首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alex Fajardo  Andrew Siefert 《Oikos》2019,128(6):881-891
It is assumed that widespread, generalist species have high phenotypic variation, but we know little about how intraspecific trait variation (ITV) relates to species abundance and niche breadth. In the temperate rainforest of southern Chile, we hypothesized that species with wide niche breadth would exhibit 1) high among‐plot ITV, 2) a strong relationship between trait values and the environment, and 3) a close fit between traits and local environment trait optima. We measured leaf functional traits (leaf area, LMA, leaf N and P concentrations) of saplings in woody species, and compared the relative abundance of each species with its niche breadth, measured as the range of light, soil N and P availability. We used the slope of the linear regression of species’ trait–environment relationships to assess the strength and direction of these relationships, and measured the degree to which species’ trait values track the environmental optimum across plots. In some cases, species having wide niche breadth had high ITV in leaf N and also matched traits (LMA and leaf P) to local optima along the light gradient; they also had high ITV in general and matched leaf P to local optima along the soil P gradient. The relationship between species with wide niche breadth and the strength of intraspecific trait–environment relationships was generally weak and varied depending on the niche dimension and trait in question. Species varied considerably in the strength of trait–environment relationships and total magnitude of ITV, and this variation was not generally strongly related to species abundances or niche breadth patterns. In conclusion, trait variation at the community level is not driven by a few abundant, widely distributed species, but depends on the aggregate trait responses of both abundant and rare species. This makes it difficult to scale individual species trait responses up to the community level.  相似文献   

2.
Andrew Siefert  Cyrille Violle  Loïc Chalmandrier  Cécile H. Albert  Adrien Taudiere  Alex Fajardo  Lonnie W. Aarssen  Christopher Baraloto  Marcos B. Carlucci  Marcus V. Cianciaruso  Vinícius de L. Dantas  Francesco de Bello  Leandro D. S. Duarte  Carlos R. Fonseca  Grégoire T. Freschet  Stéphanie Gaucherand  Nicolas Gross  Kouki Hikosaka  Benjamin Jackson  Vincent Jung  Chiho Kamiyama  Masatoshi Katabuchi  Steven W. Kembel  Emilie Kichenin  Nathan J. B. Kraft  Anna Lagerström  Yoann Le Bagousse‐Pinguet  Yuanzhi Li  Norman Mason  Julie Messier  Tohru Nakashizuka  Jacob McC. Overton  Duane A. Peltzer  I. M. Pérez‐Ramos  Valério D. Pillar  Honor C. Prentice  Sarah Richardson  Takehiro Sasaki  Brandon S. Schamp  Christian Schöb  Bill Shipley  Maja Sundqvist  Martin T. Sykes  Marie Vandewalle  David A. Wardle 《Ecology letters》2015,18(12):1406-1419
Recent studies have shown that accounting for intraspecific trait variation (ITV) may better address major questions in community ecology. However, a general picture of the relative extent of ITV compared to interspecific trait variation in plant communities is still missing. Here, we conducted a meta‐analysis of the relative extent of ITV within and among plant communities worldwide, using a data set encompassing 629 communities (plots) and 36 functional traits. Overall, ITV accounted for 25% of the total trait variation within communities and 32% of the total trait variation among communities on average. The relative extent of ITV tended to be greater for whole‐plant (e.g. plant height) vs. organ‐level traits and for leaf chemical (e.g. leaf N and P concentration) vs. leaf morphological (e.g. leaf area and thickness) traits. The relative amount of ITV decreased with increasing species richness and spatial extent, but did not vary with plant growth form or climate. These results highlight global patterns in the relative importance of ITV in plant communities, providing practical guidelines for when researchers should include ITV in trait‐based community and ecosystem studies.  相似文献   

3.
Plants deploy various ecological strategies in response to environmental heterogeneity. In many forest ecosystems, plants have been reported to have notable inter- and intra-specific trait variation, as well as clear phylogenetic signals, indicating that these species possess a degree of phenotypic plasticity to cope with habitat variation in the community. Savanna communities, however, grow in an open canopy structure and exhibit little species diversification, likely as a result of strong environmental stress. In this study, we hypothesized that the phylogenetic signals of savanna species would be weak, the intraspecific trait variation (ITV) would be low, and the contribution of intraspecific variation to total trait variance would be reduced, owing to low species richness, multiple stresses and relatively homogenous community structure. To test these hypotheses, we sampled dominant woody species in a dry-hot savanna in southwestern China, focusing on leaf traits related to adaptability of plants to harsh conditions (year-round intense radiation, low soil fertility and seasonal droughts). We found weak phylogenetic signals in leaf traits and low ITV (at both individual and canopy-layer levels). Intraspecific variation (including leaf-, layer- and individual-scales) contributed little to the total trait variance, whereas interspecific variation and variation in leaf phenology explained substantial variance. Our study suggests that intraspecific trait variation is reduced in savanna community. Furthermore, our findings indicate that classifying species by leaf phenology may help better understand how species coexist under similar habitats with strong stresses.  相似文献   

4.
Functional diversity (FD) is a key facet of biodiversity used to address central questions in ecology. Despite recent methodological advances, FD remains a complex concept and no consensus has been reached either on how to quantify it, or on how it influences ecological processes. Here we define FD as the distribution of trait values within a community. When and how to account for intraspecific trait variability (ITV) when measuring FD remains one of the main current debates. It remains however unclear to what extent accounting for population‐level ITV would modify FD quantification and associated conclusions. In this paper, we address two critical questions: (1) How sensitive are different components of FD to the inclusion of population‐level ITV? (2) Does the omission of ITV obscure the understanding of ecological patterns? Using a mixture of empirical data and simulation experiments, we conducted a sensitivity analysis of four commonly used FD indices (community weighted mean traits, functional richness, Rao's quadratic entropy, Petchey and Gaston's FD index) and their relationships with environmental gradients and species richness, by varying both the extent (plasticity or not) and the structure (contingency to environmental gradient due to local adaptation) of population‐level ITV. Our results suggest that ITV may strongly alter the quantification of FD and the detection of ecological patterns. Our analysis highlights that 1) species trait values distributions within communities are crucial to the sensitivity to ITV, 2) ITV structure plays a major role in this sensitivity and 3) different indices are not evenly sensitive to ITV, the single‐trait FD from Petchey and Gaston being the most sensitive among the four metrics tested. We conclude that the effects of intraspecific variability in trait values should be more systematically tested before drawing central conclusions on FD, and suggest the use of simulation studies for such sensitivity analyses.  相似文献   

5.
Background and AimsDisplacement of native plant species by non-native invaders may result from differences in their carbon economy, yet little is known regarding how variation in leaf traits influences native–invader dynamics across climate gradients. In Hawaii, one of the most heavily invaded biodiversity hotspots in the world, strong spatial variation in climate results from the complex topography, which underlies variation in traits that probably drives shifts in species interactions.MethodsUsing one of the most comprehensive trait data sets for Hawaii to date (91 species and four islands), we determined the extent and sources of variation (climate, species and species origin) in leaf traits, and used mixed models to examine differences between natives and non-native invasives.Key ResultsWe detected significant differences in trait means, such that invasives were more resource acquisitive than natives over most of the climate gradients. However, we also detected trait convergence and a rank reversal (natives more resource acquisitive than invasives) in a sub-set of conditions. There was significant intraspecific trait variation (ITV) in leaf traits of natives and invasives, although invasives expressed significantly greater ITV than natives in water loss and photosynthesis. Species accounted for more trait variation than did climate for invasives, while the reverse was true for natives. Incorporating this climate-driven trait variation significantly improved the fit of models that compared natives and invasives. Lastly, in invasives, ITV was most strongly explained by spatial heterogeneity in moisture, whereas solar energy explains more ITV in natives.ConclusionsOur results indicate that trait expression and ITV vary significantly between natives and invasives, and that this is mediated by climate. These findings suggest that although natives and invasives are functionally similar at the regional scale, invader success at local scales is contingent on climate.  相似文献   

6.
Thomas Banitz 《Oikos》2019,128(10):1478-1491
Trait variation within populations is an important area of research for empirical and theoretical ecologists. While differences between individuals are doubtlessly ubiquitous, their role for species coexistence is much less clear and highly debated. Both unstructured (random) and structured (linked to space, time or inheritance) intraspecific trait variation (ITV) may modify species interactions with nontrivial consequences for emerging community compositions. In many ecosystems, these compositions are further driven by prevalent disturbance regimes. I therefore explored the effects of unstructured as well as spatially structured ITV under disturbances in a generic ecological model of competing sessile species. Using spatially explicit, individual‐based simulations, I studied how intraspecific variation in life history traits together with interspecific tradeoffs and disturbance regimes shape long‐term community composition. I found that 1) unstructured ITV does not affect species coexistence in the given context, 2) spatially structured ITV may considerably increase coexistence, but 3) spatially clumped disturbances reduce this effect of spatially structured ITV, especially if interspecific tradeoffs involve dispersal distance. The findings suggest that spatially structured ITV with individual trait responses to local habitat conditions differing among species may create or expand humps in disturbance–diversity relationships. Hence, if present, these forms of spatially structured ITV should be included in ecological models and will be important for reliably assessing community responses to environmental heterogeneity and change.  相似文献   

7.
Intraspecific trait variation (ITV) is thought to play a significant role in community assembly, but the magnitude and direction of its influence are not well understood. Although it may be critical to better explain population persistence, species interactions, and therefore biodiversity patterns, manipulating ITV in experiments is challenging. We therefore incorporated ITV into a trait‐ and individual‐based model of grassland community assembly by adding variation to the plants’ functional traits, which then drive life‐history tradeoffs. Varying the amount of ITV in the simulation, we examine its influence on pairwise‐coexistence and then on the species diversity in communities of different initial sizes. We find that ITV increases the ability of the weakest species to invade most, but that this effect does not scale to the community level, where the primary effect of ITV is to increase the persistence and abundance of the competitively‐average species. Diversity of the initial community is also of critical importance in determining ITV's efficacy; above a threshold of interspecific diversity, ITV does not increase diversity further. For communities below this threshold, ITV mainly helps to increase diversity in those communities that would otherwise be low‐diversity. These findings suggest that ITV actively maintains diversity by helping the species on the margins of persistence, but mostly in habitats of relatively low alpha and beta diversity.  相似文献   

8.
9.
10.
Even with increasing interest in the ecological importance of intraspecific trait variation (ITV) for better understanding ecological processes, few studies have quantified ITV in seedlings and assessed constraints imposed by trade‐offs and correlations among individual‐level leaf traits. Estimating the amount and role of ITV in seedlings is important to understand tree recruitment and long‐term forest dynamics. We measured ten different size, economics, and whole leaf traits (lamina and petiole) for more than 2,800 seedlings (height ≥ 10 cm and diameter at breast height < 1 cm) in 283 seedling plots and then quantified the amount of ITV and trait correlations across two biological (intraspecific and interspecific) and spatial (within and among plots) scales. Finally, we explored the effects of trait variance and sample size on the strength of trait correlations. We found about 40% (6%–63%) variation in leaf‐level traits was explained by ITV across all traits. Lamina and petiole traits were correlated across biological and spatial scales, whereas leaf size traits (e.g., lamina area) were weakly correlated with economics traits (e.g., specific lamina area); lamina mass ratio was strongly related to the petiole length. Trait correlations varied among species, plots, and different scales but there was no evidence that the strength of trait relationships was stronger at broader than finer biological and spatial scales. While larger trait variance increased the strength of correlations, the sample size was the most important factor that was negatively related to the strength of trait correlations. Our results showed that a large amount of trait variation was explained by ITV, which highlighted the importance of considering ITV when using trait‐based approaches in seedling ecology. In addition, sample size was an important factor that influenced the strength of trait correlations, which suggests that comparing trait correlations across studies should consider the differences in sample size.  相似文献   

11.
  • Intraspecific trait variation (ITV; i.e. variability in mean and/or distribution of plant attribute values within species) can occur in response to multiple drivers. Environmental change and land‐use legacies could directly alter trait values within species but could also affect them indirectly through changes in vegetation cover. Increasing variability in environmental conditions could lead to more ITV, but responses might differ among species. Disentangling these drivers on ITV is necessary to accurately predict plant community responses to global change.
  • We planted herb communities into forest soils with and without a recent history of agriculture. Soils were collected across temperate European regions, while the 15 selected herb species had different colonizing abilities and affinities to forest habitat. These mesocosms (384) were exposed to two‐level full‐factorial treatments of warming, nitrogen addition and illumination. We measured plant height and specific leaf area (SLA).
  • For the majority of species, mean plant height increased as vegetation cover increased in response to light addition, warming and agricultural legacy. The coefficient of variation (CV) for height was larger in fast‐colonizing species. Mean SLA for vernal species increased with warming, while light addition generally decreased mean SLA for shade‐tolerant species. Interactions between treatments were not important predictors.
  • Environmental change treatments influenced ITV, either via increasing vegetation cover or by affecting trait values directly. Species’ ITV was individualistic, i.e. species responded to different single resource and condition manipulations that benefited their growth in the short term. These individual responses could be important for altered community organization after a prolonged period.
  相似文献   

12.
  • Intraspecific trait variation and trait–climate relationships are crucial for understanding a species’ response to climate change. However, these phenomena have rarely been studied for tree species. Euptelea pleiospermum is a relict tree species with a wide distribution in China that offers a novel opportunity to examine such relationships.
  • Here, we measured 13 leaf traits of E. pleiospermum in 20 sites across its natural distribution in China. We investigated the extent of trait variation at local and regional scales, and developed geographic and climate models to explain trait variation at the regional scale.
  • We documented intraspecific trait variation among leaf traits of Epleiospermum at local and regional scales. Five traits exhibited relatively high trait variation: leaf area, leaf density and three leaf economic traits (leaf dry matter content, specific leaf area [SLA] and leaf phosphorus concentration). Significant trait–geography correlations were mediated by local climate. Most leaf trait variation could be explained (from 24% to 64%) by geographic or climate variables, except leaf width, leaf thickness, leaf dry matter content and leaf length–width ratio. Latitude and temperature were the strongest predictors of trait variation throughout the distribution of Epleiospermum in China, and temperature explained more leaf trait variation than precipitation. In particular, we showed that leaves had longer petiole lengths, higher SLA and lower densities in northern Epleiospermum populations. We suggest that northern Epleiospermum populations are adapting to higher latitudinal environments via high growth rate (higher SLA) and low construction investment strategies (lower leaf densities), benefitting northern migration.
  • Overall, we demonstrate that intraspecific trait variation reflects Epleiospermum response to the local environment. We call for consideration of intraspecific trait variation to examine specific climate response questions. In addition, provenance experiments using widely distributed species are needed to separate trait variation resulting from genetic differentiation and plastic responses to environmental change.
  相似文献   

13.
Aims Intraspecific trait variation (ITV) has been increasingly recognized to play an important role in understanding the underlying processes influencing community assembly. However, gaps remain in our understanding of how incorporating ITV will influence the relative importance of deterministic (e.g. habitat filtering, limiting similarity) and stochastic processes in driving community assembly at different successional stages.  相似文献   

14.
Species establishment within a community depends on their interactions with the local environment and resident community. Such environmental and biotic filtering is frequently inferred from functional trait and phylogenetic patterns within communities; these patterns may also predict which additional species can establish. However, differentiating between environmental and biotic filtering can be challenging, which may complicate establishment predictions. Creating a habitat‐specific species pool by identifying which absent species within the region can establish in the focal habitat allows us to isolate biotic filtering by modeling dissimilarity between the observed and biotically excluded species able to pass environmental filters. Similarly, modeling the dissimilarity between the habitat‐specific species pool and the environmentally excluded species within the region can isolate local environmental filters. Combined, these models identify potentially successful phenotypes and why certain phenotypes were unsuccessful. Here, we present a framework that uses the functional dissimilarity among these groups in logistic models to predict establishment of additional species. This approach can use multivariate trait distances and phylogenetic information, but is most powerful when using individual traits and their interactions. It also requires an appropriate distance‐based dissimilarity measure, yet the two most commonly used indices, nearest neighbor (one species) and mean pairwise (all species) distances, may inaccurately predict establishment. By iteratively increasing the number of species used to measure dissimilarity, a functional neighborhood can be chosen that maximizes the detection of underlying trait patterns. We tested this framework using two seed addition experiments in calcareous grasslands. Although the functional neighborhood size that best fits the community's trait structure depended on the type of filtering considered, selecting these functional neighborhood sizes allowed our framework to predict up to 50% of the variation in actual establishment from seed. These results indicate that the proposed framework may be a powerful tool for studying and predicting species establishment.  相似文献   

15.
There has been increasing interest in algae‐based bioassessment, particularly, trait‐based approaches are increasingly suggested. However, the main drivers, especially the contribution of hydrological variables, of species composition, trait composition, and beta diversity of algae communities are less studied. To link species and trait composition to multiple factors (i.e., hydrological variables, local environmental variables, and spatial factors) that potentially control species occurrence/abundance and to determine their relative roles in shaping species composition, trait composition, and beta diversities of pelagic algae communities, samples were collected from a German lowland catchment, where a well‐proven ecohydrological modeling enabled to predict long‐term discharges at each sampling site. Both trait and species composition showed significant correlations with hydrological, environmental, and spatial variables, and variation partitioning revealed that the hydrological and local environmental variables outperformed spatial variables. A higher variation of trait composition (57.0%) than species composition (37.5%) could be explained by abiotic factors. Mantel tests showed that both species and trait‐based beta diversities were mostly related to hydrological and environmental heterogeneity with hydrological contributing more than environmental variables, while purely spatial impact was less important. Our findings revealed the relative importance of hydrological variables in shaping pelagic algae community and their spatial patterns of beta diversities, emphasizing the need to include hydrological variables in long‐term biomonitoring campaigns and biodiversity conservation or restoration. A key implication for biodiversity conservation was that maintaining the instream flow regime and keeping various habitats among rivers are of vital importance. However, further investigations at multispatial and temporal scales are greatly needed.  相似文献   

16.
Plant community composition and functional traits respond to chronic drivers such as climate change and nitrogen (N) deposition. In contrast, pulse disturbances from ecosystem management can additionally change resources and conditions. Community responses to combined environmental changes may further depend on land‐use legacies. Disentangling the relative importance of these global change drivers is necessary to improve predictions of future plant communities. We performed a multifactor global change experiment to disentangle drivers of herbaceous plant community trajectories in a temperate deciduous forest. Communities of five species, assembled from a pool of 15 forest herb species with varying ecological strategies, were grown in 384 mesocosms on soils from ancient forest (forested at least since 1850) and postagricultural forest (forested since 1950) collected across Europe. Mesocosms were exposed to two‐level full‐factorial treatments of warming, light addition (representing changing forest management) and N enrichment. We measured plant height, specific leaf area (SLA) and species cover over the course of three growing seasons. Increasing light availability followed by warming reordered the species towards a taller herb community, with limited effects of N enrichment or the forest land‐use history. Two‐way interactions between treatments and incorporating intraspecific trait variation (ITV) did not yield additional inference on community height change. Contrastingly, community SLA differed when considering ITV along with species reordering, which highlights ITV’s importance for understanding leaf morphology responses to nutrient enrichment in dark conditions. Contrary to our expectations, we found limited evidence of land‐use legacies affecting community responses to environmental changes, perhaps because dispersal limitation was removed in the experimental design. These findings can improve predictions of community functional trait responses to global changes by acknowledging ITV, and subtle changes in light availability. Adaptive forest management to impending global change could benefit the restoration and conservation of understorey plant communities by reducing the light availability.  相似文献   

17.

Environmental gradients are known to drive changes in mean trait values, but changes in the trait integration strength across local communities are less well understood, particularly with regard to possible links with species richness variation. Here, we tested if climate, soil, and topography gradients drive species richness indirectly via constraints on trait integration in the Atlantic Forest of South America. We evaluated seven traits (from leaf, wood, seed, and plant size) of 1456 species occurring across 84 local communities. Generalized least square models and a path model were applied to test direct and indirect relationships. Correlations were higher between leaf traits (average r?=?0.28) and lower when other traits were included (average r?=?0.16). In line with this result, species richness was related to a multivariate index of interspecific trait integration (ITI) computed for leaf traits, but not to the ITI for all the seven traits. Abiotic gradients influenced species richness both directly and indirectly through the leaf trait integration. A total of 33% and 26% of the variation in species richness and ITI, respectively, were explained by the models, with climatic conditions showing higher contribution than topographic and edaphic factors. These results support a significant but reduced environmental selection role behind the trait-based community assembly and may suggest that other processes are involved in the constrain of trait integration at larger spatial scales. In addition, different directional trends in trait–trait relationships across local communities suggest that global trait relationships may not necessarily hold at local contexts.

  相似文献   

18.
Empirical studies that link plants intraspecific variation to environmental conditions are almost lacking, despite their relevance in understanding mechanisms of plant adaptation, in predicting the outcome of environmental change and in conservation. Here, we investigate intraspecific trait variation of four grassland species along with abiotic environmental variation at high spatial resolution (n = 30 samples per species trait and environmental factor per site) in two contrasting grassland habitats in Central Apennines (Italy). We test for phenotypic adaptation between habitats, intraspecific trait-environment relationships within habitats, and the extent of trait and environmental variation. We considered whole plant, clonal, leaf, and seed traits. Differences between habitats were tested using ANOVA and ANCOVA. Trait-environment relationships were assessed using multiple regression models and hierarchical variance partitioning. The extent of variation was calculated using the coefficient of variation. Significant intraspecific differences in trait attributes between the contrasting habitats indicate phenotypic adaptation to in situ environmental conditions. Within habitats, light, soil temperature, and the availability of nitrate, ammonium, magnesium and potassium were the most important factors driving intraspecific trait-environment relationships. Leaf traits and height growth show lower variability than environment being probably more regulated by plants than clonal traits which show much higher variability. We show the adaptive significance of key plant traits leading to intraspecific adaptation of strategies providing insights for conservation of extant grassland communities. We argue that protecting habitats with considerable medium- and small-scale environmental heterogeneity is important to maintain large intraspecific variability within local populations that finally can buffer against uncertainty of future climate and land use scenarios.  相似文献   

19.
Intraspecific trait variability (ITV) plays a central part in various ecological processes, though using mean trait values may be sufficient in some instances. Ecologists need thus to find under which circumstances. Carlucci et al. (2014, this issue) bring new evidence on the importance of ITV for community assembly across a strong gradient. Sampling design may affect ITV quantification across gradients.  相似文献   

20.
The values of many important traits of plants in a community change along environmental gradients. Such changes may involve intraspecific variation and replacement by species that have different trait values. We hypothesized that they also involve the variation within and among functional groups (FGs) to the environmental dependence of trait values at the community level. We studied environmental dependence of trait values in 27 moorlands at various scales and analyzed to what extent intraspecific variation, species replacement within FGs and FG replacement contribute to the gradient of community trait values. The community structure in moorlands was influenced mainly by two environmental factors: temperature and water condition. Plants inhabiting sites with low temperature and low-pH generally tended to have lower maximum leaf height, greater leaf mass per area, and smaller leaf size. At the community level, site-mean of maximum leaf height and leaf size generally increased with increasing temperature and water pH. Our analysis demonstrated that the relative contributions of intraspecific variation, species replacement within FGs and FG replacement differed depending on combinations of the traits and environments. The contribution of FG replacement varied considerably among cases (0.6–34.5 %). Species replacement within FGs, which has received little attention in previous studies, was most responsible for the community-level changes (31.6–65.3 %) and intraspecific variation also made a large contribution (22.9–57.9 %). Understanding such various mechanisms involving intraspecific variation and species replacement should help us better predict how the structure and functioning of moorland plant communities will respond to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号