首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The DNA polymerase and gene 4 protein of phage T7, in the presence of helix-destabilizing protein (DNA binding protein), catalyze DNA synthesis on duplex templates. As has been previously shown (Kolodner, R. D., and Richardson, C. C. (1978) 4. Biol. Chem. 253, 574-584), in the absence of ribonucleoside 5'-triphosphates DNA synthesis is initiated at nicks, and all of the newly synthesized DNA is covalently attached to the template. In this paper we characterize the DNA synthesized in the presence of ribonucleoside 5'-triphophates and show that, in contrast, the major portion of the newly synthesized DNA is not attached to the template, having an average chain length of 5000 to 6000 nucleotides. In addition, each chain of newly synthesized DNA is terminated at its 5'-end by a covalently attached tetranucleotide RNA primer whose sequence is predominantly pppApCpCpC and pppApCpCpA. The results of isotope transfer experiments are in agreement with the number of initiation events determined by the incorporation of [gamma-32P]ATP and indicate that each of the four deoxyribonucleotides is present at the RNA-DNA junction.  相似文献   

2.
Bacteriophage T7-induced DNA polymerase has been isolated by a procedure suitable for large scale use and which yields near homogeneous enzyme. In addition to previously described DNA polymerase activity and 3' to 5' exonucleolytic activity on single stranded DNA (Grippo, P., and Richardson, C. C. (1971) J. Biol. Chem. 246, 6867-6873), the enzyme also possesses a highly active exonuclease which hydrolyzes duplex substrates with 3' to 5' directionality. The native polymerase has been dissociated using 6 M guanidine HCl and resolved into biologically active subunits: T7 gene 5 protein and Escherichia coli thioredoxin. The phage-specified subunit obtained by this procedure is deficient in DNA polymerase and double strand exonuclease activities, with deficiencies in these activities being apparent at the level of a single turnover. However, it possesses near normal levels of a single strand hydrolytic activity which is identical to that associated with the native polymerase with respect to substrate specificity and suppression of hydrolysis by low levels of deoxyribonucleoside 5'-triphosphates. Thioredoxin forms a molecular complex with the T7 gene 5 protein, and addition of the host protein restores restores DNA polymerase and double strand exonuclease activities to near normal levels.  相似文献   

3.
4.
5.
Gene 4 protein and DNA polymerase of bacteriophage T7 catalyze RNA-primed DNA synthesis on single-stranded DNA templates. T7 DNA polymerase exhibits an affinity for both gene 4 protein and single-stranded DNA, and gene 4 protein binds stably to single-stranded DNA in the presence of dTTP (Nakai, H. and Richardson, C. C. (1986) J. Biol. Chem. 261, 15208-15216). Gene 4 protein-T7 DNA polymerase-template complexes may be formed in both the presence and absence of nucleoside 5'-triphosphates. The protein-template complexes may be isolated free of unbound proteins and nucleotides by gel filtration and will catalyze RNA-primed DNA synthesis in the presence of ATP, CTP, and the four deoxynucleoside 5'-triphosphates. RNA-primed DNA synthesis may be dissected into separate reactions for primer synthesis and DNA synthesis. Upon incubation of gene 4 protein with single-stranded DNA, ATP, and CTP, a primer-template complex is formed; it is likely that gene 4 protein mediates stable binding of the oligonucleotide to the template. The complex, purified free of unbound proteins and nucleotides, supports DNA synthesis upon addition of DNA polymerase and deoxynucleoside 5'-triphosphates. Association of primers with the template is increased by the presence of dTTP or DNA polymerase during primer synthesis. DNA synthesis supported by primer-template complexes initiates predominantly at gene 4 recognition sequences, indicating that primers are bound to the template at these sites.  相似文献   

6.
DNA polymerase and gene 4 protein of bacteriophage T7 catalyze DNA synthesis on duplex DNA templates. Synthesis is initiated at nicks in the DNA template, and this leading strand synthesis results in displacement of one of the parental strands. In the presence of ribonucleoside 5'-triphosphates the gene 4 protein catalyzes the synthesis of oligoribonucleotide primers on the displaced single strand, and their extension by T7 dna polymerase accounts for lagging strand synthesis. Since all the oligoribonucleotide primers bear adenosine 5'-triphosphate residues at their 5' termini, [gamma 32P]ATP is incorporated specifically into the product molecule, thus providing a rapid and sensitive assay for the synthesis of the RNA primers. Both primer synthesis and DNA synthesis are stimulated 3- to 5-fold by the presence of either Escherichia coli or T7 helix-destabilizing protein (DNA binding protein). ATP and CTP together fully satisfy the requirement for rNTPs and provide maximum synthesis of primers and DNA. Provided that T7 DNA polymerase is present, RNA-primed DNA synthesis occurs on either duplex or single-stranded DNA templates and to equal extents on either strand of T7 DNA. No primer-directed DNA synthesis occurs on poly(dT) or poly(dG) templates, indicating that synthesis of primers is template-directed.  相似文献   

7.
8.
This paper describes the construction of a DNA molecule containing a topologically stable structure that simulates a replication fork. This preformed DNA molecule is a circular duplex of 7.2 X 10(3) base pairs (M13mp6 DNA) from which arises, at a unique BamHI recognition site, a noncomplementary 5'-phosphoryl-terminated single strand of 237 nucleotides (SV40 DNA). This structure has two experimental attributes. 1) Templates for both leading and lagging strand synthesis exist as stable structures prior to any DNA synthesis. 2) DNA synthesis creates a cleavage site for the restriction endonuclease BamHI. Form I of T7 DNA polymerase, alone, catalyzes limited DNA synthesis at the preformed replication fork whereas Form II, alone, polymerizes less than 5 nucleotides. However, when T7 gene 4 protein is present, Form II of T7 DNA polymerase catalyzes rapid and extensive synthesis via a rolling circle mode. Kinetic analysis of this synthesis reveals that the fork moves at a rate of 300 bases/s at 30 degrees C. We conclude that the T7 gene 4 protein requires a single-stranded DNA binding site from which point it translocates to the replication fork where it functions as a helicase. The phage T4 DNA polymerase catalyzes DNA synthesis at this preformed replication fork in the presence of gene 4 protein, but the amount of DNA synthesized is less that 3% of the amount synthesized by the combination of Form II of T7 DNA polymerase and gene 4 protein. We conclude that T7 DNA polymerase and T7 gene 4 protein interact specifically during DNA synthesis at a replication fork.  相似文献   

9.
The bacteriophage T4 gene 41 protein is a 5' to 3' DNA helicase which unwinds DNA ahead of the growing replication fork and, together with the T4 gene 61 protein, also functions as a primase to initiate DNA synthesis on the lagging strand. Proteolytic cleavage by trypsin approximately 20 amino acids from the COOH terminus of the 41 protein produces 41T, a 51,500-dalton fragment (possibly still associated with small COOH-terminal fragments) which still retains the ssDNA-stimulated GTPase (ATPase) activity, the 61 protein-stimulated DNA helicase activity, and the ability to act with 61 protein to synthesize pentaribonucleotide primers. In the absence of the T4 gene 32 ssDNA binding protein, the primase-helicase composed of the tryptic fragment (41T) and 61 proteins efficiently primes DNA synthesis on circular ssDNA templates by the T4 DNA polymerase and the three T4 polymerase accessory proteins. In contrast, the 41T protein is defective as a helicase or a primase component on 32 protein-covered DNA. Thus, unlike the intact protein, 41T does not support RNA-dependent DNA synthesis on 32 protein-covered ssDNA and does not stimulate strand displacement DNA synthesis on a nicked duplex DNA template. High concentrations of 32 protein strongly inhibit RNA primer synthesis with either 41 T or intact 41 protein. The 44/62 and 45 polymerase accessory proteins (and even the 44/62 proteins to some extent) substantially reverse the 32 protein inhibition of RNA primer synthesis with intact 41 protein but not with 41T protein. We propose that the COOH-terminal region of the 41 protein is required for its interaction with the T4 polymerase accessory proteins, permitting the synthesis and utilization of RNA primers and helicase function within the T4 replication complex. When this region is altered, as in 41T protein, the protein is unable to assemble a functional primase-helicase in the replication complex. An easy and rapid purification of T4 41 protein produced by a plasmid encoding this gene (Hinton, D. M., Silver, L. L., and Nossal, N. G. (1985) J. Biol. Chem. 260, 12851-12857) is also described.  相似文献   

10.
The T4 bacteriophage gene 43 (T4 DNA polymerase), 32 (DNA helix-destabilizing protein), and 45 proteins and the complex of the gene 44 and 62 proteins are all required for DNA synthesis beginning at single-stranded breaks in duplex DNA. This synthesis occurs by strand displacement and is not dependent on ribonucleotides, the T4 gene 41 protein, or the T4 initiating protein, each of which is required to begin new chains on single-stranded templates. Electron microscopic analysis shows that duplex molecules with long single-stranded branches are the predominant products of this strand displacement synthesis.  相似文献   

11.
Gene 2.5 of bacteriophage T7 is an essential gene that encodes a single-stranded DNA-binding protein (gp2.5). Previous studies have demonstrated that the acidic carboxyl terminus of the protein is essential and that it mediates multiple protein-protein interactions. A screen for lethal mutations in gene 2.5 uncovered a variety of essential amino acids, among which was a single amino acid substitution, F232L, at the carboxyl-terminal residue. gp2.5-F232L exhibits a 3-fold increase in binding affinity for single-stranded DNA and a slightly lower affinity for T7 DNA polymerase when compared with wild type gp2.5. gp2.5-F232L stimulates the activity of T7 DNA polymerase and, in contrast to wild-type gp2.5, promotes strand displacement DNA synthesis by T7 DNA polymerase. A carboxyl-terminal truncation of gene 2.5 protein, gp2.5-Delta 26C, binds single-stranded DNA 40-fold more tightly than the wild-type protein and cannot physically interact with T7 DNA polymerase. gp2.5-Delta 26C is inhibitory for DNA synthesis catalyzed by T7 DNA polymerase on single-stranded DNA, and it does not stimulate strand displacement DNA synthesis at high concentration. The biochemical and genetic data support a model in which the carboxyl-terminal tail modulates DNA binding and mediates essential interactions with T7 DNA polymerase.  相似文献   

12.
The T7gene-4 protein has been purified to near homogeneity using a complementation assay in vitro, and it is designated T7 DNA-priming protein (DNA primase). The purified enzyme enables T7 DNA polymerase to initate DNA synthesis on various circular single-stranded DNA templates by a mechanism which involes the synthesis of a very short RNA primer. The oligoribonucleotide, which is linked to the product DNA via a 3':5'-phosphodiester bond, starts with pppA-C and terminates predominantly with AMP. When only ATP and CPT are precursors, the RNA primer is found to be primarily a tetranucleotide of the sequence pppA-C-C-A. Using oligoribonucleotides in place of ribonucleoside triphosphates as chain initators, T7 DNA-priming protein drastically increases the efficiency with which T7 DNA polymerase can utilize particular tetranucleotide primers containing A and C residues. T7 DNA-priming protein also enables T7 DNA polymerase to make use of native or nicked duplex T7 DNA as template-primer. This reaction does not require ribonucleoside triphosphates, although their addition enhances DNA synthesis 2--4 fold. The product formed in their absence is covalently attached to the template DNA and is found to contain a few long branches when examined by electron microscopy. In the presence of ribonucleoside triphosphates most of the newly made product arises from imitation of DNA chains de novo. Incubation of three proteins: T7 DNA-priming protein, T7 DNA polymerase, and T7 DNA-binding protein, with ribonucleoside and deoxyribonucleoside triphosphates, and with phiX174DNA as template leads to the generation of 'rolling circle-like' structures as visualized in the electron microscope. Single-stranded regions at the tail-circle junction indicate that initations can occur de novo on the displaced complementary strand. This is consistent with a discontinuous mode of 'lagging' strand synthesis and suggests that the same proteins may also be responsible for fork propagation in vivo.  相似文献   

13.
The DNA polymerase induced after infection of Escherichia coli by bacteriophage T7 can exist in two forms. One distinguishing property of Form I, the elimination of nicks in double-stranded DNA templates, strongly suggests that this form of the polymerase catalyzes limited DNA synthesis at nicks, resulting in displacement of the downstream strand. In this paper, we document this reaction by a detailed characterization of the DNA product. DNA synthesis on circular, duplex DNA templates containing a single site-specific nick results in circular molecules bearing duplex branches. Analysis of newly synthesized DNA excised from the product shows that the majority of the branches are less than 500 base pairs in length and that they arise from a limited number of sites. The branches have fully base-paired termini but are attached by two noncomplementary DNA strands that have a combined length of less than 30 nucleotides. The product molecules are topologically constrained as a result of the duplex branch. DNA sequence analysis has provided an unequivocal structure of one such product molecule. We conclude that strand displacement synthesis catalyzed by Form I of T7 DNA polymerase is terminated by a template-switching reaction. We propose two distinct models for template-switching that we call primer relocation and rotational strand exchange. Strand displacement synthesis catalyzed by Form I of T7 DNA polymerase effectively converts T7 DNA circles that are held together by hydrogen bonds in their 160-nucleotide-long terminal redundancy to T7-length linear molecules. We suggest that strand displacement synthesis catalyzed by T7 DNA polymerase is essential in vivo to the processing of a T7 DNA concatemer to mature T7 genomes.  相似文献   

14.
15.
Summary DNA synthesis in vitro using intact duplex T7 DNA as template is dependent on a novel group of three phage T7-induced proteins: DNA-priming protein (activity which complements a cell extract lacking the T7 gene 4-protein), T7 DNA polymerase (gene 5-protein plus host factor), and T7 DNA-binding protein. The reaction requires, in addition to the four deoxyribonucleoside triphosphates, all four ribonucleoside triphosphates and is inhibited by low concentrations of actinomycin D. Evidence is presented that the priming protein serves as a novel RNA polymerase to form a priming segment which is subsequently extended by T7 DNA polymerase. T7 RNA polymerase (gene 1-protein) can only partially substitute for the DNA-priming protein. At 30°C, deoxyribonucleotide incorporation proceeds for more than 2 hours and the amount of newly synthesized DNA can exceed the amount of template DNA by 10-fold. The products of synthesis are not covalently attached to the template and sediment as short (12S) DNA chains in alkaline sucrose gradients. Sealing of these fragments into DNA of higher molecular weight requires the presence of E. coli DNA polymerase I and T7 ligase. Examination of the products in the electron microscope reveals many large, forked molecules and a few eye-shaped structures resembling the early replicative intermediates normally observed in vivo.  相似文献   

16.
With the use of an in vitro complementation assay to measure activity, the gene 4 protein of bacteriophage T7 has been purified 1000-fold to yield a nearly homogeneous protein. The purified gene 4 protein is a single polypeptide having a molecular weight of 58,000. In addition to being essential for T7 DNA replication in vivo and in vitro, the gene 4 protein is required for DNA synthesis by the purified T7 DNA polymerase on duplex T7 DNA templates. In the absence of ribonucleoside 5'-triphosphates, DNA synthesis by the gene 4 protein and the T7 DNA polymerase is dependent on phosphodiester bond interruptions containing 3'-hydroxyl groups (nicks) in the duplex DNA. The reaction is specific for the T7 DNA polymerase, but any duplex DNA containing nicks can serve as template. The Km for nicks in the reaction is 3 x 10(-10) M.  相似文献   

17.
18.
Gene 1.2 protein of bacteriophage T7. Effect on deoxyribonucleotide pools   总被引:8,自引:0,他引:8  
The gene 1.2 protein of bacteriophage T7, a protein required for phage T7 growth on Escherichia coli optA1 strains, has been purified to apparent homogeneity and shown to restore DNA packaging activity of extracts prepared from E. coli optA1 cells infected with T7 gene 1.2 mutants (Myers, J. A., Beauchamp, B. B., White, J. H., and Richardson, C. C. (1987) J. Biol. Chem. 262, 5280-5287). After infection of E. coli optA1 by T7 gene 1.2 mutant phage, under conditions where phage DNA synthesis is blocked, the intracellular pools of dATP, dTTP, and dCTP increase 10-40-fold, similar to the increase observed in an infection with wild-type T7. However, the pool of dGTP remains unchanged in the mutant-infected cells as opposed to a 200-fold increase in the wild-type phage-infected cells. Uninfected E. coli optA+ strains contain severalfold higher levels of dGTP compared to E. coli optA1 cells. In agreement with this observation, dGTP can fully substitute for purified gene 1.2 protein in restoring DNA packaging activity to extracts prepared from E. coli optA1 cells infected with T7 gene 1.2 mutants. dGMP or polymers containing deoxyguanosine can also restore packaging activity while dGDP is considerably less effective. dATP, dTTP, dCTP, and ribonucleotides have no significant effect. The addition of dGTP or dGMP to packaging extracts restores DNA synthesis. Gene 1.2 protein elevates the level of dGTP in these packaging extracts and restores DNA synthesis, thus suggesting that depletion of a guanine deoxynucleotide pool in E. coli optA1 cells infected with T7 gene 1.2 mutants may account for the observed defects.  相似文献   

19.
The bacteriophage T4 61/41 protein primase-helicase is part of a seven T4 protein system needed for DNA synthesis in vitro. Although both 41 and 61 proteins are required for the synthesis and utilization of the normal pppApC(pN)3 pentanucleotide primer, we show in the accompanying paper (Hinton, D. M., and Nossal, N. G. (1987) J. Biol. Chem. 262, 10873-10878) that high concentrations of 61 protein alone carry out a limited, template-dependent oligonucleotide synthesis with the dimers pppApC and pppGpC as the major products labeled with [alpha-32P]CTP. At these high concentrations, 61 protein alone primes DNA synthesis by T4 DNA polymerase and the T4 genes 44/62 and 45 polymerase accessory proteins, or by Escherichia coli DNA polymerase I. The addition of T4 replication proteins other than 41 protein does not change the size distribution of oligonucleotides made by 61 protein. However, the primers used for DNA synthesis in the absence of 41 protein are not dimers, but rather trace quantities of longer oligonucleotides (5 to about 45 bases) which begin predominantly with pppGpC. These results show that 41 protein is required to prime with oligonucleotides beginning with pppApC and suggest that 41 protein, either alone or in conjunction with 61 protein, helps to stabilize the usual short pentamer primers on the template until they are elongated by the DNA polymerase. Moreover, since 61 protein by itself can only initiate DNA synthesis with primers beginning with pppGpC, but cannot make oligonucleotides starting with pppGpC on T4 DNA in which all the C is glucosylated and hydroxymethylated, both the T4 41 and 61 proteins are essential to prime DNA synthesis on their normal template. In our analysis of RNA-primed DNA, we demonstrate that although RNA primers at the 5' ends of DNA chains are relatively resistant to the 3' to 5' exonuclease of T4 DNA polymerase (Kurosawa, Y., and Okazaki, T. (1979) J. Mol. Biol. 135, 841-861), pppNpNpNpNpN oligomers are digested to a greater extent than the dephosphorylated pentamers NpNpNpNpN.  相似文献   

20.
The T7 DNA primase synthesizes tetraribonucleotides that prime DNA synthesis by T7 DNA polymerase but only on the condition that the primase stabilizes the primed DNA template in the polymerase active site. We used NMR experiments and alanine scanning mutagenesis to identify residues in the zinc binding domain of T7 primase that engage the primed DNA template to initiate DNA synthesis by T7 DNA polymerase. These residues cover one face of the zinc binding domain and include a number of aromatic amino acids that are conserved in bacteriophage primases. The phage T7 single-stranded DNA-binding protein gp2.5 specifically interfered with the utilization of tetraribonucleotide primers by interacting with T7 DNA polymerase and preventing a productive interaction with the primed template. We propose that the opposing effects of gp2.5 and T7 primase on the initiation of DNA synthesis reflect a sequence of mutually exclusive interactions that occur during the recycling of the polymerase on the lagging strand of the replication fork.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号