首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNA(Val). This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.  相似文献   

2.
The m.3243A>G variant in the mitochondrial tRNA(Leu(UUR)) gene is a common mitochondrial DNA (mtDNA) mutation. Phenotypic manifestations depend mainly on the heteroplasmy, i.e. the ratio of mutant to normal mtDNA copies. A high percentage of mutant mtDNA is associated with a severe, life-threatening neurological syndrome known as MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes). MELAS is described as a neurovascular disorder primarily affecting the brain and blood vessels, but the pathophysiology of the disease is poorly understood. We developed a series of cybrid cell lines at two different mutant loads: 70% and 100% in the nuclear background of a neuroblastoma cell line (SH-SY5Y). We investigated the impact of the mutation on the metabolism and mitochondrial respiratory chain activity of the cybrids. The m.3243A>G mitochondrial mutation induced a metabolic switch towards glycolysis in the neuronal cells and produced severe defects in respiratory chain assembly and activity. We used two strategies to compensate for the biochemical defects in the mutant cells: one consisted of lowering the glucose content in the culture medium, and the other involved the addition of l-arginine. The reduction of glucose significantly shifted the 100% mutant cells towards the wild-type, reaching a 90% mutant level and restoring respiratory chain complex assembly. The addition of l-arginine, a nitric oxide (NO) donor, improved complex I activity in the mutant cells in which the defective NO metabolism had led to a relative shortage of NO. Thus, metabolically induced heteroplasmy shifting and l-arginine therapy may constitute promising therapeutic strategies against MELAS.  相似文献   

3.
Patients with mitochondrial DNA disease are amongst the most challenging to diagnose and manage given the striking phenotypic and genetic heterogeneity, which characterise these conditions. Recently, we and others have demonstrated the m.3243A>G mutation, one of the most common mitochondrial DNA pathogenic mutations, is present at clinically relevant levels in urinary epithelium, thus providing a practical, non-invasive test for diagnosis and mutation screening. In this study we further evaluate the use of these cells in detecting the m.3243A>G mutation, other mtDNA tRNA gene point mutations including the m.8344A>G mutation and single large-scale mtDNA deletions. We observe a robust relationship between m.3243A>G levels in urothelial cells and clinically affected tissues that does not change with time. Conversely, single large-scale mtDNA deletions can be detected in urothelial cells, with higher levels present in younger patients with more severe disease, but generally mtDNA deletion levels are not representative of those seen in a clinically affected tissue. Our results have implications for the diagnosis, management and counselling of families with mtDNA disease.  相似文献   

4.
The genotype-phenotype relationship in diseases with mtDNA point mutations is still elusive. The maintenance of wild-type mtDNA copy number is essential to the normal mitochondrial oxidative function. This study examined the relationship between mtDNA copy number in blood and urine and disease severity of the patients harboring A3243G mutation. We recruited 115 A3243G patients, in which 28 were asymptomatic, 42 were oligo-symptomatic, and 45 were poly-symptomatic. Increase of total mtDNA copy number without correlation to the proportion of mutant mtDNA was found in the A3243G patients. Correlation analyses revealed that wild-type mtDNA copy number in urine was the most important factor correlated to disease severity, followed by proportion of mutant mtDNA in urine and proportion of mutant mtDNA in blood. Wild-type copy number in urine negatively correlated to the frequencies of several major symptoms including seizures, myopathy, learning disability, headache and stroke, but positively correlated to the frequencies of hearing loss and diabetes. Besides proportion of mutant mtDNA in urine, wild-type copy number in urine is also an important marker for disease severity of A3243G patients.  相似文献   

5.
Qi Y  Zhang Y  Wang Z  Yang Y  Yuan Y  Niu S  Pei P  Wang S  Ma Y  Bu D  Zou L  Fang F  Xiao J  Sun F  Zhang Y  Wu Y  Wang S  Xiong H  Wu X 《Mitochondrion》2007,7(1-2):147-150
To investigate the spectrum of common mitochondrial mutations in Northern China during the years of 2000-2005, 552 patients of mitochondrial encephalomyopathies clinically diagnosed as MELAS, MERRF or Leigh's syndrome, 14 cases of LHON and 46 cases of aminoglycoside induced deafness along with their family members, accepted routine point mutation tests at nucleotide positions 3243, 8344, 8993, 11778 or 1555 in mitochondrial genome. PCR-RFLP analysis, site-specific PCR and PCR-sequencing methods were used to identify the mutations. Fifty-seven cases with A3243G mutation, 4 cases with A8344G, 2 cases with T8993C and 1 case with T8993G were identified from the 552 encephalomyopathy patients. In addition, one case with G11778A was found from the 14 cases of LHON, and 5 cases with A1555G from the 46 cases of aminoglycoside ototoxicity patients. Additional screening for T8356G and T3271C merely had limited significance for the diagnosis of MERRF and MELAS. Differential diagnosis among mitochondrial encephalomyopathies was often complicated due to many similar clinical manifestations. For A3243G mutation, the proportion of mutant mtDNA was not related to severity of the disease but to the age of onset.  相似文献   

6.
Because the mtDNA amount remains stable in the early embryo until uterine implantation, early human development is completely dependent on the mtDNA pool of the mature oocyte. Both quantitative and qualitative mtDNA defects therefore may negatively impact oocyte competence or early embryonic development. However, nothing is known about segregation of mutant and wild-type mtDNA molecules during human meiosis. To investigate this point, we compared the mutant levels in 51 first polar bodies (PBs) and their counterpart (oocytes, blastomeres, or whole embryos), at risk of having (1) the "MELAS" m.3243A>G mutation in MT-TL1 (n = 30), (2) the "MERRF" m.8344A>G mutation in MT-TK (n = 15), and (3) the m.9185T>G mutation located in MT-ATP6 (n = 6). Seven out of 51 of the PBs were mutation free and had homoplasmic wild-type counterparts. In the heteroplasmic PBs, measurement of the mutant load was a rough estimate of the counterpart mutation level (R(2) = 0.52), and high mutant-load differentials between the two populations were occasionally observed (ranging from -34% to +34%). The mutant-load differentials between the PB and its counterpart were higher in highly mutated PBs, suggestive of a selection process acting against highly mutated cells during gametogenesis or early embryonic development. Finally, individual discrepancies in mutant loads between PBs and their counterparts make PB-based preconception diagnosis unreliable for the prevention of mtDNA disorder transmission. Such differences were not observed in animal models, and they emphasize the need to conduct thorough studies on mtDNA segregation in humans.  相似文献   

7.
To evaluate eight frequently encountered mitochondrial DNA (mtDNA) point mutations (A3243G, T8993G/C, A8344G, A1555G, G11778A, G3460A and T14484C) in Chinese, we recruited 1559 sporadic patients suspected of mitochondrial diseases and 206 family members. In suspected patients, 158 cases were detected with one of these eight mtDNA mutations (10.1%). A3243G was the most common mtDNA mutation both in suspected patients (9.4%) and in the relatives (34.2%). In addition, the ratios of A3243G (mutant/wild-type) and A8344G were significantly correlated with the patients’ age of examination. Moreover, in 76 unrelated probands, the ratio of A3243G was correlated well with their seizures and myopathies.  相似文献   

8.

Background

Tissues that depend on aerobic energy metabolism suffer most in diseases caused by mutations in mitochondrial DNA (mtDNA). Cardiac abnormalities have been described in many cases, but their frequency and clinical spectrum among patients with mtDNA mutations is unknown.

Methods

Thirty-nine patients with the 3243A>G mtDNA mutation were examined, methods used included clinical evaluation, electrocardiogram, Holter recording and echocardiography. Autopsy reports on 17 deceased subjects were also reviewed. The degree of 3243A>G mutation heteroplasmy was determined using an Apa I restriction fragment analysis. Better hearing level (BEHL0.5–4 kHz) was used as a measure of the clinical severity of disease.

Results

Left ventricular hypertrophy (LVH) was diagnosed in 19 patients (56%) by echocardiography and in six controls (15%) giving an odds ratio of 7.5 (95% confidence interval; 1.74–67). The dimensions of the left ventricle suggested a concentric hypertrophy. Left ventricular systolic or diastolic dysfunction was observed in 11 patients. Holter recording revealed frequent ventricular extrasystoles (>10/h) in five patients. Patients with LVH differed significantly from those without LVH in BEHL0.5–4 kHz, whereas the contribution of age or the degree of the mutant heteroplasmy in skeletal muscle to the risk of LVH was less remarkable.

Conclusions

Structural and functional abnormalities of the heart were common in patients with 3243A>G. The risk of LVH was related to the clinical severity of the phenotype, and to a lesser degree to age, suggesting that patients presenting with any symptoms from the mutation should also be evaluated for cardiac abnormalities.  相似文献   

9.
We measured the proportion of mutant mtDNA (mutation load) in 82 primary oocytes from a woman who harbored the A3243G mtDNA mutation. The frequency distribution of mutation load indicates that random drift is the principal mechanism that determines the level of mutant mtDNA within individual oocytes.  相似文献   

10.
The mitochondrial DNA m.3243A > G mutation is well-known to cause a variety of clinical phenotypes, including diabetes, deafness, and osteoporosis. Here, we report isolation and expansion of urine-derived stem cells (USCs) from patients carrying the m.3243A > G mutation, which demonstrate bimodal heteroplasmy. USCs with high levels of m.3243A > G mutation displayed abnormal mitochondrial morphology and function, as well as elevated ATF5-dependent mitochondrial unfolded protein response (UPRmt), together with reduced Wnt/β-catenin signaling and osteogenic potentials. Knockdown of ATF5 in mutant USCs suppressed UPRmt, improved mitochondrial function, restored expression of GSK3B and WNT7B, and rescued osteogenic potentials. These results suggest that ATF5-dependent UPRmt could be a core disease mechanism underlying mitochondrial dysfunction and osteoporosis related to the m.3243A > G mutation, and therefore could be a novel putative therapeutic target for this genetic disorder.Subject terms: Mechanisms of disease, Diabetes  相似文献   

11.
12.
Maternally Inherited Diabetes and Deafness (MIDD) is a rare form of diabetes due to defects in mitochondrial DNA (mtDNA). 3243 A>G is the mutation most frequently associated with this condition, but other mtDNA variants have been linked with a diabetic phenotype suggestive of MIDD. From 1989 to 2009, we clinically diagnosed mitochondrial diabetes in 11 diabetic children. Diagnosis was based on the presence of one or more of the following criteria: 1) maculopathy; 2) hearing impairment; 3) maternal heritability of diabetes/impaired fasting glucose and/or hearing impairment and/or maculopathy in three consecutive generations (or in two generations if 2 or 3 members of a family were affected). We sequenced the mtDNA in the 11 probands, in their mothers and in 80 controls. We identified 33 diabetes-suspected mutations, 1/33 was 3243A>G. Most patients (91%) and their mothers had mutations in complex I and/or IV of the respiratory chain. We measured the activity of these two enzymes and found that they were less active in mutated patients and their mothers than in the healthy control pool. The prevalence of hearing loss (36% vs 75-98%) and macular dystrophy (54% vs 86%) was lower in our mitochondrial diabetic adolescents than reported in adults. Moreover, we found a hitherto unknown association between mitochondrial diabetes and celiac disease. In conclusion, mitochondrial diabetes should be considered a complex syndrome with several phenotypic variants. Moreover, deafness is not an essential component of the disease in children. The whole mtDNA should be screened because the 3243A>G variant is not as frequent in children as in adults. In fact, 91% of our patients were mutated in the complex I and/or IV genes. The enzymatic assay may be a useful tool with which to confirm the pathogenic significance of detected variants.  相似文献   

13.
The pathobiochemical pathways determining the wide variability in phenotypic expression of mitochondrial DNA (mtDNA) mutations are not well understood. Most pathogenic mtDNA mutations induce a general defect in mitochondrial respiration and thereby ATP synthesis. Yet phenotypic expression of the different mtDNA mutations shows large variations that are difficult to reconcile with ATP depletion as sole pathogenic factor, implying that additional mechanisms contribute to the phenotype. Here, we use DNA microarrays to identify changes in nuclear gene expression resulting from the presence of the A3243G diabetogenic mutation and from a depletion of mtDNA (rho0 cells). We find that cells respond mildly to these mitochondrial states with both general and specific changes in nuclear gene expression. This observation indicates that cells can sense the status of mtDNA. A number of genes show divergence in expression in rho0 cells compared to cells with the A3243G mutation, such as genes involved in oxidative phosphorylation. As a common response in A3243G and rho0 cells, mRNA levels for extracellular matrix genes are up-regulated, while the mRNA levels of genes involved in ubiquitin-mediated protein degradation and in ribosomal protein synthesis is down-regulated. This reduced expression is reflected at the level of cytosolic protein synthesis in both A3243G and rho0 cells. Our finding that mitochondrial dysfunction caused by different mutations affects nuclear gene expression in partially distinct ways suggests that multiple pathways link mitochondrial function to nuclear gene expression and contribute to the development of the different phenotypes in mitochondrial disease.  相似文献   

14.
We report here the characterization of a four-generation Han Chinese family with maternally transmitted diabetes mellitus. Six (two males/four females) of eight matrilineal relatives in this family exhibited diabetes. The age of onset in diabetes varies from 15 years to 33 years, with an average of 26 years. Two of affected matrilineal relatives also exhibited hearing impairment. Molecular analysis of mitochondrial DNA (mtDNA) showed the presence of heteroplasmic tRNA(Lue(UUR)) A3243G mutation, ranging from 35% to 58% of mutations in blood cells of matrilineal relatives. The levels of heteroplasmic A3243G mutation seem to be correlated with the severity and age-at-onset of diabetes in this family. Sequence analysis of the complete mitochondrial genome in this pedigree revealed the presence of the A3243G mutation and 38 other variants belonging to the Eastern Asian haplogroup M7C. However, none of other mtDNA variants are evolutionarily conserved and implicated to have significantly functional consequence. Thus, the A3243G mutation is the sole pathogenic mtDNA mutation associated with diabetes in this Chinese family.  相似文献   

15.
Diseases associated with point mutations in the mitochondrial DNA (mtDNA) are maternally inherited. We evaluated whether pre-implantation genetic diagnosis, based on polar body mutation load detection could be used to distinguish healthy from affected oocytes. Restriction Fragment Length Polymorphism (RFLP) analysis was used and validated, to determine A3243G tRNA(Leu(UUR)) mutation load in metaphase II oocytes and their respective first polar bodies. The results of this study show for the first time that the mutation load measured in the polar bodies correlates well with the mutation load in the respective oocytes. Therefore, human polar body analysis can be used as diagnostic tool to prevent transmission of mitochondrial disorders.  相似文献   

16.
We studied 42 individuals, including 8 patients with either complete or partial syndrome of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS), 8 patients with either complete or partial syndrome of myoclonic epilepsy with ragged-red fibers (MERRF) and 26 maternal family members who carried either the A3243G or A8344G mutation of mitochondrial DNA (mtDNA). Clinical manifestations and prognosis were followed up in the patients harboring the A3243G or A8344G mutation. The relationship between clinical features and proportions of mutant mtDNAs in muscle biopsies, blood cells and/or hair follicles was studied. In the 8 regularly followed patients with the A3243G mutation, 4 died within 1 month to 7 years due to status epilepticus and/or recurrent stroke-like episodes. Two patients developed marked mental deterioration and 2 remained stationary. All of the patients harboring the A8344G mutation were stable or deteriorated slightly, except for 1 patient who died due to brain herniation after putaminal hemorrhage. The A3243G and A8344G mtDNA mutations were heteroplasmic in the muscle biopsies, blood cells and hair follicles of both the probands and their maternal family members. The mean proportion of A3243G mutant mtDNA in the muscle biopsies of the patients with MELAS syndrome (68.5 ± 21.3%, range 33–92%) was significantly higher than that of the asymptomatic family members (37.1 ± 12.6%, range 0–51%). The average proportions of A8344G mutant mtDNA in the muscle biopsies (90.1 ± 3.9%, range 89–95%) and hair follicles (93.9 ± 6.4%, range 84–99%) of the patients with MERRF syndrome were also significantly higher than those of the asymptomatic family members (muscle: 40.3 ± 39.5%, range 1–80%; hair follicles: 51.0 ± 44.5%, range 0.1–82%). We concluded that measurement of the proportion of mutant mtDNA in muscle biopsies may provide useful information in the identification of symptomatic patients with mitochondrial encephalomyopathies. For patients with the A3243G mutation, the prognosis was related to status epilepticus and the number of recurrent stroke-like episodes and was much worse than for patients with the A8344G mutation of mtDNA, who had stable or slowly deteriorating clinical courses.  相似文献   

17.
Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNAVal. This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.  相似文献   

18.
We aimed to establish the population prevalence of the MELAS 3243A>G mtDNA mutation in a large Caucasian-based population (n=2954; 99% Caucasian, 57% women and mean age of 66.4 years). All participants underwent comprehensive clinical evaluation including audiologic testing. We detected the 3243A>G mutation in seven subjects using standard polymerase chain reaction/restriction fragment length polymorphism methods, establishing a population prevalence of 236/100000 (0.24%; 95% CI 0.10-0.49%); much higher than previously reported. All had mild to moderate hearing loss. Our findings indicate that subjects with the 3243A>G mtDNA mutation could be markedly under-recognised in the community.  相似文献   

19.
Using RNase protection analysis, we found a novel C to G mutation at nucleotide position 3093 of mitochondrial DNA (mtDNA) in a previously reported 35-year-old woman exhibiting clinical features of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome together with diabetes mellitus, hyperthyroidism and cardiomyopathy. The patient also had an A3243G mutation in the tRNA(Leu(UUR)) gene and a 260-base pair duplication in the D-loop of mtDNA. The fibroblasts of the patient were cultured and used for the construction of cybrids using cytoplasmic transfer of the patient's mtDNA to the mtDNA-less rho(0) cells. RNA isolated from the cybrids was subjected to RNase protection analysis, and a C3093G transversion at the 16S rRNA gene and a MELAS-associated A3243G mutation of mtDNA were detected. The novel C3093G mutation together with the A3243G transition were found in muscle biopsies, hair follicles and blood cells of this patient and also in her skin fibroblasts and cybrids. The proportion of the C3093G mutant mtDNA in muscle biopsies of the patient was 51%. In contrast, the mutation was not detected in three sons of the proband. To characterize the impact of the mtDNA mutation-associated defects on mitochondrial function, we determined the respiratory enzyme activities of the primary culture of fibroblasts established from the proband, her mother and her three sons. The proportions of mtDNA with the C3093G transversion and the A3243G transition in the fibroblasts of the proband were 45 and 58%, respectively. However, the fibroblasts of the proband's mother and children harbored lower levels of mtDNA with the A3243G mutation but did not contain the C3093G mutation. The complex I activity in the proband's fibroblasts was decreased to 47% of the control but those of the fibroblasts of the mother and three sons of the proband were not significantly changed. These findings suggest that the C3093G transversion together with the A3243G transition of mtDNA impaired the respiratory function of mitochondria and caused the atypical MELAS syndrome associated with diabetes mellitus, hyperthyroidism and cardiomyopathy in this patient.  相似文献   

20.
Mitochondrial diseases associated with mutations within mitochondrial genome are a subgroup of metabolic disorders since their common consequence is reduced metabolic efficiency caused by impaired oxidative phophorylation and shortage of ATP. Although the vast majority of mitochondrial proteins (approximately 1500) is encoded by nuclear genome, mtDNA encodes 11 subunits of respiratory chain complexes, 2 subunits of ATP synthase, 22 tRNAs and 2 rRNAs. Up to now, more than 250 pathogenic mutations have been described within mtDNA. The most common are point mutations in genes encoding mitochondrial tRNAs such as 3243A-->G and 8344T-->G that cause, respectively, MELAS (mitochondrial encephalopathy, lactic acidosis and stroke-like episodes) or MIDD (maternally-inherited diabetes and deafness) and MERRF (myoclonic epilepsy with ragged red fibres) syndromes. There have been also found mutations in genes encoding subunits of ATP synthase such as 8993T-->G substitution associated with NARP (neuropathy, ataxia and retinitis pigmentosa) syndrome. It is worth to note that mitochondrial dysfunction can also be caused by mutations within nuclear genes coding for mitochondrial proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号