首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electro-phoretically detectable isozyme variation was studied for 17 enzyme systems in several N American populations of the introduced aquatic plant Hydrocharis morsus-ranae and in two European populations. Twenty-nine loci were inferred from progeny, adult and turion enzyme banding patterns with 28 of these loci homozygous in all individuals studied. Malate dehydrogenase-1 (MDH-1) was the only locus which could be interpreted as multi-allelic and heterozygous. Twenty-seven of 76 seedlings assayed showed an age specific expression for an alcohol dehydrogenase locus (ADH-2) never seen in adults or turions. Since all adults sampled were phenotypically identical at all loci assayed, it is possible that only one isozyme genotype of this species is present in N America. European turion data further indicated that the populations studied were identical to N American plants sampled at all loci except EST. Therefore, although H. morsus-ranae is dioecious, outcrossing appears to involve substantial inbreeding. Connections between extensive inbreeding and the failure of effective sexual reproduction are considered.  相似文献   

2.
We examine the patterns of expansion of exotic European earthworms in northeastern Europe and the western Great Lakes region of North America. These areas share many ecological, climatic and historical characteristics and are devoid of indigenous earthworm fauna due to Quaternary glaciations. These regions are being colonized by a similar suite of exotic lumbricid species and it is unlikely that this is the result of chance, but rather indicates that these species have particular characteristics making them successful invaders. The present macro-scale distributions of earthworm species in northern Russia show little connection to the pattern of the last glaciation. Rather, the primary factors that determine the current distributions of earthworm species include climatic conditions, the life history traits of different earthworm species, the suitability of habitat and intensity and patterns of human activity. In the western Great Lakes region of North America, there are three primary factors affecting current distributions of exotic earthworm species including the patterns of human activity and land use practices, the composition of particular source populations of earthworms associated with different vectors of transport and the soil and litter properties of habitats across the region. Disturbance of a habitat does not appear to be a prerequisite to the invasion and establishment of exotic earthworms. Analysis of the macro-scale distributions of Lumbricidae species in northeastern Europe may provide important insights into the potential of invasive European earthworm species to spread in North America, and identify potentially invasive species.  相似文献   

3.
Studies of the colonization and spread of invasive species improves our understanding of key concepts in population biology as well as informs control and prevention efforts. The characean green alga Nitellopsis obtusa (starry stonewort) is rare in its native Eurasian range but listed by the United States Geological Survey (USGS) as an aggressive invasive in North America. First documented in North America in 1978 from New York, United States, it has since been reported from numerous inland lakes from Minnesota to Vermont, and from Lake Ontario and inland lakes in southern Ontario, Canada. While the ecological impacts of N. obtusa are not clearly understood in its invasive range, initial results show negative environmental effects. We have discovered a liquid‐preserved herbarium specimen that predates the 1978 records by at least 4 years, and is the first confirmed record of N. obtusa in Québec.  相似文献   

4.
The impact of human‐induced stressors, such as invasive species, is often measured at the organismal level, but is much less commonly scaled up to the population level. Interactions with invasive species represent an increasingly common source of stressor in many habitats. However, due to the increasing abundance of invasive species around the globe, invasive species now commonly cause stresses not only for native species in invaded areas, but also for other invasive species. I examine the European green crab Carcinus maenas, an invasive species along the northeast coast of North America, which is known to be negatively impacted in this invaded region by interactions with the invasive Asian shore crab Hemigrapsus sanguineus. Asian shore crabs are known to negatively impact green crabs via two mechanisms: by directly preying on green crab juveniles and by indirectly reducing green crab fecundity via interference (and potentially exploitative) competition that alters green crab diets. I used life‐table analyses to scale these two mechanistic stressors up to the population level in order to examine their relative impacts on green crab populations. I demonstrate that lost fecundity has larger impacts on per capita population growth rates, but that both predation and lost fecundity are capable of reducing population growth sufficiently to produce the declines in green crab populations that have been observed in areas where these two species overlap. By scaling up the impacts of one invader on a second invader, I have demonstrated that multiple documented interactions between these species are capable of having population‐level impacts and that both may be contributing to the decline of European green crabs in their invaded range on the east coast of North America.  相似文献   

5.
To date, eight exotic toadflax-feeding insect species have been accidentally or intentionally introduced to North America. Reports on their establishment and impact have been recorded for more than 60 years. Environmental risks linked to biological control of toadflax were identified in terms of host resources and undesirable impacts on the target species through the critical review of this record. Data gaps revealed during this retrospective analysis are addressed through suggestions for future research and associated experimental methodologies. Known and potential impacts of toadflax-feeding insects on both invasive toadflax and non-target species are examined. Recent programmatic demands for demonstrated agent efficacy and stringent host selectivity during the prerelease screening process clearly illustrate that classical biological control of invasive toadflax in North America is progressing beyond the so-called lottery approach.  相似文献   

6.
Invasive species pose a serious threat to native plant communities and are an important contributor to loss of biodiversity. In the case of Phalaris arundinacea, L. (Poaceae), reed canary grass, a cool-season, long-lived perennial plant native to Eurasia and North America, nonnative agronomically important genotypes were introduced to North America for numerous uses such as forage and soil stabilization. Following repeated introductions, reed canary grass became an aggressive invader that takes over natural wet prairies, stream-banks and wetlands. Reed canary grass can outcompete native plant species, resulting in monospecific stands with concomitant loss of plant and insect diversity and ultimately to alteration in ecosystem function. Abiotic factors such as disturbance, changes in hydrological regime, and particularly nutrient runoff to wetlands can enhance reed canary grass establishment and vegetative spread. In addition, the species' capacity for early season growth, rapid vegetative spread, high stem elongation potential, wide physiological tolerance, and high architectural plasticity make the species highly aggressive under a wide range of ecological conditions. The change in life-history and environmental conditions responsible for the enhanced aggressiveness observed between native and invasive genotypes are not yet understood. Hence, reed canary grass provides an ideal study system to test a number of ecological and genetic hypotheses to explain why some plant species become extremely aggressive when transported into a new geographical area. To date, genetic studies have found that invasive populations have high genetic diversity and that genotypes differ in their phenotypic plasticity and response to ecological conditions, which may contribute to their invasion success. Finally comparative studies currently underway on European native and American invasive genotypes of reed canary grass should shed light on the mechanisms responsible for reed canary grass's aggressiveness and should provide an experimental protocol to test ecological and genetic hypotheses about what makes a species invasive.  相似文献   

7.
The classical approach to predicting the geographical extent of species invasions consists of training models in the native range and projecting them in distinct, potentially invasible areas. However, recent studies have demonstrated that this approach could be hampered by a change of the realized climatic niche, allowing invasive species to spread into habitats in the invaded ranges that are climatically distinct from those occupied in the native range. We propose an alternative approach that involves fitting models with pooled data from all ranges. We show that this pooled approach improves prediction of the extent of invasion of spotted knapweed (Centaurea maculosa) in North America on models based solely on the European native range. Furthermore, it performs equally well on models based on the invaded range, while ensuring the inclusion of areas with similar climate to the European niche, where the species is likely to spread further. We then compare projections from these models for 2080 under a severe climate warming scenario. Projections from the pooled models show fewer areas of intermediate climatic suitability than projections from the native or invaded range models, suggesting a better consensus among modelling techniques and reduced uncertainty.  相似文献   

8.
Phylogeographic studies are useful in reconstructing the history of species invasions, and in some instances can elucidate cryptic diversity of invading taxa. This can help in predicting or managing the spread of invasive species. Among terrestrial invasive species in North America, earthworms can have profound ecological effects. We are familiar with the centuries‐old invasions of European earthworms (Lumbricidae) and their impacts on nutrient cycling in soils. More recent invasions by Asian earthworms of the family Megascolecidae are less fully understood. We used data for two mitochondrial gene fragments, cytochrome oxidase I (COI) and 16S rRNA, to examine the relationships among populations of Asian earthworms in the megascolecid genus Amynthas in the northeast United States. Recent reports have indicated that one species in particular, Amynthas agrestis, is having detrimental effects in mixed forest ecosystems, and we were interested in understanding the invasion history for this species. We were surprised to discover three divergent mitochondrial lineages of Amynthas occurring sympatrically in upstate New York. Given the gap between intra‐ and inter‐lineage sequence divergences, we propose that these three lineages represent cryptic species of Amynthas, one of which is A. agrestis. For each of the three lineages of Amynthas, we observed shared haplotypes across broad geographic distances. This may reflect common origins for populations in each lineage, either by direct routes from native ranges or through post‐introduction spread by natural dispersal or human‐mediated transport within North America. Management efforts focused on horticultural imports from Asia, commercial nurseries within the USA, and on prohibition of bait disposal may help to reduce the further invasion success of Amynthas.  相似文献   

9.
Abstract

In accordance with the European regulation on Invasive Alien Species (IAS), the black cherry tree (Prunus serotina Ehrh.) has recently been indicated as one of the 96 species proposed for the development of the national list of priority invasive alien species in Italy. The species, native to North America, is recognised as one of the most harmful IAS in Europe, given its high spread potential and the associated ecological and economic impacts reported in its alien range. Although P. serotina is recognised as a pest within the EU, plants are still available on the market, confirming intentional introduction as a current potential pathway for this species arrival into new areas. Since a comprehensive overview of the main features characterizing the invasive potential of this species is still lacking, we aim to underpin the high priority status of P. serotina as a IAS of main concern in Italy by outlining the main biological features, pathways and impacts of the black cherry in its secondary range. Management measures to be potentially included in specific action plans are also summarised.  相似文献   

10.
Invasive species are distinguished by their rate of spread and this is thought to be associated with the ability to produce many offspring. However, it is possible that many studies do not succeed in highlighting a positive correlation between invasiveness and reproductive rate because they lack an allometric perspective. Information on the ladybird beetles introduced into North America and data on life-history traits of 30 species of ladybird beetles were used to search for a relationship between ability to invade and traits related to reproduction and dispersal. We analyzed the mechanisms responsible for the rate of spread of invasive species of the aphidophagous species of ladybird introduced into North America that became established and spread. The two largest species extended their range an order of magnitude faster than the other species. The potential reproductive rate and the speed of movement are both positively correlated with body mass, which appears to be a good predictor of the ability to spread and colonize new territory. Further studies of invasive species should therefore include an allometric perspective in order to allow comparisons between species and an assessment of the influence of reproduction and dispersal potential on the rate with which they spread when exploiting highly suitable habitats.  相似文献   

11.
入侵地和原产地盐沼植物互花米草种子萌发性状的地理变异 种子萌发是植物早期生活史中最重要的阶段,决定了植物的生态位和地理分布范围,对外来植物的入侵潜力有重要影响。盐沼植物互花米草(Spartina alterniflora)在中国沿海滩涂的入侵范围最大,并已入侵到比原产地更低的纬度范围,这为我们研究互花米草在不同地理区域之间以及沿纬度梯度的萌发性状差异和适应提供了契机。在控温培养箱中淡水培养条件下,我们比较研究了来自入侵地(19°–40° N)10 个地点和原产地(27°–43° N)16个地点不同纬度互花米草种群的种子萌发性状差异,以及这种差异与各种 群来源地潮差和气候因素的相关性。原产地互花米草种群种子的萌发率和萌发指数比入侵地种群分别高10%和20%,但入侵地互花米草种群的萌发速度比原产地快3 d。入侵地互花米草种群的萌发率和萌发 指数随着纬度升高呈现线性递增的变化趋势,而原产地呈现线性递减的变化趋势。入侵地和原产地互花米草种群的平均萌发时间都与纬度呈现线性负相关。入侵地互花米草种群的萌发率和萌发指数与年日均温、年日最低均温、和年日最高均温呈现负相关,而在原产地呈现相反的相关关系。入侵地和原产地互花米草种群的平均萌发时间分别与年日均温、年日最低均温和年日最高均温呈现正相关关系。我们的研究结果表明,入侵地和原产地互花米草种群的萌发率和萌发指数已沿纬度进化出不同的渐变群格局,但平均萌发时间进化出与原产地一致的纬度渐变群格局,即在生物入侵过程中沿纬度梯度种子萌发策略会随着入侵时间和过程而发生变化。  相似文献   

12.
With the extensive spread of invasive species throughout North America and Europe there is an urgent need to better understand the morphological and physiological characteristics of successful invasive plants and the evolutionary mechanisms that allow introduced species to become invasive. Most ecological studies have focused on morphological differences and changes in community dynamics, and physiological studies have typically explored the differences between native and invasive species. In this study, 15 different genotypes of Phalaris arundinacea from both its native (European) and invasive (North American) range were grown in a common garden experiment to monitor the physiological differences between native and invasive genotypes. Here we present data that suggests high variability exists in the physiological traits among genotypes of P. arundinacea, yet genotypes from the native range are not necessarily physiologically inferior to the hybridized invasive genotypes. Previous work has shown that multiple introductions of P. arundinacea from various European locations to the United States resulted in numerous hybridization events, yielding more genetic variability and phenotypic plasticity in the invasive range. Of the genotypes studied, both morphological and physiological traits of genotypes with French origin were significantly different from the plants from the Czech Republic, North Carolina, and Vermont. The lack of clear differences between native and invasive genotypes indicates that physiological traits may be highly conserved in P. arundinacea and enhanced photosynthetic rates are not indicative of successful invasive genotypes. Instead, morphological traits and defensive secondary compound metabolism may play a more important role in the success of P. arundinacea within its invasive range, and patterns of genetic variation in physiological traits between invasive and native range may be more important than the mean traits of each region when explaining reed canarygrass’ invasive potential in North America.  相似文献   

13.
鄱阳湖南矶山湿地自然保护区的外来入侵植物调查与分析   总被引:2,自引:1,他引:1  
为了解鄱阳湖南矶山自然保护区外来入侵植物的状况, 从2010 年至2014 年对外来入侵植物的物种种类、分布、传播等进行了调查。结果表明, 南矶山湿地保护区共有外来入侵植物32 种, 隶属于l8 科28 属, 其中菊科最多, 有8 种6 属;其次是苋科, 有4 种3 属, 绝大多数是草本植物;以原产地为美洲的最多, 有15 种, 其中来自北美的有9 种。对保护区造成严重危害的外来入侵植物有5 种, 分别为野燕麦(Avena fatua)、小飞蓬(Conyza canadensis)、野胡萝卜(Daucus carota)、裸柱菊(Soliva anthemifolia)和空心莲子草(Alternanthera philoxeroides), 危害较强的主要有7 种, 危害较轻的有20 种。对外来植物的入侵途径、规律与成因以及对生态环境造成的影响进行了讨论, 并提出了防治对策与建议。  相似文献   

14.
Biologic invasions can have important ecological, economic and social consequences, particularly when they involve the introduction and spread of plant invasive pathogens, as they can threaten natural ecosystems and jeopardize the production of human food. Examples include the grapevine downy mildew, caused by the oomycete Plasmopara viticola, an invasive species native to North America, introduced into Europe in the 1870s. We investigated the introduction and spread of this invasive pathogen, by analysing its genetic structure and diversity in a large sample from European vineyards. Populations of P. viticola across Europe displayed little genetic diversity, consistent with the occurrence of a bottleneck at the time of introduction. Bayesian coalescent analyses revealed a clear population expansion signal in the genetic data. We detected a weak, but significant, continental‐wide population structure, with two geographically and genetically distinct clusters in Western and Eastern European vineyards. Approximate Bayesian computation, analyses of clines of genetic diversity and of isolation‐by‐distance patterns provided evidence for a wave of colonization moving in an easterly direction across Europe. This is consistent with historical reports, first mentioning the introduction of the disease in Bordeaux vineyards (France) and sub‐sequently documenting its rapid spread across Europe. This initial introduction in the west was probably followed by a ‘leap‐frog’ event into Eastern Europe, leading to the formation of the two genetic clusters we detected. This study shows that recent population genetics methods within the Bayesian and coalescence frameworks are extremely powerful for increasing our understanding of pathogen population dynamics and invasion histories.  相似文献   

15.
Niche conservatism providing support for using ecological niche modeling in biological invasions has been widely noticed, however, the equilibrium state and geographic background effect on niche model transferability has received scant attention. The western conifer seed bug, Leptoglossus occidentalis, native to western North America, has expanded its range eastward and has become an invasive pest in Europe and Asia. Niche models calibrated on the ranges of a small native population and two large expanding populations were compared. We found that the climate niche of L. occidentalis is conserved during its steady expansion in North America and rapid spread in Europe. Models based on the small western native range successfully captured the eastern expanding and introduced European populations, whereas the large area-based models varied with the presumed state of equilibrium. The equilibrium state based model succeeded but the non-equilibrium based model failed to predict the range in Europe. Our study estimates global invasion risk zones for L. occidentalis and suggests that, based on niche conservatism, modeling based on a reasonable geographic distribution at a climatic equilibrium of a species could guarantee the transferability of niche model prediction. Caution is warranted in interpreting low niche model transferability with niche differentiation and forwarding message for management strategy.  相似文献   

16.
Recent studies suggest that the invasive success of Centaurea maculosa may be related to its stronger allelopathic effects on native North American species than on related European species, one component of the “novel weapons” hypothesis. Other research indicates that C. maculosa plants from the invasive range in North America have evolved to be larger and better competitors than conspecifics from the native range in Europe, a component of the “evolution of increased competitive ability” hypothesis. These hypotheses are not mutually exclusive, but this evidence sets the stage for comparing the relative importance of evolved competitive ability to inherent competitive traits. In a competition experiment with a large number of C. maculosa populations, we found no difference in the competitive effects of C. maculosa plants from North America and Europe on other species. However, both North American and European C. maculosa were much better competitors against plants native to North America than congeners native to Romania, collected in areas where C. maculosa is also native. These results are consistent with the novel weapons hypothesis. But, in a second experiment using just one population from North America and Europe, and where North American and European species were collected from a broader range of sites, competitive interactions were weaker overall, and the competitive effects of C. maculosa were slightly stronger against European species than against North American species. Also consistent with the novel weapons hypothesis, (±)-catechin had stronger effects on native North American species than on native European species in two experiments. Our results suggest that the regional composition of the plant communities being invaded by C. maculosa may be more important for invasive success than the evolution of increased size and competitive ability. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
The wheat curl mite (WCM), Aceria tosichella, is an important pest of wheat and other cereal crops that transmits wheat streak mosaic virus and several other plant viruses. Wheat curl mite has long been considered a single polyphagous species, but recent studies in Poland revealed a complex of genetically distinct lineages with divergent host‐acceptance traits, ranging from highly polyphagous to host‐specific. This diversity of WCM genotypes and host‐acceptance phenotypes in Europe, the presumed native range of WCM, raises questions about the lineage identities of invasive WCM populations on other continents and their relationships to European lineages. The goals of this study were to examine the global presence of WCM and determine the relatedness of lineages established in different continents, on the basis of phylogenetic analyses of mitochondrial and nuclear DNA sequence data. Host‐range bioassays of a highly polyphagous WCM lineage were performed to supplement existing data on this lineage's ability to colonise graminaceous and non‐graminaceous hosts. Invasive WCM populations in North and South America and Australia assorted with the only three known polyphagous and pestiferous WCM lineages (‘MT‐1’, ‘MT‐7’ and ‘MT‐8’) from a total of eight currently described lineages. These results show that the most polyphagous lineages were more successful colonisers and reflect a need for extensive surveys for WCM on both crops and wild grass species in invaded continents. The most invasive lineage (‘MT‐1’) was shown to successfully colonise all 10 plant species tested in three families and has spread to North and South America and Australia from its presumed origins in Eurasia.  相似文献   

18.
Species distribution models are a fundamental tool in ecology, conservation biology, and biogeography and typically identify potential species distributions using static phenomenological models. We demonstrate the importance of complementing these popular models with spatially explicit, dynamic mechanistic models that link potential and realized distributions. We develop general grid-based, pattern-oriented spread models incorporating three mechanisms--plant population growth, local dispersal, and long-distance dispersal--to predict broadscale spread patterns in heterogeneous landscapes. We use the model to examine the spread of the invasive Celastrus orbiculatus (Oriental bittersweet) by Sturnus vulgaris (European starling) across northeastern North America. We find excellent quantitative agreement with historical spread records over the last century that are critically linked to the geometry of heterogeneous landscapes and each of the explanatory mechanisms considered. Spread of bittersweet before 1960 was primarily driven by high growth rates in developed and agricultural landscapes, while subsequent spread was mediated by expansion into deciduous and coniferous forests. Large, continuous patches of coniferous forests may substantially impede invasion. The success of C. orbiculatus and its potential mutualism with S. vulgaris suggest troubling predictions for the spread of other invasive, fleshy-fruited plant species across northeastern North America.  相似文献   

19.
Data on the geographical distribution, phylogeny and fossil record of cool-temperate North Atlantic shell-bearing molluscs that live in waters shallower than 100 m depth belong to two biogeographic provinces, one in eastern North America north of Cape Cod, the other in northern Europe. Amphi-Atlantic species, which are found in both provinces, comprise 30.8% of the 402 species in the northeastern Atlantic and 47.3% of the 262 species in the northwestern Atlantic. Some 54.8% of these amphi-Atlantic species have phylogenetic origins in the North Pacific. Comparisons among fossil Atlantic faunas show that amphi-Atlantic distributions became established in the Middle Pliocene (about 3.5 million years ago), and that all represent westward expansions of European taxa to North America. No American taxa spread eastward to Europe without human assistance. These results are in accord with previous phylogeographic studies among populations within several amphi-Atlantic species. Explanations for the unidirectional expansion of species across the Atlantic remain uncertain, but may include smaller size and greater prior extinction of the North American as compared to the European fauna and biased transport mechanisms. Destruction of the European source fauna may jeopardize faunas on both sides of the Atlantic.  相似文献   

20.
Aquatic and semi-aquatic plants comprise few species worldwide, yet the introduction of non-indigenous plants represents one of the most severe examples of biological invasions. My goal is to compare the distribution and the biology of aquatic and semi-aquatic plants in their introduced ranges and in their native ranges. The primary objective of this study is to test the hypothesis that invasive species have evolved traits likely to increase their success in the new range. I made two reciprocal comparisons, i.e. I compared European species in France and in North America, and North American species in France and in North America. Twenty-seven species were classified according to their invasiveness in their introduced area. I␣found six invasive macrophyte species in France native to North America and 17 invasive species in North America native to Europe. Four species are invasive in both areas. There is no general tendency for macrophytes to be more vigorous in their introduced ranges. Most non-indigenous aquatic and semi-aquatic species are potentially invasive or widespread and well-established in their introduced country, while few species seem to be restricted in their distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号