首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The Short-chain Dehydrogenases/Reductases Engineering Database (SDRED) covers one of the largest known protein families (168 150 proteins). Assignment to the superfamilies of Classical and Extended SDRs was achieved by global sequence similarity and by identification of family-specific sequence motifs. Two standard numbering schemes were established for Classical and Extended SDRs that allow for the determination of conserved amino acid residues, such as cofactor specificity determining positions or superfamily specific sequence motifs. The comprehensive sequence dataset of the SDRED facilitates the refinement of family-specific sequence motifs. The glycine-rich motifs for Classical and Extended SDRs were refined to improve the precision of superfamily classification. In each superfamily, the majority of sequences formed a tightly connected sequence network and belonged to a large homologous family. Despite their different sequence motifs and their different sequence length, the two sequence networks of Classical and Extended SDRs are not separate, but connected by edges at a threshold of 40% sequence similarity, indicating that all SDRs belong to a large, connected network. The SDRED is accessible at https://sdred.biocatnet.de/.  相似文献   

5.
The gene encoding the meso-diaminopimelate dehydrogenase of Bacillus sphaericus was cloned into E. coli cells and its complete DNA sequence was determined. The meso-diaminopimelate dehydrogenase gene consisted of 978 nucleotides and encoded 326 amino acid residues corresponding to the subunit of the dimeric enzyme. The amino acid sequence deduced from the nucleotide sequence of the enzyme gene of B. sphaericus showed 50% identity with those of the enzymes from Corynebacterium glutamicum and Brevibacterium flavum. The enzyme gene from B. sphaericus was highly expressed in E. coli cells. We purified the enzyme to homogeneity from a transformant with 76% recovery. The N-terminal amino acid of both the enzyme from B. sphaericus and the transformant were serine, indicating that the N-terminal methionine is removed by post-translational modification in B. sphaericus and E. coli cells.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Escherichia coli (E. coli) FadR regulator plays dual roles in fatty acid metabolism, which not only represses the fatty acid degradation (fad) system, but also activates the unsaturated fatty acid synthesis pathway. Earlier structural and biochemical studies of FadR protein have provided insights into interplay between FadR protein with its DNA target and/or ligand, while the missing knowledge gap (esp. residues with indirect roles in DNA binding) remains unclear. Here we report this case through deep mapping of old E. coli fadR mutants accumulated. Molecular dissection of E. coli K113 strain, a fadR mutant that can grow on decanoic acid (C10) as sole carbon sources unexpectedly revealed a single point mutation of T178G in fadR locus (W60G in FadRk113). We also observed that a single geneticallyrecessive mutation of W60G in FadR regulatory protein can lead to loss of its DNA-binding activity, and thereby impair all the regulatory roles in fatty acid metabolisms. Structural analyses of FadR protein indicated that the hydrophobic interaction amongst the three amino acids (W60, F74 and W75) is critical for its DNA-binding ability by maintaining the configuration of its neighboring two β-sheets. Further site-directed mutagenesis analyses demonstrated that the FadR mutants (F74G and/or W75G) do not exhibit the detected DNA-binding activity, validating above structural reasoning.  相似文献   

16.
17.
We provide evidence that a prokaryotic insertion sequence (IS) element is active in a vertebrate system. The transposase of Escherichia coli element IS30 catalyzes both excision and integration in extrachromosomal DNA in zebrafish embryos. The transposase has a pronounced target preference, which is shown to be modified by fusing the enzyme to unrelated DNA binding proteins. Joining the transposase to the cI repressor of phage λ causes transposition primarily into the vicinity of the λ operator in E. coli, and linking to the DNA binding domain of Gli1 also directs the recombination activity of transposase near to the Gli1 binding site in zebrafish. Our results demonstrate the possibility of fusion transposases to acquire novel target specificity in both prokaryotes and eukaryotes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号