首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Montané F  Casals P  Dale MR 《PloS one》2011,6(12):e28652
We used a multi-method approach to analyze the spatial patterns of shrubs and cover types (plant species, litter or bare soil) in grassland-shrubland ecotones. This approach allows us to assess how fine-scale spatial heterogeneity of cover types affects the patterns of Cytisus balansae shrub encroachment into mesic mountain grasslands (Catalan Pyrenees, Spain). Spatial patterns and the spatial associations between juvenile shrubs and different cover types were assessed in mesic grasslands dominated by species with different palatabilities (palatable grass Festuca nigrescens and unpalatable grass Festuca eskia). A new index, called RISES ("Relative Index of Shrub Encroachment Susceptibility"), was proposed to calculate the chances of shrub encroachment into a given grassland, combining the magnitude of the spatial associations and the surface area for each cover type. Overall, juveniles showed positive associations with palatable F. nigrescens and negative associations with unpalatable F. eskia, although these associations shifted with shrub development stage. In F. eskia grasslands, bare soil showed a low scale of pattern and positive associations with juveniles. Although the highest RISES values were found in F. nigrescens plots, the number of juvenile Cytisus was similar in both types of grasslands. However, F. nigrescens grasslands showed the greatest number of juveniles in early development stage (i.e. height<10 cm) whereas F. eskia grasslands showed the greatest number of juveniles in late development stages (i.e. height>30 cm). We concluded that in F. eskia grasslands, where establishment may be constrained by the dominant cover type, the low scale of pattern on bare soil may result in higher chances of shrub establishment and survival. In contrast, although grasslands dominated by the palatable F. nigrescens may be more susceptible to shrub establishment; current grazing rates may reduce juvenile survival.  相似文献   

2.
Aims Alien species are commonly considered as harmful weeds capable of decreasing native biodiversity and threatening ecosystems. Despite this assumption, little is known about the long-term patterns of the native–alien relationships associated with human disturbed managed landscapes. This study aims to elucidate the community dynamics associated with a successional gradient in Chilean Mediterranean grasslands, considering both native and alien species.Methods Species richness (natives and aliens separately) and life-form (annuals and perennials) were recorded in four Chilean post-agricultural grazed grasslands each covering a broad successional gradient (from 1 to 40 years since crop abandonment). A detrended correspondence analysis (DCA), mixed model effects analyses and correlation tests were conducted to assess how this temporal gradient influenced natives and aliens through community dynamics.Important findings Our results show different life-form patterns between natives and aliens over time. Aliens were mainly represented by annuals (especially ruderals and weeds), which were established at the beginning of succession. Annual aliens also predominated at mid-successional stages, but in old grasslands native species were slightly more representative than alien ones within the community. In the late successional states, positive or no correlations at all between alien and native species richness suggested the absence of competition between both species groups, as a result of different strategies in occupation of the space. Community dynamics over time constitute a net gain in biodiversity, increasing natives and maintaining a general alien pool, allowing the coexistence of both. Biotic interactions including facilitation and/or tolerance processes might be occurring in Chilean post-agricultural grasslands, a fact that contradicts the accepted idea of the alien species as contenders.  相似文献   

3.
丁婧祎  尹彩春  韩逸  赵文武 《生态学报》2023,43(20):8257-8267
草原灌丛化现象在干旱半干旱区广泛发生,影响了生态系统的结构、过程和功能。生态系统具有同时提供多种功能的能力,即生态系统多功能性。灌丛化是否会引起草原生态系统多功能性的减少,其内在的作用机制又是什么?这些问题仍有待明晰。理解草原灌丛化对生态系统多功能性的影响,对于促进草原地区"草-畜-人"平衡和实现区域可持续发展至关重要。从响应规律、影响路径和控制因素三个方面总结评述了草原灌丛化对生态系统多功能性影响的研究进展,主要包括:(1)阐明了单一生态系统功能和多种生态系统功能对草原灌丛化的响应特征;(2)从生物路径、非生物路径以及气候变化和人类活动的影响方面探讨了灌丛化对生态系统多功能性的影响路径;(3)从灌丛化物种、灌丛化阶段和草原类型三个方面明晰了草原灌丛化对生态系统多功能性影响的控制因素。在此基础上,针对灌丛化对生态系统多功能性的影响机制,对生产-生态功能权衡的影响等方面对未来研究进行了展望,并面向可持续发展目标探讨了灌丛化生态系统的可持续管理路径。研究可为我国灌丛化草原的恢复和管理提供支撑。  相似文献   

4.
Shrub encroachment can follow grazing or burning release in páramo grasslands. While encroachment decreases herbaceous species richness in some grassland systems, the effects of this process on the herbaceous community in páramo grasslands are currently unknown. We collected data on shrub cover, herbaceous‐species cover and species composition in a páramo grassland 12 years after release from burning and cattle grazing near Zuleta, Ecuador. Topographic and soil measures were also included as predictor variables of differences in community composition. Contrary to studies in other systems, shrub cover did not have a significant effect on herbaceous‐species richness, whereas shrub‐species richness significantly increased with shrub cover. However, shrub cover was associated with significant shifts in herbaceous–community composition. Most notably, there was an increase in some shade‐tolerant forbs and tall‐statured wetland grasses with increasing shrub cover, and a corresponding decrease in some short‐statured grasses and early successional forbs. These results could indicate that the ameliorative effects of shrubs (e.g. frost and wind protection) in harsh alpine environments may partially compensate for the expected competitive effect of shrubs due to shading.  相似文献   

5.
Aims and Methods Mostly due to land use changes, European heathlands have become increasingly rare. In addition, the increasing amount of atmospheric nitrogen deposition has resulted in an encroachment of grasses and a loss in species diversity. Despite many investigations, information about the precise environmental parameters that determine the development and maintenance of heathland vegetation is still insufficient. In order to determine the environmental factors that control heath succession and grass encroachment, and to develop appropriate management schemes, we studied the influence of several soil and microclimate parameters on species composition and vegetation characteristics in five successional stages in a coastal heathland on the island of Hiddensee, north-east Germany, where the encroachment of Carex arenaria has become a major problem.Important findings We recorded the highest plant species richness in grey dune and birch forest plots, while the encroachment of C. arenaria let to a significant decline in plant species richness. The most important environmental factors influencing species richness and distribution of single species were microclimate, soil moisture, soil pH and the C/N ratio. While many studies reported the importance of differences in nutrient availability, we found no significant correlations between soil nutrient availability and vegetation pattern. Environmental conditions in dense C. arenaria stands, especially soil properties (e.g. soil pH), showed great differences in comparison to the other successional stages. However, no correlations between the encroachment of C. arenaria and single environmental factors were found. Our results show that not only soil nutrients are important abiotic factors in heaths but that also microclimate and soil moisture play an important role and that many factors are involved in heath succession and in the promotion of grass encroachment. Management plans for the conservation and restoration of heathlands should therefore focus on the specific site conditions and should take several abiotic and biotic factors into account.  相似文献   

6.
Aims Chalk grasslands are subject to vegetation dynamics that range from species-rich open grasslands to tall and encroached grasslands, and woods and forests. In grasslands, earthworms impact plant communities and ecosystem functioning through the modification of soil physical, chemical and microbiological properties, but also through their selective ingestion and vertical transportation of seeds from the soil seed bank. Laboratory experiments showed that seed–earthworm interactions are species specific, but little is known on the impact of seed–earthworm interactions in the field. The overall aim of this study was to better understand seed–earthworm interactions and their impact on the plant community. First we analyzed the composition of seedlings emerging from casts after earthworm ingestion. Then we compared seedling composition in casts to the plant composition of emerging seedlings from the soil and of the aboveground vegetation along four stages of the secondary succession of chalk grasslands.Methods Four stages of the secondary succession of a chalk grassland—from open sward to woods—were sampled in Upper Normandy, France, in February 2010. Within each successional stage (×3 replicates), we sampled the standing vegetation, soil seed bank at three soil depths (0–2, 2–5 and 5–10cm) and earthworm surface casts along transects. Soil and cast samples were water sieved before samples were spread onto trays and placed into a greenhouse. Emerging seedlings were counted and identified. Effect of successional stage and origin of samples on mean and variability of abundance and species richness of seedlings emerging from casts and soil seed banks were analyzed. Plant compositions were compared between all sample types. We used generalized mixed-effect models and a distance-based redundancy multivariate analysis.Important findings Seedling abundance was always higher in earthworm casts than in the soil seed bank and increased up to 5-fold, 4-fold and 3.5-fold, respectively, in the tall grassland, woods and encroached grassland compared to the soil surface layer. Species richness was also higher in earthworm casts than in the soil seed bank in all successional stages, with a 4-fold increase in the encroached grassland. The plant composition of the standing vegetation was more similar to that of seedlings from casts than to that of seedlings from the soil seed bank. Seedlings diversity emerging from casts in the tall and encroached grasslands tended toward the diversity found in woods. Our results indicate that earthworms may promote the emergence of seedlings. We also suggest that the loss of some plant species in the seed bank and the tall grass vegetation in intermediary successional stages modify the local conditions and prevent the further establishment of early-successional plant species.  相似文献   

7.
Semi-natural grasslands are key habitats for biodiversity conservation in Central Europe. Shrub encroachment is one of the most threatening drivers of grassland degradation and affects soil properties, microclimate, and vegetation with possible impacts on higher trophic levels. We aimed to analyse the impact of shrub encroachment with broom (Cytisus scoparius) on carabid beetle diversity, species composition, and functional traits. In a field study on dry grasslands on the island of Hiddensee (Germany) we studied 15 sites along a gradient of increasing broom encroachment and classified them into three dry grassland types with low, medium, and high shrub cover. Our results provide evidence that shrub encroachment initially has positive effects on species richness and activity densities of dry grassland carabids. Carabid species composition differed among differently shrub-covered dry grassland types, and sites with low and high shrub cover were each characterised by unique carabid assemblages. The species composition of sites with a medium shrub biomass had a transitional character and contained species which are typical for open dry grassland, but also shared species with sites with a high shrub cover. Among functional trait parameters investigated, especially the body size of carabid beetles was related to environmental parameters associated with shrub encroachment. Body size was positively correlated to shrub biomass and soil humidity, but negatively to temperature. Eurytopy values of carabids were related to high litter cover, i.e. habitat generalist (eurytopic) species mainly occurred in densely shrub-encroached sites. In order to preserve unique carabid assemblages of open dry grasslands with stenotopic and smaller species, it is most important to prevent a shrub encroachment higher than about 60% cover. For management we suggest extensive grazing (by cattle, sheep or horses) to prevent shrub encroachment on dry grasslands. In areas with high shrub cover additionally the use of goats or mechanical removal of shrubs might be necessary.  相似文献   

8.
Aims Woody plant encroachments in arid and semiarid ecosystems are widely reported but the physiological mechanisms still need to be further revealed. In the current study, we aim to determine whether differences in leaf physiological traits help explain grassland susceptibility to woody plant encroachment and whether distinctive physiological adaptations allow some shrub species to invade grasslands.Methods We compared physiological traits (photosynthesis, leaf water status, pigment compositions and leaf antioxidant capacities) of six species representing three functional groups: woody encroachers (Prosopis velutina, Larrea tridentata), woody non-encroachers (Acacia greggii, Lycium fremontii) and C4 grasses (Bouteloua curtipendula, Bouteloua barbata) which are naturally growing in a botanical garden in University of Arizona, USA.Important findings We infer that P. velutina (encroacher) but not A. greggii or L. fremontii (non-encroachers) is encroaching in grasslands because the former species has higher water and light utilization efficiencies (instantaneous water use efficiency, instantaneous light use efficiency, and Fv/Fm). The extremely high carotenoid and total antioxidant capacity in its leaves appears to help the shrub L. tridentata (encroacher) survive high ambient oxidative damage caused by both drought and high light stresses in this grassland. The two C4 grass species, B. curtipendula and B. barbata, grow well in the arid ecosystem but may be susceptible to disturbances.  相似文献   

9.
One strategy of plant survival during post-fire succession is to persist and regenerate by recruiting new individuals from a fire-resistant seed bank. The heat, smoke, and charcoal released during plant combustion may act (individually or in combination) as a cue for post-fire seed germination. Fabiana imbricata is a shrub that forms persistent seed banks in the northwestern Patagonian grasslands and shows a high recruitment from seeds during post-fire succession. Mathematical models showed that this species is advancing over the grasslands in response to fires. To corroborate these findings, we studied the role of fire on F. imbricata seed germination. In order to achieve this, a factorial experiment was designed in laboratory conditions to study the effect of heat, charcoal, smoke, scarification, and their interactions on F. imbricata seed germination. Seeds treated with the higher temperatures required a longer period of time to germinate, thus, significantly affecting the mean germination time. Total germination percentages in F. imbricata were significantly enhanced by smoke and scarification, but the interaction of heat, smoke, and scarification was more important than the effect of each fire factor alone. The positive response to fire cues exhibited by F. imbricata indicates that this species would have an adaptive advantage to colonize these grasslands if fire frequency increased, as predicted for this environment. Hence, fire will contribute to the grassland encroachment by this species and, therefore, to the loss of biodiversity and productivity of northwestern Patagonian grasslands.  相似文献   

10.
草原灌丛化是全球干旱半干旱地区面临的重要生态问题。灌丛化对草原生态系统结构与功能的影响较为复杂, 有待于在更广泛的区域开展研究。该研究在内蒙古锡林郭勒典型草原选择轻度、中度和重度灌丛化草地, 通过群落调查, 结合植物功能性状和土壤理化性质观测, 研究了小叶锦鸡儿(Caragana microphylla)灌丛化对草原群落结构(物种多样性、功能多样性和功能群组成)和生态系统功能(初级生产力、植被和土壤养分库)的影响。结果表明: 1)不同程度灌丛化草地的物种丰富度、功能性状多样性和群落加权性状平均值差异显著, 其中, 中度灌丛化草地的物种多样性和功能多样性较高, 表明一定程度的灌丛化有利于生物多样性维持。2)重度灌丛化草地的地上净初级生产力(ANPP)显著高于轻度和中度灌丛化草地, 其原因主要是随着灌丛化程度加剧, 群落内一/二年生草本植物显著增加, 而多年生禾草和多年生杂类草显著减少。三个灌丛化草地的植被叶片和土壤碳、氮库差异均不显著。3)灌丛化对草原生态系统功能包括ANPP、植被和土壤养分库均没有直接的影响, 而是通过影响功能群组成、土壤理化性质和功能多样性, 间接地影响生态系统功能; 灌丛化导致功能群发生替代和土壤旱碱化是最重要的生物和非生物因素。  相似文献   

11.
Invasions of woody species into grasslands abandoned by agriculture are a global phenomenon, but their effects on diversity of other taxa have been rarely investigated across both regional and local scales. We quantified how shrub encroachment affected the activity, composition, and diversity of ant communities in managed and abandoned grasslands in western Carpathians of Central Europe across four regions and four shrub encroachment stages in each region. We surveyed ant communities on 48 sites in total, with each encroachment stage replicated three times in each region and twelve times overall. We used pitfall traps to sample ants over three years (2008, 2009, 2011) and identified 9,254 ant workers belonging to 33 species in total. Although the epigaeic activity and composition of ant communities varied with region, abandoned grasslands supported a greater species richness of ants than managed grasslands regardless of the region, and especially so in more advanced shrub encroachment stages. Since the woody colonization within grasslands was moderate even in the advanced encroachment stages (on average ~40 % of grassland colonized by woody species), it allowed coexistence of forest specialists (e.g. Temnothorax crassispinus) with species typical of open grasslands, thus increasing overall ant diversity. Managed grasslands were not only less species rich compared to abandoned grasslands, but they were characterized by different species (e.g. Lasius niger, Myrmica rugulosa). The differences in ant communities between managed and abandoned grasslands are likely to cause differences in ecological functions mediated by ants (e.g. predation of arthropods or plant seed dispersal).  相似文献   

12.
13.
A field experiment was established in a subarctic grassland in the Finnish Lapland to study the role of summer herbivory in plant community succession Perennial vegetation and moss cover were removed in an area of 324 m2 The site was divided into four blocks, of which two were fenced to prevent herbivory by large mammals (reindeer, hare)
Early successional changes in the vegetation were assessed Mean species richness per 3 × 3 m plot was consistently higher in the fenced area, indicating that herbivory can suppress small-scale diversity Herbivory affected the height of several plant species However, there was no correlation between frequency and height of individual species There was a weak indication that taller species were more successful m early succession when grazed Light competition is apparently not a key process determining successional change Thus, in early stage of succession, summer herbivory has little effect on diversity by limiting light competition, and most species are equally successful in grazed and ungrazed plots There was some indirect evidence about competitive interactions in the developing community However, unlike temperate grasslands, large mammal herbivory and competition for light seem not to be important determinants of community change in this subarctic grassland (at least what concernes early successional stages) This may be explained by the harshness of local climate, and abundance of light due to the polar day  相似文献   

14.
Question: How do various plant functional groups and types are related to regeneration of limestone grasslands and to temporal changes in cover of trees and shrubs? Which mechanisms are responsible for changes in differently treated grasslands? Location: Southern Poland, 50° 01'N, 19° 50'E. Methods: A 12‐year restoration experiment after the clearing of a 35‐yr‐old secondary pine wood developed on limestone grassland, and a parallel observation of succession in neighbouring abandoned grassland were carried out. Changes in cover of species with different functional traits and established strategies in relation to time and cover of shrub layer were analysed using multiple linear regression. Results: Over 12 years the composition and cover of species changed in the studied grasslands, but significant differences still occurred between the old grassland and the grassland restored in former wood gaps and that developed in former closed wood. Despite the very close proximity of the old grassland, the composition of restored grasslands was still much determined by initial conditions. In these grasslands, the cover of Festuco‐Brometea species was significantly lower than in the old grassland. In all sites, the cover of species with large leaves and with leaves distributed regularly along the stem, and the cover of CS strategists increased. With increasing shrub cover in restored grasslands, the cover of annuals and biennials, tall species, and R and CS strategists decreased. Conclusions: Limited availability of seeds seems the principal reason for the weak regeneration of xerothermic limestone grasslands. Trees and shrubs inhibit the developed of both early successional species and perennials occurring in established communities. They significantly hinder regeneration of grasslands and should be cut every five or six years.  相似文献   

15.
Global change triggers shifts in forest composition, with warming and aridification being particularly threatening for the populations located at the rear edge of the species distributions. This is the case of Scots pine (Pinus sylvestris) in the Mediterranean Basin where uncertainties in relation to its dynamics under these changing scenarios are still high. We analysed the relative effect of climate on the recruitment patterns of Scots pine and its interactions with local biotic and abiotic variables at different spatial scales. Number of seedlings and saplings was surveyed, and their annual shoot growth measured in 96 plots located across altitudinal gradients in three different regions in the Iberian Peninsula. We found a significant influence of climate on demography and performance of recruits, with a non-linear effect of temperature on the presence of juveniles, and a positive effect of precipitation on their survival. Abundance of juveniles of P. sylvestris that underwent their first summer drought was skewed towards higher altitudes than the altitudinal mean range of the conspecific adults and the optimum elevation for seedlings'' emergence. At local level, light availability did not influence juveniles'' density, but it enhanced their growth. Biotic interactions were found between juveniles and the herb cover (competition) and between the number of newly emerged seedlings and shrubs (facilitation). Results also highlighted the indirect effect that climate exerts over the local factors, modulating the interactions with the pre-existing vegetation that were more evident at more stressful sites. This multiscale approach improves our understanding of the dynamics of these marginal populations and some management criteria can be inferred to boost their conservation under the current global warming.  相似文献   

16.
Many arid and semi‐arid landscapes around the world are affected by a shift from grassland to shrubland vegetation, presumably induced by climate warming, increasing atmospheric CO2 concentrations, and/or changing land use. This major change in vegetation cover is likely sustained by positive feedbacks with the physical environment. Recent research has focused on a feedback with microclimate, whereby cold intolerant shrubs increase the minimum nocturnal temperatures in their surroundings. Despite the rich literature on the impact of land cover change on local climate conditions, changes in microclimate resulting from shrub expansion into desert grasslands have remained poorly investigated. It is unclear to what extent such a feedback can affect the maximum extent of shrub expansion and the configuration of a stable encroachment front. Here, we focus on the case of the northern Chihuahuan desert, where creosotebush (Larrea tridentata) has been replacing grasslands over the past 100–150 years. We use a process‐based coupled atmosphere‐vegetation model to investigate the role of this feedback in sustaining shrub encroachment in the region. Simulations indicate that the feedback allows juvenile shrubs to establish in the grassland during average years and, once established, reduce their vulnerability to freeze‐induced mortality by creating a warmer microclimate. Such a feedback is crucial in extreme cold winters as it may reduce shrub mortality. We identify the existence of a critical zone in the surroundings of the encroachment front, in which vegetation dynamics are bistable: in this zone, vegetation can be stable both as grassland and as shrubland. The existence of these alternative stable states explains why in most cases the shift from grass to shrub cover is found to be abrupt and often difficult to revert.  相似文献   

17.
Spatial fingerprints of climate change on tree species distribution are usually detected at latitudinal or altitudinal extremes (arctic or alpine tree line), where temperatures play a key role in tree species distribution. However, early detection of recent climate change effects on tree species distribution across the overall temperature gradient remains poorly explored. Within French mountain forests, we investigated altitudinal distribution differences between seedling (≤50 cm tall and >1 yr old) and adult (>8 m tall) life stages for 17 European tree taxa, encompassing the entire forest elevation range from lowlands to the subalpine vegetation belt (50–2250 m a.s.l.) and spanning the latitudinal gradient from northern temperate to southern Mediterranean forests. We simultaneously identified seedlings and adults within the same vegetation plots. These twin observations gave us the equivalent of exactly paired plots in space with seedlings reflecting a response to the studied warm period (1986–2006) and adults reflecting a response to a former and cooler period. For 13 out of 17 species, records of the mean altitude of presence at the seedling life stage are higher than that at the adult life stage. The low altitudinal distribution limit of occurrences at the seedling life stage is, on average, 29 m higher than that at the adult life stage which is significant. The high altitudinal distribution limit also shows a similar trend but which is not significant. Complementary analyses using modelling techniques and focusing on the optimum elevation (i.e. the central position inside distribution ranges) have confirmed differences between life stages altitudinal distribution. Seedlings optima are mostly higher than adults optimum, reaching, on average, a 69 m gap. This overall trend showing higher altitudinal distribution at the seedling life stage in comparison to the adult one suggests a main driver of change highly related to elevation, such as climate warming that occurs during the studied period. Other drivers of change that could play an important role across elevation or act at more specific scales are also discussed as potential contributors to explain our results.  相似文献   

18.
木本植物沿海拔/气候梯度广泛分布于中国新疆的各种草地类型。木本植物入侵能引起草地碳储量的变化,并且气候条件会调节这种变化。基于这些研究结果,我们预测,在半干旱草地中,木本植物对半干旱草地的植被碳储量有正向影响,而在干旱草地中,木本植物会负向影响碳储量。我们调查草地类型之间地上和地下碳储量的空间分布并对这一预测进行检验。测定纯草地和木质化草地(木本植物的相对地上生物量>50%)的地上活体生物量(AGC)、凋落物量和地下生物量(BGC),共包括6种草地类型,可代表新疆地区半干旱至干旱状态。从荒漠到山地草甸,地上活体生物量、凋落物量和地下生物量逐渐增加。这一结果可能由年均降水量增加或年均气温降低导致,也表明草地类型代表干旱梯度。相比于纯草地,木本植物对草地植被碳储量的大小和分配均有显著影响。并且,由于气候的调节作用,木本植物影响的方向和强度因草地类型而异,较为湿润的条件可以促进木本植物的正向效应。相比于草本植物,木本植物的AGC高导致草地植被AGC增加。然而,随干旱程度增加,木本植物对草本植物呈现更为明显的负面效应,使得在荒漠、草原化荒漠和荒漠草原中,其木本植物对植被AGC的增加幅度小于较为湿润的草地类型。在较为干旱(MAP较低而MAT较高)的气候条件下,木本植物向根部分配的生物量较少,BGC较低并对草本植物的生产力有负面影响,从而降低荒漠、草原化荒漠和荒漠草原的植被BGC。木本植物对新疆最干旱的草地总植被碳储量有负面影响。因此,我们预测,在未来干旱的条件下,木本植物入侵可能降低而不是增加草地的植被碳储量。  相似文献   

19.
Succession has a strong influence on species diversity and composition of semi-natural open terrestrial ecosystems. While several studies examined the effects of succession on butterflies in grassland and forest ecosystems, the response of heathland butterflies to succession had not been investigated so far. To address this issue we sampled butterfly abundance and environmental parameters on the Baltic island of Hiddensee (NE Germany) along a gradient of coastal heathland succession from grey dunes to birch forest. Our results provide evidence that succession of coastal heathland has a strong influence on butterfly diversity, abundance, and species composition. Thereby grass and tree encroachment present the main threats for heathland butterflies. Diversity and abundance of butterflies were highest in shrub-encroached heath directly followed by early stages of coastal heathland succession (dwarf-shrub heath, grey dune). Both observed threatened species (Hipparchia semele, Plebeius argus) were negatively affected by succession: abundance decreased with increasing vegetation density (both species) and grass cover (P. argus); consequently, the two later successional stages (shrub, birch forest) were not occupied. Our findings highlight the importance of the preservation of early stages of coastal heathland succession for endangered butterfly species. For coastal heathland management we therefore suggest to maintain early successional stages by sheep grazing, mowing or, in case of high nutrient contents, intensive techniques such as sod-cutting or choppering. To a lower extend shrub-encroached sites should also be present, which might be beneficial for overall species richness.  相似文献   

20.
 土壤氮磷养分对植物生长的限制性可通过植被的N∶P化学计量特征来反映。该研究以常绿阔叶林演替系列为对象,将N∶P作为诊断指标,揭示 常绿阔叶林次生演替过程中植物群落的N∶P化学计量特征和养分限制作用。结果显示:1)物种水平的N∶P大小不一,但演替系列总体的变化特 征表现出了较高的一致性。2)在群落水平上,次生演替初期的灌草丛N∶P极小(7.38),远远低于14,当演替进入灌丛阶段,N∶P 显著增高到 19.96,在进入演替中期的针叶林(14.29)和针阔混交林(14.21)时,N∶P显著下降到 14~16之间,演替中后期的木荷(Schima superba)群落 (18.77)和栲树(Castanopsis fargesii)群落(20.13)的N∶P发生了显著的升高过程 。根据以往对N∶P临界值的确定,可以认为,常绿阔叶林次 生演替初期的植物群落生产力主要受到氮素的限制作用;演替中期的针叶林和针阔混交林主要受氮磷的共同限制,但以氮素的限制作用更为强 烈;演替中后期植物群落主要受到土壤磷素的限制作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号