首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assessing the structural properties of large proteins is important to gain an understanding of their function in, e.g., biological systems or biomedical applications. We propose a method to examine the mechanical properties of proteins subject to applied forces by means of multiscale simulation. Both stretching and torsional forces are considered, and these may be applied independently of each other. As a proof of principle, we apply torsional forces to a coarse-grained continuum model of the antibody protein immunoglobulin G using fluctuating finite element analysis and use it to identify the area of strongest deformation. This region is essential to the torsional properties of the molecule as a whole because it represents the softest, most deformable domain. Zooming in, this part of the molecule is subjected to torques and stretching forces using molecular dynamics simulations on an atomistically resolved level to investigate its torsional properties. We calculate the torsional resistance as a function of the rotation of the domain while subjecting it to various stretching forces. From this, we assess how the measured twist-torque profiles develop with increasing stretching force and show that they exhibit torsion stiffening, in qualitative agreement with experimental findings. We argue that combining the twist-torque profiles for various stretching forces effectively results in a combined force-torque spectroscopy analysis, which may serve as a mechanical signature for a biological macromolecule.  相似文献   

2.
Single-molecule force spectroscopy makes it possible to measure the mechanical strength of single noncovalent receptor-ligand-type bonds. A major challenge in this technique is to ensure that measurements reflect bonds between single biomolecules because the molecules cannot be directly observed. This perspective evaluates different methodologies for identifying and reducing the contribution of multiple molecule interactions to single-molecule measurements to help the reader design experiments or assess publications in the single-molecule force spectroscopy field. We apply our analysis to the large body of literature that purports to measure the strength of single bonds between biotin and streptavidin as a demonstration that measurements are only reproducible when the most reliable methods for ensuring single molecules are used.  相似文献   

3.
Cytosine methylated at the five-carbon position is the most widely studied reversible DNA modification. Prior findings indicate that methylation can alter mechanical properties. However, those findings were qualitative and sometimes contradictory, leaving many aspects unclear. By applying single-molecule magnetic force spectroscopy techniques allowing for direct manipulation and dynamic observation of DNA mechanics and mechanically driven strand separation, we investigated how CpG and non-CpG cytosine methylation affects DNA micromechanical properties. We quantitatively characterized DNA stiffness using persistence length measurements from force-extension curves in the nanoscale length regime and demonstrated that cytosine methylation results in longer contour length and increased DNA flexibility (i.e., decreased persistence length). In addition, we observed the preferential formation of plectonemes over unwound single-stranded “bubbles” of DNA under physiologically relevant stretching forces and supercoiling densities. The flexibility and high structural stability of methylated DNA is likely to have significant consequences on the recruitment of proteins recognizing cytosine methylation and DNA packaging.  相似文献   

4.
Knowledge of the mechanical properties of double-stranded DNA (dsDNA) is essential to understand the role of dsDNA looping in gene regulation and the mechanochemistry of molecular machines that operate on dsDNA. Here, we use a newly developed tool, force sensors with optical readout, to measure the forces inside short, strained loops composed of both dsDNA and single-stranded DNA. By varying the length of the loops and their proportion of dsDNA, it was possible to vary their internal forces from 1 pN to >20 pN. Surprisingly, internal loop forces changed erratically as the amount of dsDNA was increased for a given loop length, with the effect most notable in the smallest loop (57 nucleotides). Monte Carlo simulations based on the helical wormlike chain model accurately predict internal forces when more than half of the loop is dsDNA but fail otherwise. Mismatches engineered into the double-stranded regions increased flexibility, suggesting that Watson-Crick basepaired dsDNA can withstand high compressive forces without recourse to multibase melts. Fluorescence correlation spectroscopy further excluded transient melting (microsecond to millisecond duration) as a mechanism for relief of compressive forces in the tested dsDNAs. DNA loops with integrated force sensors may allow the comprehensive mapping of the elasticity of short dsDNAs as a function of both sequence and salt.  相似文献   

5.
《Biophysical journal》2022,121(21):4078-4090
DNA self-assembly has emerged as a powerful strategy for constructing complex nanostructures. While the mechanics of individual DNA strands have been studied extensively, the deformation behaviors and structural properties of self-assembled architectures are not well understood. This is partly due to the small dimensions and limited experimental methods available. DNA crystals are macroscopic crystalline structures assembled from nanoscale motifs via sticky-end association. The large DNA constructs may thus be an ideal platform to study structural mechanics. Here, we investigate the fundamental mechanical properties and behaviors of ligated DNA crystals made of tensegrity triangular motifs. We perform coarse-grained molecular dynamics simulations and confirm the results with nanoindentation experiments using atomic force microscopy. We observe various deformation modes, including untension, linear elasticity, duplex dissociation, and single-stranded component stretch. We find that the mechanical properties of a DNA architecture are correlated with those of its components. However, the structure shows complex behaviors which may not be predicted by components alone and the architectural design must be considered.  相似文献   

6.
Using single molecule force spectroscopy we examine the response of heparin chains to mechanical stretching. We find that at forces below 200 pN heparin behaves as a simple entropic spring. At approximately 200 pN heparin displays a large enthalpic elasticity, which is evident as a pronounced plateau in the force-extension relationship. We determine that this enthalpic elasticity is produced by sugar rings of heparin flipping to more energetic and more extended conformations. We estimate that in vivo, the forces which stretch heparin are comparable to the forces that trigger conformational transitions in our single molecule atomic force microscopy measurements. We hypothesize that these conformational transitions have biological significance in that they provide a mechanism to finely regulate the affinity of various ligands toward heparin, for example, in secretory granules undergoing exocytosis and during the mechanical interactions between cells and the extracellular matrix.  相似文献   

7.
DNA experiences numerous mechanical events, necessitating single-molecule force spectroscopy techniques to provide insight into DNA mechanics as a whole system. Inherent Brownian motion limits current force spectroscopy methods from observing possible bond level structural changes. We combine optical trapping and surface-enhanced Raman scattering to establish a direct relationship between DNA’s extension and structure in the low force, entropic regime. A DNA molecule is trapped close to a surface-enhanced Raman scattering substrate to facilitate a detectable Raman signal. DNA Raman modes shift in response to applied force, indicating phosphodiester mechanical alterations. Molecular dynamic simulations confirm the local structural alterations and the Raman sensitive band identified experimentally. The combined Raman and force spectroscopy technique, to our knowledge, is a novel methodology that can be generalized to all single-molecule studies.  相似文献   

8.
The cellular response to external mechanical forces has important effects on numerous biological phenomena. The sequences of molecular events that underlie the observed changes in cellular properties have yet to be elucidated in detail. Here we have detected the responses of a cultured cell against locally applied cyclic stretching and compressive forces, after creating an artificial focal adhesion under a glass bead attached to the cantilever of an atomic force microscope. The cell tension initially increased in response to the tensile stress and then decreased within ∼1 min as a result of viscoelastic properties of the cell. This relaxation was followed by a gradual increase in tension extending over several minutes. The slow recovery of tension ceased after several cycles of force application. This tension-recovering activity was inhibited when cells were treated with cytochalasin D, an inhibitor of actin polymerization, or with (−)-blebbistatin, an inhibitor of myosin II ATPase activity, suggesting that the activity was driven by actin-myosin interaction. To our knowledge, this is the first quantitative analysis of cellular mechanical properties during the process of adaptation to locally applied cyclic external force.  相似文献   

9.
Scanning force spectroscopy was used to measure the mechanical properties of double stranded RNA molecules in comparison with DNA. We find that, similar to the B–S transition in DNA, RNA molecules are stretched from the assumed A′ conformation to a stretched conformation by applying a defined force (plateau force). The force depends on the G + C content of the RNA and is distinct from that required for the B–S transition of a homologous DNA molecule. After the conformational change, DNA can be further extended by a factor of 0.7 ± 0.2 (S-factor) before melting occurs and the binding of the molecule to the cantilever is finally disrupted. For RNA, the S-factor was higher (1.0 ± 0.2) and more variable. Experiments to measure secondary structures in single stranded RNA yielded a large number of different force-distance curves, suggesting disruption and stretching of various secondary structures. Oriented attachment of the molecules to the substrate, a defined pick-up point and an increased resolution of the instrument could provide the means to analyse RNA secondary structures by scanning force spectroscopy.  相似文献   

10.
A method that can pinpoint control DNA denaturation is reported. In the single molecule experiment using spFRET, DNA adhered on a quartz surface is acted upon by both a weak laser field force and a fast temporal mechanical force. The experiment showed that increasing strengths of laser power result in increasing percentage of denatured DNA; different mechanical forces produce different numbers of DNA opening. Besides the method’s simplicity and convenience for DNA melting, its crucial advantage and potential application is the ability to denature DNA at specified locations, i.e., a weak laser and a fast temporal mechanical force can be used in pinpoint denaturation of short DNA.  相似文献   

11.
Bozec L  Horton M 《Biophysical journal》2005,88(6):4223-4231
Although the mechanical behavior of tendon and bone has been studied for decades, there is still relatively little understanding of the molecular basis for their specific properties. Thus, despite consisting structurally of the same type I collagen, bones and tendons have evolved to fulfill quite different functions in living organisms. In an attempt to understand the links between the mechanical properties of these collageneous structures at the macro- and nanoscale, we studied trimeric type I tropocollagen molecules by atomic force microscopy, both topologically and by force spectroscopy. High-resolution imaging demonstrated a mean (+/- SD) contour length of (287 +/- 35) nm and height of (0.21 +/- 0.03) nm. Submolecular features, namely the coil-pitch of the molecule, were also observed, appearing as a repeat pattern along the length of the molecule, with a length of approximately 8 nm that is comparable to the theoretical value. Using force spectroscopy, we established the stretching pattern of the molecule, where both the mechanical response of the molecule and pull-off peak are convoluted in a single feature. By interpreting this response with a wormlike chain model, we extracted the value of the effective contour length of the molecule at (202 +/- 5) nm. This value was smaller than that given by direct measurement, suggesting that the entire molecule was not being stretched during the force measurements; this is likely to be related to the absence of covalent binding between probe, sample, and substrate in our experimental procedure.  相似文献   

12.
The mechanisms that determine mechanical stabilities of protein folds remain elusive. Our understanding of these mechanisms is vital to both bioengineering efforts and to the better understanding and eventual treatment of pathogenic mutations affecting mechanically important proteins such as titin. We present a new approach to analyze data from single‐molecule force spectroscopy for different domains of the giant muscle protein titin. The region of titin found in the I‐band of a sarcomere is composed of about 40 Ig‐domains and is exposed to force under normal physiological conditions and connects the free‐hanging ends of the myosin filaments to the Z‐disc. Recent single‐molecule force spectroscopy data show a mechanical hierarchy in the I‐band domains. Domains near the C‐terminus in this region unfold at forces two to three times greater than domains near the beginning of the I‐band. Though all of these Ig‐domains are thought to share a fold and topology common to members of the Ig‐like fold family, the sequences of neighboring domains vary greatly with an average sequence identity of only 25%. We examine in this study the relation of these unique mechanical stabilities of each I‐band Ig domain to specific, conserved physical–chemical properties of amino acid sequences in related Ig domains. We find that the sequences of each individual titin Ig domain are very highly conserved, with an average sequence identity of 79% across species that are divergent as humans, chickens, and zebra fish. This indicates that the mechanical properties of each domain are well conserved and tailored to its unique position in the titin molecule. We used the PCPMer software to determine the conservation of amino acid properties in titin Ig domains grouped by unfolding forces into “strong” and “weak” families. We found two motifs unique to each family that may have some role in determining the mechanical properties of these Ig domains. A detailed statistical analysis of properties of individual residues revealed several positions that displayed differentially conserved properties in strong and weak families. In contrast to previous studies, we find evidence that suggests that the mechanical stability of Ig domains is determined by several residues scattered across the β‐sandwich fold, and force sensitive residues are not only confined to the A′‐G region. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

13.
Force-induced DNA slippage   总被引:1,自引:0,他引:1  
DNA containing repetitive sequences displays richer dynamics than heterogeneous sequences. In the genome the number of repeat units of repetitive sequences, known as microsatellites, may vary during replication by DNA slippage and their expansion gives rise to serious disorders. We studied the mechanical properties of repetitive DNA using dynamic force spectroscopy and found striking differences compared with ordinary heterogeneous sequences. Repetitive sequences dissociate at lower forces and elongate above a certain threshold force. This yield force was found to be rate dependent. Following the rapid stretching of the DNA duplex, the applied force relaxes by stepwise elongation of this duplex. Conversely, contraction of the DNA duplex can be observed at low forces. The stepwise elongation and shortening is initiated by single slippage events, and single-molecule experiments might help to explain the molecular mechanisms of microsatellites formation. In addition to the biological importance, the remarkable properties of repetitive DNA can be useful for different nanomechanical applications.  相似文献   

14.
E Imai  A Watanabe  H Honda  K Matsuno 《Bio Systems》1992,26(4):223-230
The mechanical forces responsible for inducing the bending movement of eukaryotic flagellar axonemes have components that propagate at velocities different from those for the displacement of the medium. These forces are subject to the Third Law of Mechanics which states the null-conservation of acting and reacting forces. Experimental demonstration of the propagating internal tensile force along the axoneme, when not accompanied by simultaneous bending displacement, demonstrates that the active force for the bending of the flagellar axoneme is part of the process of counterbalancing the corresponding reactive force to the ATP hydrolysis underlying the force generation.  相似文献   

15.
Changes in the elastic properties of single deoxyribonucleic acid (DNA) molecules in the presence of different DNA-binding agents are identified using atomic force microscope single molecule force spectroscopy. We investigated the binding of poly(dG-dC) dsDNA with the minor groove binder distamycin A, two supposed major groove binders, an alpha-helical and a 3(10)-helical peptide, the intercalants daunomycin, ethidium bromide and YO, and the bis-intercalant YOYO. Characteristic mechanical fingerprints in the overstretching behavior of the studied single DNA-ligand complexes were observed allowing the distinction between different binding modes. Docking of ligands to the minor or major groove of DNA has the effect that the intramolecular B-S transition remains visible as a distinct plateau in the force-extension trace. By contrast, intercalation of small molecules into the double helix is characterized by the vanishing of the B-S plateau. These findings lead to the conclusion that atomic force microscope force spectroscopy can be regarded as a single molecule biosensor and is a potent tool for the characterization of binding motives of small ligands to DNA.  相似文献   

16.
The role of mechanical forces in the development and maintenance of biological tissues is well documented, including several mechanically regulated phenomena such as bone remodeling, muscular hypertrophy, and smooth muscle cell plasticity. However, the forces involved are often extremely complex and difficult to monitor and control in vivo. To better investigate the effects of mechanical forces on cells, we have developed an in vitro method for applying uniaxial cyclic tensile strain to adherent cells cultured on elastic membranes. This method utilizes a custom-designed bioreactor with a motorized cam-rotor system to apply the desired force. Here we present a step-by-step video protocol demonstrating how to assemble the various components of each "stretch chamber", including, in this case, a silicone membrane with micropatterned topography to orient the cells with the direction of the strain. We also describe procedures for sterilizing the chambers, seeding cells onto the membrane, latching the chamber into the bioreactor, and adjusting the mechanical parameters (i.e. magnitude and rate of strain). The procedures outlined in this particular protocol are specific for seeding human mesenchymal stem cells onto silicone membranes with 10 microm wide channels oriented parallel to the direction of strain. However, the methods and materials presented in this system are flexible enough to accommodate a number of variations on this theme: strain rate, magnitude, duration, cell type, membrane topography, membrane coating, etc. can all be tailored to the desired application or outcome. This is a robust method for investigating the effects of uniaxial tensile strain applied to cells in vitro.  相似文献   

17.
Huey DJ  Athanasiou KA 《PloS one》2011,6(11):e27857

Objective

This study aimed to improve the functional properties of anatomically-shaped meniscus constructs through simultaneous tension and compression mechanical stimulation in conjunction with chemical stimulation.

Methods

Scaffoldless meniscal constructs were subjected to simultaneous tension and compressive stimulation and chemical stimulation. The temporal aspect of mechanical loadingwas studied by employing two separate five day stimulation periods. Chemical stimulation consisted of the application of a catabolic GAG-depleting enzyme, chondroitinase ABC (C-ABC), and an anabolic growth factor, TGF-β1. Mechanical and chemical stimulation combinations were studied through a full-factorial experimental design and assessed for histological, biochemical, and biomechanical properties following 4 wks of culture.

Results

Mechanical loading applied from days 10–14 resulted in significant increases in compressive, tensile, and biochemical properties of meniscal constructs. When mechanical and chemical stimuliwere combined significant additive increases in collagen per wet weight (4-fold), compressive instantaneous (3-fold) and relaxation (2-fold) moduli, and tensile moduli in the circumferential (4-fold) and radial (6-fold) directions were obtained.

Conclusions

This study demonstrates that a stimulation regimen of simultaneous tension and compression mechanical stimulation, C-ABC, and TGF-β1 is able to create anatomic meniscus constructs replicating the compressive mechanical properties, and collagen and GAG content of native tissue. In addition, this study significantly advances meniscus tissue engineering by being the first to apply simultaneous tension and compression mechanical stimulation and observe enhancement of tensile and compressive properties following mechanical stimulation.  相似文献   

18.
This work probes the mystery of what balance of forces creates the extraordinary mechanical stiffness of DNA to bending and twisting. Here we explore the relationship between base stacking, functional group occupancy of the DNA minor and major grooves, and DNA mechanical properties. We study double-helical DNA molecules substituting either inosine for guanosine or 2,6-diaminopurine for adenine. These DNA variants, respectively, remove or add an amino group from the DNA minor groove, with corresponding changes in hydrogen-bonding and base stacking energy. Using the techniques of ligase-catalyzed cyclization kinetics, atomic force microscopy, and force spectroscopy with optical tweezers, we show that these DNA variants have bending persistence lengths within the range of values reported for sequence-dependent variation of the natural DNA bases. Comparison with seven additional DNA variants that modify the DNA major groove reveals that DNA bending stiffness is not correlated with base stacking energy or groove occupancy. Data from circular dichroism spectroscopy indicate that base analog substitution can alter DNA helical geometry, suggesting a complex relationship among base stacking, groove occupancy, helical structure, and DNA bend stiffness.  相似文献   

19.
This work probes the mystery of what balance of forces creates the extraordinary mechanical stiffness of DNA to bending and twisting. Here we explore the relationship between base stacking, functional group occupancy of the DNA minor and major grooves, and DNA mechanical properties. We study double-helical DNA molecules substituting either inosine for guanosine or 2,6-diaminopurine for adenine. These DNA variants, respectively, remove or add an amino group from the DNA minor groove, with corresponding changes in hydrogen-bonding and base stacking energy. Using the techniques of ligase-catalyzed cyclization kinetics, atomic force microscopy, and force spectroscopy with optical tweezers, we show that these DNA variants have bending persistence lengths within the range of values reported for sequence-dependent variation of the natural DNA bases. Comparison with seven additional DNA variants that modify the DNA major groove reveals that DNA bending stiffness is not correlated with base stacking energy or groove occupancy. Data from circular dichroism spectroscopy indicate that base analog substitution can alter DNA helical geometry, suggesting a complex relationship among base stacking, groove occupancy, helical structure, and DNA bend stiffness.  相似文献   

20.
Sequence-dependent mechanics of single DNA molecules   总被引:18,自引:0,他引:18  
Atomic force microscope-based single-molecule force spectroscopy was employed to measure sequence-dependent mechanical properties of DNA by stretching individual DNA double strands attached between a gold surface and an AFM tip. We discovered that in lambda-phage DNA the previously reported B-S transition, where 'S' represents an overstretched conformation, at 65 pN is followed by a nonequilibrium melting transition at 150 pN. During this transition the DNA is split into single strands that fully recombine upon relaxation. The sequence dependence was investigated in comparative studies with poly(dG-dC) and poly(dA-dT) DNA. Both the B-S and the melting transition occur at significantly lower forces in poly(dA-dT) compared to poly(dG-dC). We made use of the melting transition to prepare single poly(dG-dC) and poly(dA-dT) DNA strands that upon relaxation reannealed into hairpins as a result of their self-complementary sequence. The unzipping of these hairpins directly revealed the base pair-unbinding forces for G-C to be 20 +/- 3 pN and for A-T to be 9 +/- 3 pN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号