首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Challenge with low doses of LPS together with D-galactosamine causes severe liver injury, resulting in lethal shock (low dose LPS-induced shock). We examined the role of LFA-1 in low dose LPS-induced shock. LFA-1(-/-) mice were more resistant to low dose LPS-induced shock/liver injury than their heterozygous littermates, although serum levels of TNF-alpha and IL-12 were higher in these mice. C57BL/6 mice were not rescued from lethal effects of LPS by depletion of NK1(+) cells, granulocytes, or macrophages, and susceptibility of NKT cell-deficient mice was comparable to that of controls. High numbers of platelets were detected in the liver of LFA-1(+/-) mice after low dose LPS challenge, whereas liver accumulation of platelets was only marginal in LFA-1(-/-) mice. Following low dose LPS challenge, serum levels of IL-10 were higher in LFA-1(-/-) mice than in LFA-1(+/-) mice, and susceptibility to low dose LPS-induced shock as well as platelet accumulation in the liver of LFA-1(-/-) mice were markedly increased by IL-10 neutralization. Serum levels of IL-10 in LFA-1(+/-) mice were only marginally affected by macrophage depletion. However, in LFA-1(-/-) mice macrophage depletion markedly reduced serum levels of IL-10, and as a corollary, susceptibility of LFA-1(-/-) mice to low dose LPS-induced shock was markedly elevated despite the fact that TNF-alpha levels were also diminished. We conclude that LFA-1 participates in LPS-induced lethal shock/liver injury by regulating IL-10 secretion from macrophages and that IL-10 plays a decisive role in resistance to shock/liver injury. Our data point to a novel role of LFA-1 in control of the proinflammatory/anti-inflammatory cytokine network.  相似文献   

2.
LFA-1 (CD11a/CD18) plays a crucial role in various inflammatory responses. In this study, we show that LFA-1(-/-) mice are far more resistant to Listeria monocytogenes infection than LFA-1(+/-) mice. Consistent with this, we found the following: 1) the numbers of granulocytes infiltrating the liver were markedly higher in LFA-1(-/-) mice than in LFA-1(+/-) mice, 2) increased antilisterial resistance in LFA-1(-/-) mice was abrogated by depletion of granulocytes, and 3) the numbers of granulocytes in peripheral blood, and the serum levels of both G-CSF and IL-17 were higher in LFA-1(-/-) mice than in LFA-1(+/-) mice. Neither spontaneous apoptosis nor survival of granulocytes from LFA-1(-/-) mice were affected by physiological concentrations of G-CSF. Our data suggest regulatory effects of LFA-1 on G-CSF and IL-17 secretion, and as a corollary on neutrophilia. Consequently, we conclude that increased resistance of LFA-1(-/-) mice to listeriosis is due to neutrophilia facilitating liver infiltration by granulocytes promptly after L. monocytogenes infection, although it is LFA-1 independent.  相似文献   

3.
Although macrophages play a central role in the pathogenesis of septic shock, NK1(+) cells have also been implicated. NK1(+) cells comprise two major populations, namely NK cells and V alpha 14(+)NKT cells. To assess the relative contributions of these NK1(+) cells to LPS-induced shock, we compared the susceptibility to LPS-induced shock of beta(2)-microglobulin (beta(2)m)(-/-) mice that are devoid of V alpha 14(+)NKT cells, but not NK cells, with that of wild-type (WT) mice. The results show that beta(2)m(-/-) mice were more susceptible to LPS-induced shock than WT mice. Serum levels of IFN-gamma following LPS challenge were significantly higher in beta(2)m(-/-) mice, and endogenous IFN-gamma neutralization or in vivo depletion of NK1(+) cells rescued beta(2)m(-/-) mice from lethal effects of LPS. Intracellular cytokine staining revealed that NK cells were major IFN-gamma producers. The J alpha 281(-/-) mice that are exclusively devoid of V alpha 14(+)NKT cells were slightly more susceptible to LPS-induced shock than heterozygous littermates. Hence, LPS-induced shock can be induced in the absence of V alpha 14(+)NKT cells and IFN-gamma from NK cells is involved in this mechanism. In WT mice, hierarchic contribution of different cell populations appears likely.  相似文献   

4.
Neutrophils are essential players in innate immune responses to bacterial infection. Despite the striking resistance of Legionella pneumophila (Lpn) to bactericidal neutrophil function, neutrophil granulocytes are important effectors in the resolution of legionellosis. Indeed, mice depleted of neutrophils were unable to clear Lpn due to a lack of the critical cytokine IFN-gamma, which is produced by NK cells. We demonstrate that this can be ascribed to a previously unappreciated role of neutrophils as major NK cell activators. In response to Lpn infection, neutrophils activate caspase-1 and produce mature IL-18, which is indispensable for the activation of NK cells. Furthermore, we show that the IL-12p70 response in Lpn-infected neutropenic mice is also severely reduced and that the Lpn-induced IFN-gamma production by NK cells is strictly dependent on IL-12. However, since dendritic cells, and not neutrophils, are the source of Lpn-induced IL-12, its paucity is a consequence of the absence of IFN-gamma produced by NK cells rather than the absence of neutrophils per se. Therefore, neutrophil-derived IL-18, in combination with dendritic cell-produced IL-12, triggers IFN-gamma synthesis in NK cells in Lpn-infected mice. We propose a novel central role for neutrophils as essential IL-18 producers and hence NK cell "helpers" in bacterial infection.  相似文献   

5.
6.
Dendritic cell (DC)-dependent activation of liver NKT cells triggered by a single i.v. injection of a low dose (10-100 ng/mouse) of alpha-galactosyl ceramide (alphaGalCer) into mice induces liver injury. This response is particularly evident in HBs-tg B6 mice that express a transgene-encoded hepatitis B surface Ag in the liver. Liver injury following alphaGalCer injection is suppressed in mice depleted of NK cells, indicating that NK cells play a role in NK T cell-initiated liver injury. In vitro, liver NKT cells provide a CD80/86-dependent signal to alphaGalCer-pulsed liver DC to release IL-12 p70 that stimulates the IFN-gamma response of NKT and NK cells. Adoptive transfer of NKT cell-activated liver DC into the liver of nontreated, normal (immunocompetent), or immunodeficient (RAG(-/-) or HBs-tg/RAG(-/-)) hosts via the portal vein elicited IFN-gamma responses of liver NK cells in situ. IFN-beta down-regulates the pathogenic IL-12/IFN-gamma cytokine cascade triggered by NKT cell/DC/NK cell interactions in the liver. Pretreating liver DC in vitro with IFN-beta suppressed their IL-12 (but not IL-10) release in response to CD40 ligation or specific (alphaGalCer-dependent) interaction with liver NKT cells and down-regulated the IFN-gamma response of the specifically activated liver NKT cells. In vivo, IFN-beta attenuated the NKT cell-triggered induction of liver immunopathology. This study identifies interacting subsets of the hepatic innate immune system (and cytokines that up- and down-regulate these interactions) activated early in immune-mediated liver pathology.  相似文献   

7.
The aryl hydrocarbon receptor (AhR) is part of a powerful signaling system that is triggered by xenobiotic agents such as polychlorinated hydrocarbons and polycyclic aromatic hydrocarbons. Although activation of the AhR by 2,3,7,8-tetrachlorodibenzo-p-dioxin or certain polycyclic aromatic hydrocarbons can lead to immunosuppression, there is also increasing evidence that the AhR regulates certain normal developmental processes. In this study, we asked whether the AhR plays a role in host resistance using murine listeriosis as an experimental system. Our data clearly demonstrate that AhR null C57BL/6J mice (AhR(-/-)) are more susceptible to listeriosis than AhR heterozygous (AhR(+/-)) littermates when inoculated i.v. with log-phase Listeria monocytogenes. AhR(-/-) mice exhibited greater numbers of CFU of L. monocytogenes in the spleen and liver, and greater histopathological changes in the liver than AhR(+/-) mice. Serum levels of IL-6, MCP-1, IFN-gamma, and TNF-alpha were comparable between L. monocytogenes-infected AhR(-/-) and AhR(+/-) mice. Increased levels of IL-12 and IL-10 were observed in L. monocytogenes-infected AhR(-/-) mice. No significant difference was found between AhR(+/-) and AhR(-/-) macrophages ex vivo with regard to their ability to ingest and inhibit intracellular growth of L. monocytogenes. Intracellular cytokine staining of CD4(+) and CD8(+) splenocytes for IFN-gamma and TNF-alpha revealed comparable T cell-mediated responses in AhR(-/-) and AhR(+/-) mice. Previously infected AhR(-/-) and AhR(+/-) mice both exhibited enhanced resistance to reinfection with L. monocytogenes. These data provide the first evidence that AhR is required for optimal resistance but is not essential for adaptive immune response to L. monocytogenes infection.  相似文献   

8.
Invariant (i) natural killer (NK) T cells are unique T lymphocytes expressing NKR-P1B/C (NK1.1), which recognize glycolipids, notably alpha-galactosylceramide (alpha-GalCer) presented by CD1d. The characteristic phenotype of these iNKT cells undergoes dramatic changes following Listeria monocytogenes infection, and interleukin (IL)-12 is involved in these alterations. Here we show that liver iNKT cells in mice are differentially influenced by the load of infection. Liver alpha-GalCer/CD1d tetramer-reactive (alpha-GalCer/CD1d(+)) T cells expressing NK1.1 became undetectable by day 2 following L. monocytogenes infection and concomitantly cells lacking NK1.1 increased regardless of the severity of infection. Whereas alpha-GalCer/CD1d(+)NK1.1(+) T cells remained virtually undetectable on day 4 following low-dose infection, considerable numbers of these cells were detected in high-dose-infected mice. Whereas numbers of IL-12 producers in the liver on day 4 post infection were comparable in low- and high-dose-infected mice without in vitro restimulation with heat-killed Listeria, those were more prominent in low-dose-infected mice than in high-dose-infected mice after restimulation despite the fact that higher numbers of macrophages and granulocytes infiltrated the liver in high-dose-infected mice than in low-dose-infected mice. Our results indicate that NK1.1 surface expression on iNKT cells is differentially modulated by the burden of infection, and suggest that a high bacterial load probably causes loss of IL-12 production.  相似文献   

9.
Distinct requirements for IFNs and STAT1 in NK cell function   总被引:9,自引:0,他引:9  
NK cell functions were examined in mice with a targeted mutation of the STAT1 gene, an essential mediator of IFN signaling. Mice deficient in STAT1 displayed impaired basal NK cytolytic activity in vitro and were unable to reject transplanted tumors in vivo, despite the presence of normal numbers of NK cells. IL-12 enhanced NK-mediated cytolysis, but poly(I:C) did not, and a similar phenotype occurred in mice lacking IFNalpha receptors. Molecules involved in activation and lytic function of NK cells (granzyme A, granzyme B, perforin, DAP10, and DAP12) were expressed at comparable levels in both wild-type and STAT1(-/-) mice, and serine esterase activity necessary for CTL function was normal, showing that the lytic machinery was intact. NK cells with normal cytolytic activity could be derived from STAT1(-/-) bone marrow progenitors in response to IL-15 in vitro, and enhanced NK lytic activity and normal levels of IFN-gamma were produced in response to IL-12 treatment in vivo. Despite these normal responses to cytokines, STAT1(-/-) mice could not reject the NK-sensitive tumor RMA-S, even following IL-12 treatment in vivo. Whereas in vitro NK cytolysis was also reduced in mice lacking both type I and type II IFN receptors, these mice resisted tumor challenge. These results demonstrate that both IFN-alpha and IFN-gamma are required to maintain NK cell function and define a STAT1-dependent but partially IFN-independent pathway required for NK-mediated antitumor activity.  相似文献   

10.
Thiazolidinediones acting as PPAR-gamma agonists are a new generation of oral antidiabetics addressing insulin resistance as a main feature of type-2 diabetes. In accordance to our results, pre-clinical studies have demonstrated that the thiazolinedione troglitazone prevents the development of insulin-dependent autoimmune type-1 diabetes. To investigate whether TGZ acts by affecting the ICAM-1/LFA-1 pathway and/or the Th1/Th2 cytokine balance in NOD mice, we analysed the IL-1beta-induced ICAM-1 expression on islet-cells and the LFA-1, CD25, IL-2, IFN-gamma, IL-4, and IL-10 expression on splenocytes. After 200 days of oral TGZ administration, islet cells from TGZ-treated NOD mice showed a reduced ICAM-1 expression in response to the pro-inflammatory cytokine IL-1beta. The expression of the ligand LFA-1 on CD4(+) and CD8(+) T-cells was comparable to that of placebo- and untreated controls. Also, the expression of Th1/Th2 cytokines was comparable in groups receiving TGZ or Placebo. Nevertheless, the investigated NOD mice segregated into IFN-gamma low- and IFN-gamma high producers as revealed by cluster analysis. Interestingly, the majority of TGZ-treated mice belonged to the cluster of IFN-gamma low producers. Thus, the prevention of autoimmune diabetes in NOD mice by TGZ seems to be associated with suppression of IL-1beta-induced ICAM-1 expression leading to a reduced vulnerability of pancreatic beta-cells during the effector stage of beta-cell destruction. In addition, IFN-gamma production was modulated, implicating that alteration of the Th1/Th2 cytokine balance might have contributed to diabetes prevention. The findings of this study suggest that TGZ exerts its effects by influencing both the beta-cells as the target of autoimmune beta-cell destruction and the T-cells as major effectors of the autoimmune process.  相似文献   

11.
IL-12 induction is critical for immune responses against many viruses and intracellular bacterial pathogens. Recent studies suggest that IL-12-secreting dendritic cells (DC) are potent Th1-inducing APC. However, controversy exists concerning the function of DC subsets. Murine studies have suggested that CD8(+) DC preferentially induce Th1 responses, whereas CD8(-) DC induce Th2 development; in this model, different DC subsets prime different responses. Alternatively, the propensity of DC subsets to prime a Th1 response could depend upon the type of initial stimulus. We used a prototypic Th1-inducing adjuvant, heat-killed Brucella abortus (HKBA) to assess stimulation of DC subsets, relationship between Ag burden and IL-12 production, and down-regulation of DC subset IL-12 production by IL-10. In this study, we show that DC were sole producers of IL-12, although most HKBA uptake was by splenic macrophages and granulocytes. More CD8(-) than CD8(+) DC produced IL-12 after HKBA challenge, whereas only CD8(+) DC produced IL-12 after injection of another Th1-promoting microbial substance, soluble Toxoplasma gondii Ags. Studies in IL-10-deficient mice revealed that IL-10 down-regulates frequency and duration of IL-12 production by both DC subsets. In the absence of IL-10, IL-12 expression is enabled in CD11c(low) cells, but not in macrophages or granulocytes. These findings support the concept of DC as the major IL-12 producers in spleens, but challenge the notion that CD8(+) and CD8(-) DC are destined to selectively induce Th1 or Th2 responses, respectively. Thus, the nature of the stimulating substance is important in determining which DC subsets are activated to produce IL-12.  相似文献   

12.
IL-12p35-deficient (IL-12p35(-/-)) mice were highly susceptible to Trypanosoma cruzi infection and succumbed during acute infection, demonstrating the crucial importance of endogenous IL-12 in resistance to experimental Chagas' disease. Delayed immune responses were observed in mutant mice, although comparable IFN-gamma and TNF-alpha blood levels as in wild-type mice were detected 2 wk postinfection. In vivo and in vitro analysis demonstrated that T cells, but not NK cells, were recruited to infected organs. Analysis of mice double deficient in the recombinase-activating gene 2 (RAG2) and IL-12p35, as well as studies involving T cell depletion, identified CD4(+) T cells as the cellular source for IL-12-independent IFN-gamma production. IL-18 was induced in IL-12p35(-/-) mice and was responsible for IFN-gamma production, as demonstrated by in vivo IL-18 neutralization studies. In conclusion, evidence is presented for an IL-12-independent IFN-gamma production in experimental Chagas' disease that is T cell and IL-18 dependent.  相似文献   

13.
Although it is known that IFN-gamma-secreting T cells are critical for control of Mycobacterium tuberculosis infection, the contribution of IFN-gamma produced by NK cells to host resistance to the pathogen is less well understood. By using T cell-deficient RAG(-/-) mice, we showed that M. tuberculosis stimulates NK cell-dependent IFN-gamma production in naive splenic cultures and in lungs of infected animals. More importantly, common cytokine receptor gamma-chain(-/-)RAG(-/-) animals deficient in NK cells, p40(-/-)RAG(-/-), or anti-IFN-gamma mAb-treated RAG(-/-) mice displayed significantly increased susceptibility to M. tuberculosis infection compared with untreated NK-sufficient RAG(-/-) controls. Studies comparing IL-12 p40- and p35-deficient RAG(-/-) mice indicated that IL-12 plays a more critical role in the induction of IFN-gamma-mediated antimycobacterial effector functions than IL-23 or other p40-containing IL-12 family members. The increased susceptibility of IL-12-deficient or anti-IFN-gamma mAb-treated RAG(-/-) mice was associated not only with elevated bacterial loads, but also with the development of granulocyte-enriched foci in lungs. This tissue response correlated with increased expression of the granulocyte chemotactic chemokines KC and MIP-2 in NK as well as other leukocyte populations. Interestingly, depletion of granulocytes further increased bacterial burdens and exacerbated pulmonary pathology in these animals, revealing a compensatory function for neutrophils in the absence of IFN-gamma. The above observations indicate that NK cell-derived IFN-gamma differentially regulates T-independent resistance and granulocyte function in M. tuberculosis infection and suggest that this response could serve as an important barrier in AIDS patients or other individuals with compromised CD4+ T cell function.  相似文献   

14.
IL-18 promotes NK cell and Th1 cell activity and may bridge innate and adaptive immune responses. Myelin oligodendrocyte glycoprotein (MOG) is a myelin component of the CNS and is a candidate autoantigen in multiple sclerosis. In the present study we show that IL-18-deficient (IL-18-/-) mice are defective in mounting autoreactive Th1 and autoantibody responses and are resistant to MOG35-55 peptide-induced autoimmune encephalomyelitis. IL-18 administration enhances the disease severity in wild-type mice and restores the ability to generate Th1 response in the IL-18-/- mice. This restoration was abrogated in NK cell-depleted mice, indicating that the action of IL-18 in promoting the generation of MOG-specific Th cells was dependent on NK cells. Furthermore, transfer of NK cells from recombinase-activating gene 1-/- mice, but not from recombinase-activating gene 1/IFN-gamma-/- mice, rescued the defective Th1 responses in IL-18-/- mice and rendered IL-18-/- mice susceptible to the induction of autoimmune encephalomyelitis. Thus, IL-18 can direct autoreactive T cells and promote autodestruction in the CNS at least in part via induction of IFN-gamma by NK cells.  相似文献   

15.
Interferon (IFN)-gamma plays an essential role in host defense against infection with Mycobacterium tuberculosis, and its synthesis is critically regulated by interleukin (IL)-12, IL-18 and the recently identified IL-23. The present study was designed to determine the roles of these cytokines in IFN-gamma-mediated host defenses against M. tuberculosis. For this purpose, we compared host protective responses in IL-12p40 and IL-18 double-knockout (DKO) mice (which lacked both IL-12/IL-18 and also IL-23) and IFN-gamma gene-disrupted (GKO) mice. DKO mice were more resistant to the infection than GKO mice, as indicated by their extended survival and reduced live colony numbers in spleen, liver and lung. IFN-gamma was detected by ELISA in liver and lung homogenates, but not in spleen and serum, and in all organs by RT-PCR in DKO mice at comparable or reduced levels to those in wild-type mice. IFN-gamma production was reduced by depletion of CD4+ T cells, but not of natural killer (NK), NKT, gammadeltaT and dendritic cells. Neutralization of IFN-gamma or TNF-alpha by specific monoclonal antibodies (mAbs) significantly shortened the survival time of the infected DKO mice. Furthermore, anti-TNF-alpha mAb partially attenuated IFN-gamma synthesis in the liver of these mice. Finally, the expression level of inducible nitric oxide synthase (iNOS) mRNA in the spleen, liver and lung was considerable in DKO mice but only marginal or undetected in GKO mice. Our results indicate the presence of IL-12-, IL-18- and IL-23-independent host protective responses against mycobacterial infection mediated by IFN-gamma, which was secreted from helper T cells.  相似文献   

16.
NK T cells are an unusual subset of T lymphocytes. They express NK1. 1 Ag, are CD1 restricted, and highly skewed toward Vbeta8 for their TCR usage. They express the unique potential to produce large amounts of IL-4 and IFN-gamma immediately upon TCR cross-linking. We previously showed in the thymus that the NK T subset requires IL-7 for its functional maturation. In this study, we analyzed whether IL-7 was capable of regulating the production of IL-4 and IFN-gamma by the discrete NK T subset of CD4+ cells in the periphery. Two hours after injection of IL-7 into mice, or after a 4-h exposure to IL-7 in vitro, IL-4 production by CD4+ cells in response to anti-TCR-alphabeta is markedly increased. In contrast, IFN-gamma production remains essentially unchanged. In beta2-microglobulin- and CD1-deficient mice, which lack NK T cells, IL-7 treatment does not reestablish normal levels of IL-4 by CD4+ T cells. Moreover, we observe that in wild-type mice, the memory phenotype (CD62L-CD44+) CD4+ T cells responsible for IL-4 production are not only NK1.1+ cells, but also NK1.1- cells. This NK1.1-IL-4-producing subset shares three important characteristics with NK T cells: 1) Vbeta8 skewing; 2) CD1 restriction as demonstrated by their absence in CD1-deficient mice and relative overexpression in MHC II null mice; 3) sensitivity to IL-7 in terms of IL-4 production. In conclusion, the present study provides evidence that CD4+MHC class I-like-dependent T cell populations include not only NK1.1+ cells, but also NK1.1- cells, and that these two subsets are biased toward IL-4 production by IL-7.  相似文献   

17.
The regulatory roles of Th1 and Th2 cells in immune protection against Helicobacter infection are not clearly understood. In this study, we report that a primary H. pylori infection can be established in the absence of IL-12 or IFN-gamma. However, IFN-gamma, but not IL-12, was involved in the development of gastritis because IFN-gamma(-/-) (GKO) mice exhibited significantly less inflammation as compared with IL-12(-/-) or wild-type (WT) mice. Both IL-12(-/-) and GKO mice failed to develop protection following oral immunization with H. pylori lysate and cholera toxin adjuvant. By contrast, Th2-deficient, IL-4(-/-), and WT mice were equally well protected. Mucosal immunization in the presence of coadministered rIL-12 in WT mice increased Ag-specific IFN-gamma-producing T cells by 5-fold and gave an additional 4-fold reduction in colonizing bacteria, confirming a key role of Th1 cells in protection. Importantly, only protected IL-4(-/-) and WT mice demonstrated substantial influx of CD4(+) T cells in the gastric mucosa. The extent of inflammation in challenged IL-12(-/-) and GKO mice was much reduced compared with that in WT mice, indicating that IFN-gamma/Th1 cells also play a major role in postimmunization gastritis. Of note, postimmunization gastritis in IL-4(-/-) mice was significantly milder than WT mice, despite a similar level of protection, indicating that immune protection is not directly linked to the degree of gastric inflammation. Only protected mice had T cells that produced high levels of IFN-gamma to recall Ag, whereas both protected and unprotected mice produced high levels of IL-13. We conclude that IL-12 and Th1 responses are crucial for H. pylori-specific protective immunity.  相似文献   

18.
The aim of this study was to examine the contribution of IL-18 in host defense against infection caused by Cryptococcus neoformans in mice with defective IL-12 production. Experiments were conducted in mice with a targeted disruption of the gene for IL-12p40 subunit (IL-12p40-/- mice). In these mice, host resistance was impaired, as shown by increased number of organisms in both lungs and brains, compared with control mice. Serum IFN-gamma was still detected in these mice at a considerable level (20-30% of that in control mice). The host resistance was moderately impaired in IL-12p40-/- mice compared with IFN-gamma-/- mice. Neutralizing anti-IFN-gamma mAb further increased the lung burdens of organisms. In addition, treatment with neutralizing anti-IL-18 Ab almost completely abrogated the production of IFN-gamma and also impaired the host resistance. Host resistance in IL-12p40-/- IL-18-/- mice was more profoundly impaired than in IL-12p40-/- mice. Administration of IL-12 as well as IL-18 increased the serum levels of IFN-gamma and significantly restored the reduced host resistance. Spleen cells obtained from infected IL-12p40-/- mice did not produce any IFN-gamma upon restimulation with the same organisms, while those from infected and IL-12-treated mice produced IFN-gamma. In contrast, IL-18 did not show such effect. Finally, depletion of NK cells by anti-asialo GM1 Ab mostly abrogated the residual production of IFN-gamma in IL-12p40-/- mice. Our results indicate that IL-18 contributes to host resistance to cryptococcal infection through the induction of IFN-gamma production by NK cells, but not through the development of Th1 cells, under the condition in which IL-12 synthesis is deficient.  相似文献   

19.
Hosts after severe burn injury are known to have a defect in the Th1 immune response and are susceptible to bacterial infections. We herein show that liver NK cells are potent IFN-gamma producers early after burn injury. However, when mice were injected with LPS 24 h after burn injury, IFN-gamma production from liver mononuclear cells (MNC; which we previously showed to be NK cells) was suppressed, and the serum IFN-gamma concentration did not increase, while serum IL-10 conversely increased compared with control mice. Interestingly, a single injection of IL-18 simultaneously with LPS greatly restored the serum IFN-gamma concentration in mice with burn injury and also increased IFN-gamma production from liver MNC. Nevertheless, a single IL-18 injection into mice simultaneously with LPS was no longer effective in the restoration of serum IFN-gamma and IFN-gamma production from the liver MNC at 7 days after burn injury, when mice were considered to be the most immunocompromised. However, IL-18 injections into mice on alternate days beginning 1 day after burn injury strongly up-regulated LPS-induced serum IFN-gamma levels and IFN-gamma production from liver and spleen MNC of mice 7 days after burn injury and down-regulated serum IL-10. Furthermore, similar IL-18 therapy up-regulated serum IFN-gamma levels in mice with experimental bacterial peritonitis 7 days after burn injury and greatly decreased mouse mortality. Thus, IL-18 therapy restores the Th1 response and may decrease the susceptibility to bacterial infection in mice with burn injury.  相似文献   

20.
IFN-alpha/beta-mediated functions promote production of MIP-1alpha (or CCL3) by mediating the recruitment of MIP-1alpha-producing macrophages to the liver during early infection with murine CMV. These responses are essential for induction of NK cell inflammation and IFN-gamma delivery to support effective control of local infection. Nevertheless, it remains to be established if additional chemokine functions are regulated by IFN-alpha/beta and/or play intermediary roles in supporting macrophage trafficking. The chemokine MCP-1 (or CCL2) plays a distinctive role in the recruitment of macrophages by predominantly stimulating the CCR2 chemokine receptor. Here, we examine the roles of MCP-1 and CCR2 during murine CMV infection in liver. MCP-1 production preceded that of MIP-1alpha during infection and was dependent on IFN-alpha/beta effects for induction. Resident F4/80(+) liver leukocytes were identified as primary IFN-alpha/beta responders and major producers of MCP-1. Moreover, MCP-1 deficiency was associated with a dramatic reduction in the accumulation of macrophages and NK cells, as well as decreased production of MIP-1alpha and IFN-gamma in liver. These responses were also markedly impaired in mice with a targeted disruption of CCR2. Furthermore, MCP-1- and CCR2-deficient mice exhibited increased viral titers and elevated expression of the liver enzyme alanine aminotransferase in serum. These mice also had widespread virus-induced liver pathology and succumbed to infection. Collectively, these results establish MCP-1 and CCR2 interactions as factors promoting early liver inflammatory responses and define a mechanism for innate cytokines in regulation of chemokine functions critical for effective localized antiviral defenses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号