature pigs. Eight pigs (group 1) were subjected to 6 h ischemia and nine pigs (group 2) were subjected to 20 min ischemia, followed by reperfusion for 340 min. Three animals of the group 1 died due to ventricular fibrillation after occlusion and in group 2, four animals died due to the arrhythmia after reperfusion. Though the ischemic area of group 2 (15.6% of the ventricle) was narrower than that of group 1 (21.7%), the survival rate was lower. We supposed that ischemia-reperfusion injuries were strongly connected with the hemodynamics of group 2. Clawn miniature pigs are useful experimental animals for myocardial ischemic researches.  相似文献   

19.
There is a close association between hyperglycemia and increased risk of mortality after acute myocardial infarction (AMI). However, whether acute hyperglycemia exacerbates myocardial ischemia/reperfusion (MI/R) injury remains unclear. We observed the effects of acute hyperglycemia on MI/R injury and on the cardioprotective effect of glucose-insulin-potassium (GIK). Male rats were subjected to 30 min of myocardial ischemia and 6 h of reperfusion. Rats were randomly received one of the following treatments (at 4 ml.kg(-1).h(-1) iv): Vehicle, GIK (GIK during reperfusion; glucose: 200g/l, insulin: 60 U/l, KCL: 60 mmol/l), HG (high glucose during ischemia; glucose:500 g/l), GIK + HG (HG during I and GIK during R) or GIK + wortmannin (GIK during R and wortmannin 15 min before R). Blood glucose, plasma insulin concentration and left ventricular pressure (LVP) were monitored throughout the experiments. Hyperglycemia during ischemia not only significantly increased myocardial apoptosis (23.6 +/- 1.7% vs. 18.8 +/- 1.4%, P < 0.05 vs. vehicle), increased infarct size (IS) (45.6 +/- 3.0% vs. 37.6 +/- 2.0%, P < 0.05 vs. vehicle), decreased Akt and GSK-3beta phosphorylations (0.5 +/- 0.2 and 0.6 +/- 0.1% fold of vehicle, respectively, P < 0.05 vs. vehicle) following MI/R, but almost completely blocked the cardioprotective effect afforded by GIK, as evidenced by significantly increased apoptotic index (19.1 +/- 2.0 vs. 10.3 +/- 1.2%, P < 0.01 vs. GIK), increased myocardial IS (39.2 +/- 2.8 vs. 27.2 +/- 2.1%, P < 0.01 vs. GIK), decreased Akt phosphorylation (1.1 +/- 0.1 vs. 1.7 +/- 0.2%, P < 0.01 vs. GIK) and GSK-3beta phosphorylation (1.4 +/- 0.2 vs. 2.3 +/- 0.2%, P < 0.05 vs. GIK). Hyperglycemia significantly exacerbates MI/R injury and blocks the cardioprotective effect afforded by GIK, which is, at least in part, due to hyperglycemia-induced decrease of myocardial Akt activation.  相似文献   

20.
Transient episodes of ischemic preconditioning (PC) render myocardium protected against subsequent lethal injury after ischemia and reperfusion. Recent studies indicate that application of short, repetitive ischemia only during the onset of reperfusion after the lethal ischemic event may obtain equivalent protection. We assessed whether such ischemic postconditioning (Postcon) is cardioprotective in pigs by limiting lethal injury. Pentobarbital sodium-anesthetized, open-chest pigs underwent 30 min of complete occlusion of the left anterior descending coronary artery and 3-h reflow. PC was elicited by two cycles of 5-min occlusion plus 10-min reperfusion before the 30-min occlusion period. Postcon was elicited by three cycles of 30-s reperfusion, followed by 30-s reocclusion, after the 30-min occlusion period and before the 3-h reflow. Infarct size (%area-at-risk using triphenyltetrazolium chloride macrochemistry; means +/- SE) after 30 min of ischemia was 26.5 +/- 5.2% (n = 7 hearts/treatment group). PC markedly limited myocardial infarct size (2.8 +/- 1.2%, n = 7 hearts/treatment group, P < 0.05 vs. controls). However, Postcon had no effect on infarct size (37.8 +/- 5.1%, n = 7 hearts/treatment group). Within the subendocardium, Postcon increased phosphorylation of Akt (74 +/- 12%) and ERK1/2 (56 +/- 10%) compared with control hearts subjected only to 30-min occlusion and 15-min reperfusion (P < or = 0.05), and these changes were not different from the response triggered by PC (n = 5 hearts/treatment group). Phosphorylation of downstream p70S6K was also equivalent in PC and Postcon groups. These data do not support the hypothesis that application of 30-s cycles of repetitive ischemia during reperfusion exerts a protective effect on pig hearts subjected to lethal ischemia, but this is not due to a failure to phosphorylate ERK and Akt during early reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号