首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nutrient dynamics of upland forest sites in the New Jersey Pine Barrens exposed to different fire intensities were determined. Nutrient concentrations and inventories in biomass, litter, humus, and standing dead wood were determined for an unburned site, two sites burned by severe wildfire and two sites burned by light prescribed burning. Humus nutrient levels were similar among sites despite differing fire histories. Amounts of calcium, magnesium, and potassium in biomass and in litter were lower in wildfire sites than in prescribed burn sites, all of which were lower than the control. Standing dead wood nutrient levels were much higher in the wildfire sites than in the other three sites. Output of nutrients to groudwater correlated poorly with the amounts of nutrients retained in humus or standing dead wood; however strong inverse correlations were found between nutrient output and nutrient storage in biomass or biomass plus litter and humus. These results emphasize the central role of nutrient immobilization in regrowing biomass in after fire on nutrient poor soils.  相似文献   

2.
香港芒萁群落养分的研究   总被引:4,自引:0,他引:4       下载免费PDF全文
本文研究香港芒萁群落养分的分配、季节动态和循环。研究结果表明:(1)N、P、K浓度在活物质大于死物质,地上部分大于地下部分。(2)植物的养分贮量是活物质大于死物质,地下部分大于地上部分。(3)当年生芒萁地上部养分贮量随生物量的增加而增加,但是,干物质生产率超过养分吸收率,使得N、P、K浓度由于生物量的增加而降低。(4)虽然芒萁群落的净第一性生产力大于其邻近的草地和灌木林,但其净第一性生产量中的N和P量却小于灌木林。(5)以土壤中的总N和总P来计算,生态系统中的N和P主要贮存于土壤库中,但以土壤有效K来计算,则有大约36%~50%的K贮存于植被中。(6)在研究期间,立枯体和死地被物中的N、P、K贮量逐渐增加,这表明在火灾后生态系统的立枯体和死地被物养分库有一个累积过程。(7)N、P、K通过枯枝落叶的归还量分别占它们在地上部净第一性生产量中的49.1%、30.8%和13.1%,而地上部净第一性生产量中的N和P的31.2%和46.6%来自于养分的内部循环。  相似文献   

3.
Predicting future impacts of anthropogenic change on tropical forests requires a clear understanding of nutrient constraints on productivity. We compared experimental fertilization and litter manipulation treatments in an old-growth lowland tropical forest to distinguish between the effects of inorganic nutrient amendments and changes in nutrient cycling via litterfall. We measured the changes in soil and litter nutrient pools, litterfall, and fine root biomass in plots fertilized with nitrogen (N), phosphorus (P), or potassium (K), and in litter addition and litter removal treatments during 7 years. Soil inorganic N and litter N increased in double-litter plots but not in N-fertilized plots. Conversely, litter P and soil pools of P and K increased in fertilized plots but not in the double-litter plots. Soil and litter pools of N and K decreased in the no-litter plots. Changes in litterfall with added nutrients or litter were only marginally significant, but fine root biomass decreased with both the litter and the K addition. Differences between the two experiments are mostly attributable to the coupled cycling of carbon and nutrients in litter. Increased nutrient inputs in litter may improve plant uptake of some nutrients compared to fertilization with similar amounts. The litter layer also appears to play a key role in nutrient retention. We discuss our findings in the context of possible impacts of anthropogenic change on tropical forests.  相似文献   

4.
放牧和围封通过影响植物群落结构和土壤微环境来调控草地生态系统的碳循环。该研究在内蒙古温带草原设置轻度放牧后围封、轻度放牧、重度放牧后围封、重度放牧4种样地, 通过测定干旱年(2011年)和湿润年(2012年)地上、地下凋落物产量、质量及其分解速率和土壤养分含量, 分析不同放牧强度对凋落物形成和分解的影响, 以及围栏封育对生态系统恢复的作用。结果表明: 重度放牧地上凋落物产量和分解速率均高于轻度放牧。干旱年轻度放牧样地地下凋落物产量和分解速率高于重度放牧, 湿润年相反。短期围封显著提高了凋落物产量, 轻度放牧样地围封后地上凋落物分解速率和养分循环加快, 而重度放牧样地围封后地上凋落物分解减慢。因此, 与重度放牧相比, 轻度放牧草地的恢复更适合采用围栏封育措施; 而重度放牧草地的恢复可能还需辅以必要的人工措施。降水显著促进地上、地下凋落物形成和分解。地下凋落物的生产和分解受降水年际波动影响较大, 重度放牧草地对降水变化的敏感度比轻度放牧草地高。地上凋落物分解速率与凋落物N含量显著正相关, 与土壤全N显著负相关, 与地上凋落物C:N和木质素:N相关性不大; 地下凋落物分解速率与凋落物C、C:N和纤维素含量显著负相关。该研究结果将为不同放牧强度的草地生态系统恢复和碳循环研究提供理论依据。  相似文献   

5.
Abstract. N, P and K dynamics were investigated in grazed and ungrazed alpine forb and grassy meadows in the Garhwal Himalaya. The growth forms examined were dwarf shrubs, forbs and graminoides. N, P and K contents were determined for various plant components and soil. The contribution of plant parts to the total vegetation capital of N, P and K was 20–33% (live shoot), 6–8% (dead shoot), 2–3% (litter) and 56–71% (root) in ungrazed plots, and 16–27, 6–7, 1–2, and 64–76% respectively in grazed plots. Grazing removed between 41–69% of total uptake of nutrients from the grassland. In protected areas, however, 65 to 81% of all nutrients were retained by the vegetation. This retention of nutrients is due to translocation to roots and rhizomes and is considered beneficial during grazing as it aids resprouting of the vegetation.  相似文献   

6.
《植物生态学报》2016,40(8):748
Aims Grazing intensity and grazing exclusion affect ecosystem carbon cycling by changing the plant community and soil micro-environment in grassland ecosystems. The aims of this study were: 1) to determine the effects of grazing intensity and grazing exclusion on litter decomposition in the temperate grasslands of Nei Mongol; 2) to compare the difference between above-ground and below-ground litter decomposition; 3) to identify the effects of precipitation on litter production and decomposition. Methods We measured litter production, quality, decomposition rates and soil nutrient contents during the growing season in 2011 and 2012 in four plots, i.e. light grazing, heavy grazing, light grazing exclusion and heavy grazing exclusion. Quadrate surveys and litter bags were used to measure litter production and decomposition rates. All data were analyzed with ANOVA and Pearson’s correlation procedures in SPSS. Important findings Litter production and decomposition rates differed greatly among four plots. During the two years of our study, above-ground litter production and decomposition in heavy-grazing plots were faster than those in light-grazing plots. In the dry year, below-ground litter production and decomposition in light-grazing plots were faster than those in heavy-grazing plots, which is opposite to the findings in the wet year. Short-term grazing exclusion could promote litter production, and the exclusion of light-grazing could increase litter decomposition and nutrient cycling. In contrast, heavy-grazing exclusion decreased litter decomposition. Thus, grazing exclusion is beneficial to the restoration of the light-grazing grasslands, and more human management measures are needed during the restoration of heavy-grazing grasslands. Precipitation increased litter production and decomposition, and below-ground litter was more vulnerable to the inter-annual change of precipitation than above-ground litter. Compared to the light-grazing grasslands, heavy-grazing grasslands had higher sensitivity to precipitation. The above-ground litter decomposition was strongly positively correlated with the litter N content (R2 = 0.489, p < 0.01) and strongly negatively correlated with the soil total N content (R2 = 0.450, p < 0.01), but it was not significantly correlated with C:N and lignin:N. Below-ground litter decomposition was negatively correlated with the litter C (R2 = 0.263, p < 0.01), C:N (R2 = 0.349, p < 0.01) and cellulose content (R2 = 0.460, p < 0.01). Our results will provide a theoretical basis for ecosystem restoration and the research of carbon cycling.  相似文献   

7.
《植物生态学报》1958,44(8):791
不同的草原利用方式(围封、放牧和割草等)随着大气氮沉降的不断加剧, 改变了凋落物输入量。凋落物作为连接地上-地下碳循环过程的关键环节, 对草原生态系统生产力和碳循环过程影响显著。氮是草原生产力的主要限制因子, 凋落物输入量的变化对草原生态系统结构和功能的影响仍缺乏长期实验证据支持。该研究在内蒙古半干旱典型草原建立一个凋落物输入变化和氮添加控制实验平台, 通过连续6年对群落生产力和功能群组成的监测, 研究了凋落物添加与去除和氮添加对半干旱草原群落生产力和功能群组成的影响。研究发现: 1)凋落物输入量增加和氮添加均显著提高了群落生产力, 在对照和氮添加处理下, 凋落物去除处理导致生产力分别降低了8.4%和7.6%, 而凋落物添加处理使生产力分别提高了10.7%和6.3%; 2)不同植物功能群对凋落物输入变化和氮添加的响应存在差异, 导致群落功能群结构发生变化。随着凋落物输入量增加和氮添加, 群落优势功能群多年生禾草(包括多年生丛生禾草和多年生根茎禾草)的生物量显著提高, 对群落生产力的贡献增加, 在群落中的优势地位增强; 而另一优势功能群多年生杂类草生物量对凋落物和氮添加处理均无显著响应, 进而导致在氮添加处理下其对群落生物量的贡献比例显著降低; 3)凋落物输入主要改善土壤水分状况, 而氮添加则主要通过提高土壤养分含量, 促进群落生产力, 并通过影响主要功能群生物量, 导致群落结构发生变化。以上结果表明, 适当的草原管理方式如围封禁牧和降低放牧强度等都能通过增加凋落物的输入来提高草原生产力, 维持生态系统稳定性。而适量的氮等养分添加管理也有助于提高草原生产力, 促进其恢复。  相似文献   

8.
不同的草原利用方式(围封、放牧和割草等)随着大气氮沉降的不断加剧, 改变了凋落物输入量。凋落物作为连接地上-地下碳循环过程的关键环节, 对草原生态系统生产力和碳循环过程影响显著。氮是草原生产力的主要限制因子, 凋落物输入量的变化对草原生态系统结构和功能的影响仍缺乏长期实验证据支持。该研究在内蒙古半干旱典型草原建立一个凋落物输入变化和氮添加控制实验平台, 通过连续6年对群落生产力和功能群组成的监测, 研究了凋落物添加与去除和氮添加对半干旱草原群落生产力和功能群组成的影响。研究发现: 1)凋落物输入量增加和氮添加均显著提高了群落生产力, 在对照和氮添加处理下, 凋落物去除处理导致生产力分别降低了8.4%和7.6%, 而凋落物添加处理使生产力分别提高了10.7%和6.3%; 2)不同植物功能群对凋落物输入变化和氮添加的响应存在差异, 导致群落功能群结构发生变化。随着凋落物输入量增加和氮添加, 群落优势功能群多年生禾草(包括多年生丛生禾草和多年生根茎禾草)的生物量显著提高, 对群落生产力的贡献增加, 在群落中的优势地位增强; 而另一优势功能群多年生杂类草生物量对凋落物和氮添加处理均无显著响应, 进而导致在氮添加处理下其对群落生物量的贡献比例显著降低; 3)凋落物输入主要改善土壤水分状况, 而氮添加则主要通过提高土壤养分含量, 促进群落生产力, 并通过影响主要功能群生物量, 导致群落结构发生变化。以上结果表明, 适当的草原管理方式如围封禁牧和降低放牧强度等都能通过增加凋落物的输入来提高草原生产力, 维持生态系统稳定性。而适量的氮等养分添加管理也有助于提高草原生产力, 促进其恢复。  相似文献   

9.
The dwarf shrub Indigofera spinosa , indigenous to arid and semi-arid rangelands of northeastern Africa, is an important food source for livestock. Proper management of the shrub requires improved understanding of the effects of grazing and climatic variability on aboveground dry-matter allocation. Between 1986 and 1990, we compared the temporal variability of aboveground dry-matter allocation to different plant biomass compartments. We also compared dry-matter transfers between components; total live biomass to litter, standing dead to litter and live biomass to standing dead between continuously grazed and an ungrazed treatments. Partitioning of combined total dry-matter production among different structural organs (called allocation ratio) is influenced by phenological changes, episodic rainfall and her-bivory. Dry-matter production in the grazed treatment responded more markedly to episodic rainfall events more than in the ungrazed treatment. Exclusion of grazers failed to improve the relative growth rate (RGR) of shrub biomass, while grazing improved it. RGR declined in the ungrazed treatment following the accumulation of standing dead dry-matter, while m the grazed treatment it declined following the shedding of leaves. The shrub allocated more to total live biomass than to standing dead. Greater reduction of total live allocation ratio in the grazed than in the ungrazed treatment occurred during a dry year. The ungrazed treatment had higher standing dead allocation ratio than did the grazed treatment. Plants transferred more dry-matter from total live biomass compartment to litter, than from standing dead to or from total live biomass to standing dead independent of treatment. The rates of transfer were higher in the ungrazed than in the grazed treatment. The results suggest that I spinosa has evolved to respond to climatic variability and grazmgbyallocating dry allocating dry-matter differently between various compartments.  相似文献   

10.
 为了解氮素沉降对草地群落的影响, 通过人工氮肥添加模拟试验, 研究了黄土高原天然草地优势植物长芒草(Stipa bungeana)在不同施氮水平下叶片和立枯物碳(C)、氮(N)、磷(P)元素含量的变化特征, 探讨了N素增加对N、P重吸收率和C : N : P化学计量比的影响及其内在联系。结果表明: 氮素添加显著增加了长芒草叶片的C、N和立枯物的N、P含量, 对叶片P和立枯物C含量无显著影响; 氮素添加显著降低了长芒草的N、P重吸收率, 对照处理的N、P重吸收率最高, 分别为60.35%和
71.75%, 并且, 在相同氮素处理条件下P的重吸收率显著大于N重吸收率; 随着氮素添加量的增大, 叶片的C : N降低, N : P和C : P增加, N : P为18.25–29.01。研究表明, 黄土高原天然草地群落主要受P限制, 随氮素沉降增加, P限制进一步加剧; 长芒草较高的N、P重吸收率是保证其在贫瘠的土壤中生存的重要机制。  相似文献   

11.
刘姝萱  安慧  张馨文  杜忠毓  刘小平 《生态学报》2022,42(21):8773-8783
为明确植物、凋落物和土壤养分含量及化学计量比对土壤中添加多种限制性养分的响应,阐明“植物-凋落物-土壤”连续体化学计量动态及各组分之间的协同作用,以宁夏荒漠草原为研究对象,于2018年开始进行氮(N)、磷(P)养分添加控制试验。试验处理包括对照(CK)、N添加、P添加、NP共同添加4个处理。结果表明:(1)NP共同添加显著增加了荒漠草原植物N和P含量、以及凋落物和土壤P含量,显著降低了荒漠草原植物C∶N和C∶P、以及土壤和凋落物C∶P和N∶P。P添加显著增加了荒漠草原植物、凋落物和土壤P含量,显著降低了植物、凋落物、土壤C∶P和N∶P。N添加分别增加了植物、凋落物N含量和N∶P,但对植物N含量影响未达到显著水平。(2)C、N、P含量和N∶P大小均表现为植物>凋落物>土壤,C∶N和C∶P均表现为凋落物>植物。(3)N添加提高了荒漠草原植物对P再吸收效率,降低了荒漠草原植物对N利用效率;P添加提高荒漠草原植物对N再吸收效率,降低荒漠草原对P的利用效率;NP共同添加提高了荒漠草原植物对N和P再吸收效率,降低了荒漠草原植物对N和P利用效率。(4)植物-凋落物-土壤的N、P含量...  相似文献   

12.
凋落物分解是连接生态系统地上、地下过程的重要环节,决定了生态系统养分循环速率,但到目前为止对凋落物分解在荒漠草地生态系统受放牧以及外源资源补给影响的研究较少。本研究通过对不同放牧强度(对照、轻牧、中牧和重牧)短花针茅草原群落进行添加氮素(10.0 g N m~(-2) a~(-1))和增水(108 mm/a)处理,探讨群落水平凋落物分解速率的变化。研究结果显示,过去不同强度放牧历史对群落凋落物分解影响极显著(P0.0001)。凋落物前期分解(135 d)过程中,凋落物初始C∶N比与凋落物分解速率常数呈显著负相关关系,表明凋落物可降解性在凋落物前期分解中起主要作用。轻度放牧影响下凋落物分解速度最快,这与该条件下凋落物C∶N比显著低于其他放牧强度下的有关,说明适度放牧不仅有利于群落维持,也在一定程度上有利于生态系统养分循环。当凋落物分解更长时间(870 d)后,对照区凋落物分解速率显著低于放牧处理样地,但凋落物初始C∶N比对凋落物分解速率没有显著影响。进一步分析显示,不同放牧强度背景下长期凋落物分解速率与分解环境的土壤微生物多样性成正相关关系,与群落盖度呈极显著(P0.001)负相关关系。添加氮素显著(P0.05)降低凋落物分解速度,但对凋落物氮含量无显著影响。生长季加水未影响凋落物质量及凋落物分解速度。研究结果表明,凋落物前期分解受凋落物质量影响,但较长时间凋落物分解则与分解过程中接受到的太阳辐射量有关。  相似文献   

13.
Human-mediated nutrient amendments have widespread effects on plant communities. One of the major consequences has been the loss of species diversity under increased nutrient inputs. The loss of species can be functional group dependent with certain functional groups being more prone to decline than others. We present results from the sixth year of a long-term fertilization and litter manipulation study in an old-field grassland. We measured plant tissue chemistry (C:N ratio) to understand the role of plant physiological responses in the increase or decline of functional groups under nutrient manipulations. Fertilized plots had significantly more total aboveground biomass and live biomass than unfertilized plots, which was largely due to greater productivity by exotic C3 grasses. We found that both fertilization and litter treatments affected plant species richness. Species richness was lower on plots that were fertilized or had litter intact; species losses were primarily from forbs and non-Poaceae graminoids. C3 grasses and forbs had lower C:N ratios under fertilization with forbs having marginally greater %N responses to fertilization than grasses. Tissue chemistry in the C3 grasses also varied depending on tissue type with reproductive tillers having higher C:N ratios than vegetative tillers. Although forbs had greater tissue chemistry responses to fertilization, they did not have a similar positive response in productivity and the number of forb species is decreasing on our experimental plots. Overall, differential nutrient uptake and use among functional groups influenced biomass production and species interactions, favoring exotic C3 grasses and leading to their dominance. These data suggest functional groups may differ in their responses to anthropogenic nutrient amendments, ultimately influencing plant community composition.  相似文献   

14.
Van de Vijver  C. A. D. M.  Poot  P.  Prins  H. H. T. 《Plant and Soil》1999,214(1-2):173-185
The aim of the present study was to investigate the causes of increased macronutrient concentrations in above-ground post-fire regrowth in an East African savanna (Northern Tanzania). Experiments were set up to discriminate between the following possible causes: (1) increased soil nutrient supply after fire, (2) relocation of nutrients from the roots to the new shoots, (3) rejuvenation and related changes in plant tissue composition and (4) changes in nutrient uptake in relation to above-ground carbon gains. N, P, K, Ca and Mg concentrations in post-burn graminoid vegetation were compared with clipped and with unburned, control vegetation during the post-burn growth season. One month after burning and clipping, nutrient concentrations in live grass shoots in the burned and clipped treatments were significantly higher than in the control. This effect, however, declined in the course of the season and, except for Ca, disappeared three months after onset of the treatments. There were no significant differences in live grass shoot nutrient concentrations between burned and clipped treatments which suggests that the increased nutrient concentration in post-fire regrowth is not due to increased soil nutrient supply via ash deposition. The relatively low input of nutrients through ash deposition, compared to the amount of nutrients released through mineralisation during the first month after burning and to the total nutrient pools, supports this suggestion. There was no difference between burned and unburned vegetation in total root biomass and root nutrient concentrations. Relocation of nutrients from the roots to the new shoots did not, therefore, appear to be a cause of higher post-fire shoot nutrient concentrations. The present study shows that in this relatively nutrient-rich savanna, the increased nutrient concentration in above-ground post-fire regrowth is primarily due to increased leaf:stem ratios, rejuvenation of plant material and the distribution of a similar amount of nutrients over less above-ground biomass. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
增温和放牧对高寒草甸凋落物分解及其养分释放的影响不依赖于凋落物品质在放牧生态系统中,增温、放牧和凋落物品质共同决定着凋落物分解和养分释放。然而,在以往的研究中这些因子的效应通常被单独地研究。在本研究中,我们在青藏高原高寒草甸开展了一个昼夜非对称增温和中度放牧两因子的凋落物分解试验。从每个处理中收集了凋落物样品,这些凋落物一部分放在它们的来源处理小区,另一部分放在其他处理小区以此来探究增温、放牧以及凋落物品质对凋落物分解和养分释放的影响。研究结果表明,增温而不是放牧显著增加了凋落物质量的损失、单位面积全碳、全氮以及全磷含量的损失,这主要是因为增温增加了凋落物生物量和分解速率。然而,尽管同时增温放牧处理也加快了凋落物分解速率,但由于降低了凋落物生物量,所以增温放牧处理并没有显著影响单位面积的凋落物碳和养分释放量。相比木质素含量和碳氮比而言,季节性土壤平均温度能够更好地预测凋落物分解速率。增温和放牧对凋落物分解存在交互作用,但它们和凋落物品质对凋落物的影响均不存在交互作用。单位面积的总氮释放的温度敏感性要高于总磷。因此,我们的结果表明,增温对凋落物分解以及养分释放的影响要显著大于凋落物品质变化对其分解的影响。在高寒草甸,氮释放的增加可能会间接导致土壤磷有效性的缺乏。  相似文献   

16.
The standing dead phase is an important stage in the decomposition of emergent vegetation in marsh wetlands, yet few studies have examined how intrinsic litter traits constrain rates of standing litter decomposition or fungal colonization across plant tissue types or species. To address broad constraints on the decomposition of standing dead litter, we conducted a systematic survey of emergent standing dead decomposition studies that measured decay rates and/or fungal biomass, and litter % lignin, carbon:nitrogen (C:N) and/or carbon:phosphorus (C:P). Across 52 datasets, litter of low C:N and C:P ratios exhibited increased decomposition rates (r = −0.737 and −0.645, respectively), whereas % lignin was not significantly correlated with decomposition rates (r = 0.149). Mixed-effects models for litter decomposition rates indicated significant effects of litter molar C:N and C:N + lignin as an additive model, with the former providing marginally better support. Litter % lignin, however, was strongly negatively correlated with fungal biomass (r = −0.669), indicating greater fungal colonization of low-lignin litter, and not correlated with C:N (r = −0.337) and C:P (r = −0.456) ratios. The best-supported model predicting fungal biomass was litter molar C:N, with the C:N + lignin additive model also showing significant effects. Fungal carbon-use efficiency (CUE) also had a strong negative correlation with % lignin (r = −0.604), molar C:N (r = −0.323) and C:P (r = −0.632) across datasets. Our study demonstrates the constraining effects that litter stoichiometry and % lignin elicit on decomposition of standing dead litter and fungal colonization, respectively. These findings improve our understanding of biogeochemical cycling and prediction of the fates of C and nutrients in wetlands.  相似文献   

17.
陈蔚  王维东  蒋嘉瑜  刘任涛 《生态学报》2022,42(11):4401-4414
在半干旱草地,关于放牧和封育管理对草地植物枯落物分解及其与土壤动物互作关系的研究一直是该区域生态系统物质循环与生态恢复过程研究的重要科学问题。以放牧和封育样地中赖草(Leymus secalinus)、牛枝子(Lespedeza potaninii)及其混合枯落物为研究对象。于2017年9月、2018年5月和9月、2019年5月和9月,采用2种不同孔径(30目和250目)网袋量化中小型土壤动物的作用,调查了宁夏半干旱草地枯落物碳、氮和磷元素分解与土壤动物群落分布及其对放牧和封育样地的响应规律。结果显示:(1)封育样地中,枯落物碳元素最终残留率均表现为3种枯落物处理间无显著差异;但250目网孔中枯落物氮、磷元素最终残留率和30目网孔中氮元素最终残留率均表现为牛枝子显著高于赖草和混合物,而后两者间无显著差异;仅30目网孔中磷元素最终残留率表现为牛枝子和混合物显著高于赖草,而前两者间无显著差异。放牧样地中,250目网孔的碳、磷元素最终残留率和30目网孔中的氮、磷元素最终残留率均表现为牛枝子显著高于混合物,而赖草居中;氮元素最终残留率表现为牛枝子显著高于赖草和混合物,后两者间无显著差异。(2)...  相似文献   

18.
Huang J  Boerner RE 《Oecologia》2007,153(2):233-243
This study examined tissue nutrient responses of Desmodium nudiflorum to changes in soil total inorganic nitrogen (TIN) and available phosphorus (P) that occurred as the result of the application of alternative forest management strategies, namely (1) prescribed low-intensity fire (B), (2) overstory thinning followed by prescribed fire (T + B), and (3) untreated control C), in two Quercus-dominated forests in the State of Ohio, USA. In the fourth growing season after a first fire, TIN was significantly greater in the control plots (9.8 mg/kg) than in the B (5.5 mg/kg) and T + B (6.4 mg/kg) plots. Similarly, available P was greater in the control sites (101 μg/g) than in the B (45 μg/kg) and T + B (65 μg/kg) sites. Leaf phosphorus ([P]) was higher in the plants from control site (1.86 mg/g) than in either the B (1.77 mg/g) or T + B plants (1.73 mg/g). Leaf nitrogen ([N]) and root [N] showed significant site–treatment interactive effects, while stem [N], stem [P], and root [P] did not differ significantly among treatments. During the first growing season after a second fire, leaf [N], stem [N], litter [P] and available soil [P] were consistently lower in plots of the manipulated treatments than in the unmanaged control plot, whereas the B and T + B plots did not differ significantly from each other. N resorption efficiency was positively correlated with the initial foliar [N] in the manipulated (B and T + B) sites, but there was no such relation in the unmanaged control plots. P resorption efficiency was positively correlated with the initial leaf [P] in both the control and manipulated plots. Leaf nutrient status was strongly influenced by soil nutrient availability shortly after fire, but became more influenced by topographic position in the fourth year after fire. Nutrient resorption efficiency was independent of soil nutrient availability. These findings enrich our understanding of the effects of ecosystem restoration treatments on soil nutrient availability, plant nutrient relations, and plant–soil interactions at different temporal scales.  相似文献   

19.
 本文报告了甘肃天祝高寒珠芽蓼(Polygonum viviparum)草甸群落地上及地下四部分生物量的热值和营养成分动态,并对其放牧利用的价值进行了总的评价。 6—9月现存量的热值平均为18330焦/克干物质,或20279焦/克去灰分物质,较立枯物+凋落物、活根、死根的平均值为大;死根略大于活根。在珠芽蓼及其他大多数植物种子成熟期的8月下旬,现存量的热值最大,其他三部分的热值变化也有其各自的特点。现存量6—9月的平均营养成分以绝对干重计为:粗蛋白13.52%,粗脂肪2.25,粗纤维22.99,无氮浸出物51.88,粗灰分9.61(其中钙1.627,磷0.164);在时间变化上四部分各有其特点。根据地形、植物组成、产量、易食性、适口性、热值和营养成分等综合条件,认为珠芽蓼草甸是良好的放牧地。  相似文献   

20.
Madeira  M.  Araújo  M. C.  Pereira  J. S. 《Plant and Soil》1995,(1):287-295
A field experiment was initiated in March 1986 in central Portugal to evaluate the influence of water and nutrient supply on the productivity of E. globulus. The treatments applied were, irrigation plus fertiliser, irrigation and the application of fertilisers in rainfed plots. The control received neither fertilisers nor irrigation. The annual pattern litterfall was measured over a period of 5 years and the litter layer was quantified 6 years after planting. The amount of litterfall varied with the treatments. Simultaneous water and nutrient supply increased significantly litterfall, in respect to control. In rainfed conditions the timing of the maximum of litterfall was anticipated relative to the irrigated plots. However, the time of maximum litterfall did not coincide with the dry season but rather with period of maximum growth in each treatment. The N and P concentration was higher in the litterfall of the two fertilised treatments than in the others. The lowest concentrations of N and P in the leaf litter were coincident with the summer period in all treatments. The withdrawal of N and P ranged between 32 and 65% according to treatment and season. The deliverance of nutrients through litterfall was strongly increased by simultaneous water and nutrient supply. The supply of fertilisers in rainfed conditions promoted higher deliverance of nutrients than in the plots irrigated only. The mass of the litter layer was significantly increased by simultaneous water and nutrient supply. Application of fertilisers induced an increase in N and P concentration and a decrease in C/N ratio of the litter layer. Treatments and C/N values did not influence apparently the proportion of carbon, N and P released through mineralization from the litter layer. The non-fertilized treatments showed a more efficient N cycling than the others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号