共查询到20条相似文献,搜索用时 15 毫秒
1.
David Pitonzo 《生物化学与生物物理学报:生物膜》2006,1758(8):976-988
The past decade has witnessed remarkable advances in our understanding of aquaporin (AQP) structure and function. Much, however, remains to be learned regarding how these unique and vitally important molecules are generated in living cells. A major obstacle in this respect is that AQP biogenesis takes place in a highly specialized and relatively inaccessible environment formed by the ribosome, the Sec61 translocon and the ER membrane. This review will contrast the folding pathways of two AQP family members, AQP1 and AQP4, and attempt to explain how six TM helices can be oriented across and integrated into the ER membrane in the context of current (and somewhat conflicting) translocon models. These studies indicate that AQP biogenesis is intimately linked to translocon function and that the ribosome and translocon form a highly dynamic molecular machine that both interprets and is controlled by specific information encoded within the nascent AQP polypeptide. AQP biogenesis thus has wide ranging implications for mechanisms of translocon function and general membrane protein folding pathways. 相似文献
2.
Nico Sch?uble Adolfo Cavalié Richard Zimmermann Martin Jung 《Channels (Austin, Tex.)》2014,8(1):76-83
According to live-cell calcium-imaging experiments, the Sec61 complex is a passive calcium-leak channel in the human endoplasmic reticulum (ER) membrane that is regulated by ER luminal immunoglobulin heavy chain binding protein (BiP) and cytosolic Ca2+-calmodulin. In single channel measurements, the open Sec61 complex is Ca2+ permeable. It can be closed not only by interaction with BiP or Ca2+-calmodulin, but also with Pseudomonas aeruginosa Exotoxin A which can enter human cells by retrograde transport. Exotoxin A has been shown to interact with the Sec61 complex and, thereby, inhibit ER export of immunogenic peptides into the cytosol. Here, we show that Exotoxin A also inhibits passive Ca2+ leakage from the ER in human cells, and we characterized the N-terminus of the Sec61 α-subunit as the relevant binding site for Exotoxin A. 相似文献
3.
《Channels (Austin, Tex.)》2013,7(1):76-83
According to live-cell calcium-imaging experiments, the Sec61 complex is a passive calcium-leak channel in the human endoplasmic reticulum (ER) membrane that is regulated by ER luminal immunoglobulin heavy chain binding protein (BiP) and cytosolic Ca2+-calmodulin. In single channel measurements, the open Sec61 complex is Ca2+ permeable. It can be closed not only by interaction with BiP or Ca2+-calmodulin, but also with Pseudomonas aeruginosa Exotoxin A which can enter human cells by retrograde transport. Exotoxin A has been shown to interact with the Sec61 complex and, thereby, inhibit ER export of immunogenic peptides into the cytosol. Here, we show that Exotoxin A also inhibits passive Ca2+ leakage from the ER in human cells, and we characterized the N-terminus of the Sec61 α-subunit as the relevant binding site for Exotoxin A. 相似文献
4.
Endoplasmic reticulum‐associated degradation (ERAD) is a cellular pathway for the disposal of misfolded secretory proteins. This process comprises recognition of the misfolded proteins followed by their retro‐translocation across the ER membrane into the cytosol in which polyubiquitination and proteasomal degradation occur. A variety of data imply that the protein import channel Sec61p has a function in the ERAD process. Until now, no physical interactions between Sec61p and other essential components of the ERAD pathway could be found. Here, we establish this link by showing that Hrd3p, which is part of the Hrd‐Der ubiquitin ligase complex, and other core components of the ERAD machinery physically interact with Sec61p. In addition, we study binding of misfolded CPY* proteins to Sec61p during the process of degradation. We show that interaction with Sec61p is maintained until the misfolded proteins are ubiquitinated on the cytosolic side of the ER. Our observations suggest that Sec61p contacts an ERAD ligase complex for further elimination of ER lumenal misfolded proteins. 相似文献
5.
Abstract: To elucidate the role of neurofilaments in microtubule stabilization in the axon, we studied the effects of β,β'-iminodipropionitrile (IDPN) on the solubility and transport of tubulin as well as neurofilament phosphorylation in the motor fibers of the rat sciatic nerve. IDPN is known to impair the axonal transport of neurofilaments, causing accumulation of neurofilaments in the proximal axon and segregation of neurofilaments to the peripheral axoplasm throughout the nerve. Administration of IDPN at various intervals after radioactive labeling of the spinal cord with l -[35 S]methionine revealed that transport inhibition occurred all along the nerve within 1–2 days. Transport of cold-insoluble tubulin, which accounts for 50% of axonal tubulin, was also affected. A significant increase in the proportion of cold-soluble tubulin was observed, reaching a maximum at 3 days after IDPN treatment and returning to the control level in the following weeks. Preceding this change in tubulin solubility, a transient decrease in the phosphorylation level of the 200-kDa neurofilament protein was detected in the ventral root using phosphorylation-dependent antibodies. These early changes agreed in timing with the onset of segregation and transport inhibition, suggesting that interaction between neurofilaments and microtubules possibly regulated by phosphorylation plays a significant role in microtubule stabilization. 相似文献
6.
Sebastian Jung 《朊病毒》2018,12(2):88-92
The prion protein (PrP) is composed of two major domains of similar size. The structured C-terminal domain contains three alpha-helical regions and a short two-stranded beta-sheet, while the N-terminal domain is intrinsically disordered. The analysis of PrP mutants with deletions in the C-terminal globular domain provided the first hint that intrinsically disordered domains are inefficiently transported into the endoplasmic reticulum through the Sec61 translocon. Interestingly, C-terminally truncated PrP mutants have been linked to inherited prion disease in humans and are characterized by inefficient ER import and the formation of neurotoxic PrP conformers. In a recent study we found that the Sec61 translocon in eukaryotic cells as well as the SecY translocon in bacteria is inherently deficient in translocating intrinsically disordered proteins. Moreover, our results suggest that translocon-associated components in eukaryotic cells enable the Sec61 complex to transport secretory proteins with extended unstructured domains such as PrP and shadoo. 相似文献
7.
Microdomains of endoplasmic reticulum within the sarcoplasmic reticulum of skeletal myofibers 总被引:2,自引:0,他引:2
The relationship between the endoplasmic reticulum (ER) and the sarcoplasmic reticulum (SR) of skeletal muscle cells has remained obscure. In this study, we found that ER- and SR-specific membrane proteins exhibited diverse solubility properties when extracted with mild detergents. Accordingly, the major SR-specific protein Ca(2+)-ATPase (SERCA) remained insoluble in Brij 58 and floated in sucrose gradients while typical ER proteins were partially or fully soluble. Sphingomyelinase treatment rendered SERCA soluble in Brij 58. Immunofluorescence staining for resident ER proteins revealed dispersed dots over I bands contrasting the continuous staining pattern of SERCA. Infection of isolated myofibers with enveloped viruses indicated that interfibrillar protein synthesis occurred. Furthermore, we found that GFP-tagged Dad1, able to incorporate into the oligosaccharyltransferase complex, showed the dot-like structures but the fusion protein was also present in membranes over the Z lines. This behaviour mimics that of cargo proteins that accumulated over the Z lines when blocked in the ER. Taken together, the results suggest that resident ER proteins comprised Brij 58-soluble microdomains within the insoluble SR membrane. After synthesis and folding in the ER-microdomains, cargo proteins and non-incorporated GFP-Dad1 diffused into the Z line-flanking compartment which likely represents the ER exit sites. 相似文献
8.
After endocytosis cholera toxin is transported to the endoplasmic reticulum (ER), from where its A1 subunit (CTA1) is assumed to be transferred to the cytosol by an as-yet unknown mechanism. Here, export of CTA1 from the ER to the cytosol was investigated in a cell-free assay using either microsomes loaded with CTA1 by in vitro translation or reconstituted microsomes containing CTA1 purified from V. cholerae. Export of CTA1 from the microsomes was time- and adenosine triphosphate-dependent and required lumenal ER proteins. By coimmunoprecipitation CTA1 was shown to be associated during export with the Sec61p complex, which mediates import of proteins into the ER. Export of CTA1 was inhibited when the Sec61p complexes were blocked by nascent polypeptides arrested during import, demonstrating that the export of CTA1 depended on translocation-competent Sec61p complexes. Export of CTA1 from the reconstituted microsomes indicated the de novo insertion of the toxin into the Sec61p complex from the lumenal side. Our results suggest that Sec61p complex-mediated protein export from the ER is not restricted to ER-associated protein degradation but is also used by bacterial toxins, enabling their entry into the cytosol of the target cell. 相似文献
9.
Guido Barbieri Julien Simon Cristina R. Lupusella Fabio Pereira Francesco Elia Hadar Meyer Maya Schuldiner Steven D. Hanes Duy Nguyen Volkhard Helms Karin Rmisch 《The Journal of biological chemistry》2023,299(3)
The highly conserved endoplasmic reticulum (ER) protein translocation channel contains one nonessential subunit, Sec61β/Sbh1, whose function is poorly understood so far. Its intrinsically unstructured cytosolic domain makes transient contact with ER-targeting sequences in the cytosolic channel vestibule and contains multiple phosphorylation sites suggesting a potential for regulating ER protein import. In a microscopic screen, we show that 12% of a GFP-tagged secretory protein library depends on Sbh1 for translocation into the ER. Sbh1-dependent proteins had targeting sequences with less pronounced hydrophobicity and often no charge bias or an inverse charge bias which reduces their insertion efficiency into the Sec61 channel. We determined that mutating two N-terminal, proline-flanked phosphorylation sites in the Sbh1 cytosolic domain to alanine phenocopied the temperature-sensitivity of a yeast strain lacking SBH1 and its ortholog SBH2. The phosphorylation site mutations reduced translocation into the ER of a subset of Sbh1-dependent proteins, including enzymes whose concentration in the ER lumen is critical for ER proteostasis. In addition, we found that ER import of these proteins depended on the activity of the phospho-S/T–specific proline isomerase Ess1 (PIN1 in mammals). We conclude that Sbh1 promotes ER translocation of substrates with suboptimal targeting sequences and that its activity can be regulated by a conformational change induced by N-terminal phosphorylation. 相似文献
10.
The occurrence of β-galactosidase and β-phosphogalactosidase in Lactobacillus casei strains 总被引:1,自引:0,他引:1
Abstract Several strains of Lactobacillus casei of different origins were compared and it was observed that lactose metabolism varied from one strain to the other. Certain strains contained a β-galactosidase, others a β-phosphogalactosidase and others contain both. It was shown that the activities present in these last strains are catalyzed by two proteins differing in their electrophoretic mobilities and M r values. Genetic divergence of the studied strains is considered. 相似文献
11.
N Schäuble S Lang M Jung S Cappel S Schorr O Ulucan J Linxweiler J Dudek R Blum V Helms AW Paton JC Paton A Cavalié R Zimmermann 《The EMBO journal》2012,31(15):3282-3296
In mammalian cells, signal peptide-dependent protein transport into the endoplasmic reticulum (ER) is mediated by a dynamic protein-conducting channel, the Sec61 complex. Previous work has characterized the Sec61 channel as a potential ER Ca(2+) leak channel and identified calmodulin as limiting Ca(2+) leakage in a Ca(2+)-dependent manner by binding to an IQ motif in the cytosolic aminoterminus of Sec61α. Here, we manipulated the concentration of the ER lumenal chaperone BiP in cells in different ways and used live cell Ca(2+) imaging to monitor the effects of reduced levels of BiP on ER Ca(2+) leakage. Regardless of how the BiP concentration was lowered, the absence of available BiP led to increased Ca(2+) leakage via the Sec61 complex. When we replaced wild-type Sec61α with mutant Sec61αY344H in the same model cell, however, Ca(2+) leakage from the ER increased and was no longer affected by manipulation of the BiP concentration. Thus, BiP limits ER Ca(2+) leakage through the Sec61 complex by binding to the ER lumenal loop 7 of Sec61α in the vicinity of tyrosine 344. 相似文献
12.
Cloning and characterization of β-galactoside and β-glucoside hydrolysing enzymes of Thermotoga maritima 总被引:1,自引:0,他引:1
Josef Gabelsberger Wolfgang Liebl Karl-Heinz Schleifer 《FEMS microbiology letters》1993,109(2-3):131-137
Abstract A gene library of the hyperthermophilic bacterium Thermotoga maritima strain MSB8 was constructed in Escherichia coli . Two non-related T. maritima chromosomal DNA fragments were physically characterized. They conferred the synthesis of thermostable X-Gal (5-bromo-4-chloro-3-indolyl-β- d -galactopyranoside)-hydrolysing activity upon the host organism. The biochemical properties of the recombinant enzymes indicated that genes for a β-galactosidase (BgaA) and a broad-specificity β-glucosidase (Bg1A) had been isolated. The genes were desiignted bgaA and bglA , respectively. According to analytical size exclusion chromatography data, BgaA and BglA had native molecular masses of approximately 240 kDa and 95 kDa, respectively. Both enzymes apparently have dimeric subunit structure. An additional β-glucosidase (designated BglB) activity, clearly distinct from BglA in terms of substrate specificity, could be detected in a crude extract of T. maritima . 相似文献
13.
Abstract: The regional distributions of the G protein β subunits (Gβ1–β5) and of the Gγ3 subunit were examined by immunohistochemical methods in the adult rat brain. In general, the Gβ and Gγ3 subunits were widely distributed throughout the brain, with most regions containing several Gβ subunits within their neuronal networks. The olfactory bulb, neocortex, hippocampus, striatum, thalamus, cerebellum, and brainstem exhibited light to intense Gβ immunostaining. Negative immunostaining was observed in cortical layer I for Gβ1 and layer IV for Gβ4. The hippocampal dentate granular and CA1–CA3 pyramidal cells displayed little or no positive immunostaining for Gβ2 or Gβ4. No anti-Gβ4 immunostaining was observed in the pars compacta of the substantia nigra or in the cerebellar granule cell layer and Purkinje cells. Immunoreactivity for Gβ1 was absent from the cerebellar molecular layer, and Gβ2 was not detected in the Purkinje cells. No positive Gγ3 immunoreactivity was observed in the lateral habenula, lateral septal nucleus, or Purkinje cells. Double-fluorescence immunostaining with anti-Gγ3 antibody and individual anti-Gβ1–β5 antibodies displayed regional selectivity with Gβ1 (cortical layers V–VI) and Gβ2 (cortical layer I). In conclusion, despite the widespread overlapping distributions of Gβ1–β5 with Gγ3, specific dimeric associations in situ were observed within discrete brain regions. 相似文献
14.
Abstract: Species differences in susceptibility are a unique feature associated with the neurotoxicity of β-N-oxalyl-l -α,β-diaminopropionic acid (l -ODAP), the Lathyrus sativus neurotoxin, and the excitotoxic mechanism proposed for its mechanism of toxicity does not account for this feature. The present study examines whether neurotoxicity of l -ODAP is the result of an interference in the metabolism of any amino acid and if it could form the basis to explain the species differences in susceptibility. Thus, Wistar rats and BALB/c (white) mice, which are normally resistant to l -ODAP, became susceptible to it following pretreatment with tyrosine (or phenylalanine), exhibiting typical neurotoxic symptoms. C57BL/6J (black) mice were, however, normally susceptible to l -ODAP without any pretreatment with tyrosine. Among the various enzymes associated with tyrosine metabolism examined, the activity of only tyrosine aminotransferase (TAT) was inhibited specifically by l -ODAP. The inhibition was noncompetitive with respect to tyrosine (Ki = 2.0 ± 0.1 mM) and uncompetitive with respect to α-ketoglutarate (Ki = 8.4 ± 1.5 mM). The inhibition of TAT was also reflected in a marked decrease in the rate of oxidation of tyrosine by liver slices, an increase in tyrosine levels of liver, and also a twofold increase in the dopa and dopamine contents of brain in l -ODAP-injected black mice. The dopa and dopamine contents in the brain of only l -ODAP-injected white mice did not show any change, whereas levels of these compounds were much higher in tyrosine-pretreated animals. Also, the radioactivity associated with tyrosine, dopa, and dopamine arising from [14C]tyrosine was twofold higher in both liver and brain of l -ODAP-treated black mice. Thus, a transient increase in tyrosine levels following the inhibition of hepatic TAT by l -ODAP and its increased availability for the enhanced synthesis of dopa and dopamine and other likely metabolites (toxic?) resulting therefrom could be the mechanism of neurotoxicity and may even underlie the species differences in susceptibility to this neurotoxin. 相似文献
15.
Phosphorylation-Dependent Immunoreactivity of Neurofilaments Increases During Axonal Maturation and β,β'-Iminodipropionitrile Intoxication 总被引:3,自引:3,他引:0
D. F. Watson J. W. Griffin K. P. Fittro P. N. Hoffman 《Journal of neurochemistry》1989,53(6):1818-1829
The immunoreactivity of the high-molecular-weight neurofilament (NF) subunit toward antibodies that react with phosphorylation-related epitopes was determined at different anatomic sites in the PNS of rats during normal maturation and after intoxication with beta,beta'-iminodipropionitrile (IDPN). A maturational increase in the relative binding of phosphorylation-dependent antibodies compared to phosphorylation-inhibited antibodies occurred from age 3 to 12 weeks. An increase in phosphorylation-related immunoreactivity with increasing distance from the cell bodies was present in ventral and dorsal roots at all ages. The degree of phosphorylation-related immunoreactivity was greater for centrally directed axons in the dorsal roots of the L5 ganglion than for peripherally directed axons. IDPN, a toxin that impairs NF transport, caused a marked increase in reactivity toward the phosphorylation-dependent antibody. NFs from IDPN-treated rats also bound less of an antibody that is normally phosphorylation independent and this inhibition of binding was sensitive to phosphatase digestion. In each instance, greater degrees of phosphorylation-dependent immunoreactivity correlate with conditions known to exhibit slower net rates of axonal transport of NF proteins. 相似文献
16.
The past decade has witnessed remarkable advances in our understanding of aquaporin (AQP) structure and function. Much, however, remains to be learned regarding how these unique and vitally important molecules are generated in living cells. A major obstacle in this respect is that AQP biogenesis takes place in a highly specialized and relatively inaccessible environment formed by the ribosome, the Sec61 translocon and the ER membrane. This review will contrast the folding pathways of two AQP family members, AQP1 and AQP4, and attempt to explain how six TM helices can be oriented across and integrated into the ER membrane in the context of current (and somewhat conflicting) translocon models. These studies indicate that AQP biogenesis is intimately linked to translocon function and that the ribosome and translocon form a highly dynamic molecular machine that both interprets and is controlled by specific information encoded within the nascent AQP polypeptide. AQP biogenesis thus has wide ranging implications for mechanisms of translocon function and general membrane protein folding pathways. 相似文献
17.
In primary astrocyte cultures beta-glucosidase (EC 3.2.1.21) and beta-galactosidase (EC 3.2.1.23) showed pH optima and Km values identical to rat brain enzymes, using methylumbelliferyl glycosides and labeled gluco- and galactocerebrosides as substrates. The activities of both glycosidases increased in culture up to 3-4 weeks. In rat brain only galactosidase increased; glucosidase activity declined between 12-20 days after birth. The specific activities were two- to sixfold higher in astrocyte cultures than in rat brain. These activities were not due to uptake of enzymes from the growth medium. Secretion of beta-galactosidase, but not beta-glucosidase nor acid phosphatase could be demonstrated. These results support the suggestion of a degradative function for astrocytes in the brain. 相似文献
18.
Abstract Aztreonam-resistant Klebsiella oxytoca strain SL7811 was selected on agar containing 1 μg of aztreonam per ml from a susceptible strain SL781. The MICs for the resistant mutant towards penicillins, aztreonam and ceftriaxone were much higher, to cefotaxime slightly higher and to ceftazidime unchanged. Synthesis of β-lactamase was 223-fold greater in the mutant compared with the susceptible strain. SL781 and its resistant mutant SL7811 produced β-lactamase with the same isoelectric point and substrate profile. The β-lactamase genes from SL781 and SL7811 were cloned in plasmid pBGS18 giving pBOF-1 and pBOF-4 respectively. The sequences of the two putative promoters indicated two modifications in the resistant plasmid pBOF-4: a transversion (G → T) in the first base of the − 10 consensus sequence and a deletion of one C residue four base pairs upstream of the − 10 hexamer. 相似文献
19.
Christian J. Pike rea J. Walencewicz-Wasserman Joseph Kosmoski David H. Cribbs Charles G. Glabe Carl W. Cotman 《Journal of neurochemistry》1995,64(1):253-265
Abstract: The neurodegeneration of Alzheimer's disease has been theorized to be mediated, at least in part, by insoluble aggregates of β-amyloid protein that are widely distributed in the form of plaques throughout brain regions affected by the disease. Previous studies by our laboratory and others have demonstrated that the neurotoxicity of β-amyloid in vitro is dependent upon its spontaneous adoption of an aggregated structure. In this study, we report extensive structure-activity analyses of a series of peptides derived from both the proposed active fragment of β-amyloid, β25–35, and the full-length protein, β1–42. We examine the effects of amino acid residue deletions and substitutions on the ability of β-amyloid peptides to both form sedimentable aggregates and induce toxicity in cultured hippocampal neurons. We observe that significant levels of peptide aggregation are always associated with significant β-amyloid-induced neurotoxicity. Further, both N- and C-terminal regions of β25–35 appear to contribute to these processes. In particular, significant disruption of peptide aggregation and toxicity result from alterations in the β33–35 region. In β1–42 peptides, aggregation disruption is evidenced by changes in both electrophoresis profiles and fibril morphology visualized at the light and electron microscope levels. Using circular dichroism analysis in a subset of peptides, we observed classic features of β-sheet secondary structure in aggregating, toxic β-amyloid peptides but not in nonaggregating, nontoxic β-amyloid peptides. Together, these data further define the primary and secondary structures of β-amyloid that are involved in its in vitro assembly into neurotoxic peptide aggregates and may underlie both its pathological deposition and subsequent degenerative effects in Alzheimer's disease. 相似文献
20.
Abstract: The neurotoxic properties of the dietary excitotoxins β- N -methylamino- l -alanine and β- N -oxalylamino- l -alanine have been studied in rat cerebellar granule cells and compared with those of glutamate. Glutamate caused dose-dependent death of cerebellar granule cells after a 30-min exposure when viability was assessed 24 h later. β- N -Methylamino- l -alanine and β- N -oxalylamino- l -alanine, however, were toxic only after 24 or 48 h of exposure. The neurotoxic effects of β- N -methylamino- l -alanine were blocked by d (−)-2-amino-5-phosphonopentanoic acid, and those of β- N -oxalylamino- l -alanine were blocked by kynurenic acid, which demonstrated that these excitotoxins caused cerebellar granule cell death through the activation of glutamate receptors. The features of this death were examined morphologically (fluorescent dyes, electron microscopy) and biochemically (conventional agarose gel electrophoresis, effect of aurintricarboxylic acid). Characteristics of apoptosis were identified by transferring cerebellar granule cells from a high K+ (30 m M )- to a low K+ (10 m M )-containing medium. In cerebellar granule cells exposed to β- N -methylamino- l -alanine or β- N -oxalylamino- l -alanine (3 m M ), hallmarks of necrotic- and apoptotic-like death were observed at various time points over a 72-h period. Therefore, in cerebellar granule cells, β- N -methylamino- l -alanine and β- N -oxalylamino- l -alanine induce death over 12–72 h of exposure via a mechanism that involves both necrotic- and apoptotic-like cell death. 相似文献