首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phorbol esters and 1,2-diacylglycerols have been used interchangeably to study protein kinase C action. This laboratory first suggested that 1,2-diacylglycerols may also act independent of protein kinase C using protein kinase C-"down-modulated" cells (Kolesnick, R. N., and Paley, A. E. (1987) J. Biol. Chem. 262, 9204-9210). Unfortunately, down-modulation was never complete. The present studies establish an in vitro system of enzyme translocation to resolve this issue. Choline phosphate cytidylyltransferase (EC 2.7.7.15), the regulatory enzyme for phosphatidylcholine biosynthesis, was utilized. Cytidylyltransferase translocation from cytosol to membranes mediates phorbol ester-induced phosphatidylcholine synthesis in GH3 pituitary cells. In the present studies, 1,2-diacylglycerols similarly induced phosphatidylcholine synthesis and cytidylyltransferase translocation. 1,2-Diacylglycerol-induced phosphatidylcholine synthesis, however, was not concentration-dependent but proportional to the moles of 1,2-diacylglycerol added per cell, i.e. subject to surface dilution. For instance, at constant cell number (1.67 x 10(6)/sample) and 1,2-dioctanoylglycerol concentration (diC8; 20 micrograms/ml), 32Pi incorporation into phosphatidylcholine varied from 150 to 350% above control as the incubation volume increased from 0.3 to 1.2 ml. Hence, the effective diC8 concentrations 0.5-30 micrograms/ml are preferably referred to as doses and reported as 0.25-15 nmol/10(6) cells. These doses increased cellular 1,2-diacylglycerol levels within a few fold of basal (374 pmol/10(6) cells). In vitro, diC8 also induced translocation of purified cytidylyltransferase devoid of protein kinase C to microsomes. Translocation was again subject to surface dilution. Translocation occurred with the same ratio of diC8 to microsomal membrane as phosphatidylcholine synthesis in intact cells (1-10 nmol of diC8/10(6) cell membranes). Despite stimulating cytidylyltransferase translocation in intact cells, phorbol esters failed to stimulate translocation in vitro. Hence, 1,2-diacylglycerols are not always interchangeable with phorbol esters and at physiologic levels may stimulate enzyme translocation by an alternative mechanism to protein kinase C.  相似文献   

2.
It has been suggested that sphingoid bases may serve as physiologic inhibitors of protein kinase C. Because 1,2-diacylglycerols, but not phorbol esters, enhance sphingomyelin degradation via a sphingomyelinase in GH3 pituitary cells (Kolesnick, R. N. (1987) J. Biol. Chem. 262, 16759-16762), the effects of phorbol esters, 1,2-diacylglycerols, and sphingomyelinase on protein kinase C activation were assessed. Under basal conditions, the inactive cytosolic form of protein kinase C predominated. 1,2-Diacylglycerols stimulated transient protein kinase C redistribution to the membrane. 1,2-Dioctanoylglycerol (200 micrograms/ml) reduced cytosolic protein kinase C activity to 67% of control from 72 to 48 pmol.min-1.10(6) cells-1 and enhanced membrane-bound activity to 430% of control from 6 to 25 pmol.min-1.10(6) cells-1 after 4 min of stimulation. Thereafter, protein kinase C activity returned to the cytosol. In contrast, the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulated redistribution to the membrane without return to the cytosol. Exogenous sphingomyelinase reduced membrane-bound protein kinase C activity to 30% of control, yet did not alter cytosolic activity. Sphingomyelinase, added after phorbol ester-induced redistribution was completed, restored activity to the cytosol. In these studies, TPA (10(-8) M) reduced cytosolic activity to 62% of control and elevated membrane-bound protein kinase C activity to 650% of control. Sphingomyelinase restored cytosolic activity to 84% of control and reduced membrane-bound activity to 297% of control. Similarly, the free sphingoid bases, sphingosine, sphinganine, and phytosphingosine, reversed phorbol ester-induced protein kinase C redistribution. Since 1,2-diacylglycerols activate a sphingomyelinase and sphingomyelinase action can reverse protein kinase C activation, these studies suggest that a pathway involving a sphingomyelinase might comprise a physiologic negative effector system for protein kinase C. Further, the failure of phorbol esters to activate this system might account for some differences between these agents.  相似文献   

3.
Previous studies showed that phorbol esters and thyrotropin-releasing hormone (TRH) stimulated phosphatidylcholine synthesis via protein kinase C in GH3 pituitary cells [Kolesnick (1987) J. Biol. Chem. 262, 14525-14530]. In contrast, 1,2-diacylglycerol-stimulated phosphatidylcholine synthesis appeared independent of protein kinase C. The present studies compare phosphatidylcholine synthesis stimulated by these agents with inhibition via the cyclic AMP system. The potent phorbol ester phorbol 12-myristate 13-acetate (PMA, 10 nM) increased [32P]Pi incorporation into phosphatidylcholine at 30 min to 159 +/- 6% of control. The adenylate cyclase activator cholera toxin (CT; 10 nM) and the cyclic AMP analogue dibutyryl cyclic AMP (1 mM) abolished this effect. CT similarly abolished TRH-induced phosphatidylcholine, but not phosphatidylinositol, synthesis. This is the first report of inhibiton of receptor-mediated phosphatidylcholine synthesis by the cyclic AMP system. The 1,2-diacylglycerol 1,2-dioctanoylglycerol (diC8) also stimulated concentration-dependent phosphatidylcholine synthesis. DiC8 (3 micrograms/ml) induced an effect quantitatively similar to that of maximal concentrations of PMA and TRH, whereas a maximal diC8 concentration (30 micrograms/ml) stimulated an effect 3-4-fold greater than these other agents. CT decreased the effect of diC8 (3 micrograms/ml) by 80%. Higher diC8 concentrations overcame the CT inhibition. Similar results were obtained with dibutyryl cyclic AMP. Additional differences were found between low and high concentrations of diC8. Low concentrations of diC8 failed to induce additive phosphatidylcholine synthesis with maximal concentrations of PMA, whereas high concentrations were additive. Hence, low concentrations of 1,2-diacylglycerols appear to be regulated similarly to phorbol esters, and higher concentrations appear to act via a pathway unavailable to phorbol esters.  相似文献   

4.
5.
Exposure of MCF-7 human breast cancer cells to phorbol esters such as 12-0-tetradecanoylphorbol-13-acetate (TPA) results in a dose-dependent inhibition of cell proliferation. One of the earliest biochemical events induced by TPA is the translocation of protein kinase C from the cytosolic to the particulate compartment. We have investigated the effects of permeant diacylglycerol 1,2-dioctanoyl-glycerol (diC8) on both protein kinase C activity and MCF-7 cell proliferation. DiC8 induces a discrete but significant translocation of protein kinase C within the first minutes of MCF-7 cell treatment (26 +/- 6%, mean +/- SD of 5 different experiments, upon 5 min incubation in the presence of 43 micrograms/ml diC8). However, this effect is only transient as the enzymatic activity returns to the control value after 60 min. DiC8 mimics the effect of TPA on MCF-7 cell proliferation. The dose-response curves for both protein kinase C translocation and cell growth inhibition show that diC8 exerts its effects on both parameters in the same range of concentrations, despite some discrepancies at the lowest doses. We also report that long-term treatment of the cells with diC8 does not lead to the protein kinase C disappearance observed during prolonged exposure to TPA. All together, our results reinforce the hypothesis of a negative modulatory role of protein kinase C in MCF-7 cell proliferation and suggest that the enzyme translocation but not its down-regulation could be a pre-requisite in the biological cell response.  相似文献   

6.
Prior studies demonstrated that 1,2-diacylglycerols stimulated degradation of the choline-containing phospholipids, phosphatidylcholine and sphingomyelin, in GH3 pituitary cells by a phospholipase A2 and a sphingomyelinase, respectively (Kolesnick, R. N. (1987) J. Biol. Chem. 262, 16759-16762). The present studies demonstrate that the phenothiazine trifluoperazine also stimulates degradation of these phospholipids. Trifluoperazine (25 microM) reduced phosphatidylcholine and sphingomyelin levels to 81 and 58% of control, respectively, after 30 min in cells labeled for 48 h with [3H] choline. Choline-containing metabolites were released specifically into the cytosolic fraction. The level of cytosolic phosphocholine, but not choline or CDP-choline, increased to 150% of control. These events were not mediated by inhibition of phosphatidylcholine synthesis. The level of 1,2-diacylglycerols, but not lysophosphatidylcholine or glycerol-3-phosphocholine, also increased. These data are most consistent with phosphatidylcholine degradation via a phospholipase C. Trifluoperazine-stimulated sphingomyelin degradation was accompanied by quantitative generation of ceramides consistent with activation of a sphingomyelinase. In contrast to trifluoperazine, choline-containing metabolites were released into the medium during stimulation by the 1,2-diacylglycerol 1,2-dioctanoyl-glycerol. Although both trifluoperazine and 1,2-dioctanoylglycerol increased ceramide levels, only 1,2-dioctanoylglycerol increased the sphingoid base level from 24 to 43 pmol/10(6) cells. Hence, trifluoperazine appears to deplete an intracellular pool of phosphatidylcholine and sphingomyelin by a different mechanism than 1,2-diacylglycerols. This is the first report of phenothiazine-induced degradation of choline-containing phospholipids.  相似文献   

7.
Summary The effect of a reduction in protein kinase C activity on the metabolism of exogenous [3H]diC8 by freshly isolated smooth muscle cells from rabbit aorta and cultured A10 smooth muscle cells was determined. The metabolism of [3H]diC8 by both smooth muscle cell preparations was predominantly by hydrolysis to yield monoC8 and glycerol (lipase pathway); very little radioactivity was incorporated into phospholipids. Diacylglycerol lipase activity measured in vitro with A10 cell homogenates was much greater than diacylglycerol kinase activity. The addition of the protein kinase C inhibitor H-7 to incubations of isolated aortic smooth muscle cells and cultured A10 cells had no significant effect on the metabolism of [3H]diC8. Protein kinase C activity in cultured A10 cells preincubated for 20 h with a phorbol ester was reduced to 14% of control as a consequence of down-regulation, but diC8 metabolism was not changed. Therefore, protein kinase C does not regulate the metabolism of diacylglycerols in aortic smooth muscle cells.Abbreviations IP3 inositol 1,4,5-trisphosphate - DG diacylglycerol - MG monoacylglycerol - PL phospholipid(s) - diC8 dioctanoylglycerol - H-7 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride - monoC8 monooctanoylglycerol - PS phosphatidylserine - PDBu phorbol 12,13-dibutyrate  相似文献   

8.
Phorbol diesters have been reported to stimulate the Na+/H+ antiport of a variety of cells including sea urchin eggs. Since stimulation of the Na+/H+ antiport is necessary for metabolic derepression during fertilization and protein kinase C is a target of phorbol diesters, enhanced Na+/H+ exchange during fertilization may be a result of protein kinase C activity. Protein kinase C is probably physiologically activated by diacylglycerols, which are derived from hydrolysis of phosphatidylinositol. Treatment of sea urchin eggs with 1,2-diacylglycerols was found to stimulate the Na+/H+ antiport. The 1,3-isomers were without effect. Further, the effects of 1,2-diacylglycerol and phorbol diester are not additive with respect to Na+/H+ exchange. While a direct participation of protein kinase C activity during fertilization remains to be demonstrated, these data support the hypothesis that protein kinase C activity plays a role in fertilization. However, the cytotoxic effect of protein kinase C activators suggests effects associated with their pleiotropic nature.  相似文献   

9.
Binding of chemoattractants to receptors on human polymorphonuclear leukocytes (PMN) stimulates the phosphodiesteric cleavage of phosphatidylinositol 4,5-bisphosphate to produce inositol 1,4,5-trisphosphate and 1,2-diacylglycerols. To investigate the possible second messenger function of diacylglycerols in PMN activation, we tested the ability of a series of synthetic sn 1,2-diacylglycerols, known to stimulate protein kinase C in other systems, to promote superoxide anion release, oxygen consumption, lysosomal enzyme secretion, and chemotaxis. None of the diacylglycerols initiated the chemotactic migration of PMN. Several of the diacylglycerols however, were, active in stimulating superoxide anion release and lysozyme secretion, with dioctanoylglycerol (diC8) being the most potent. Unexpectedly, didecanoylglycerol (diC10) induced lysosomal enzyme secretion, but failed to stimulate superoxide production or oxygen consumption. All other biologically active diacylglycerols tested displayed similar EC50 for stimulating lysozyme secretion and superoxide production. The ability of the diacylglycerols to compete for phorbol dibutyrate (PDBu) binding in intact PMN suggested a mechanism for the divergent biological activity of diC10. Although the compounds that stimulated both superoxide production and lysosomal enzyme secretion competed for essentially all [3H]PDBu binding from its receptor, diC10, which only stimulated secretion, competed for 45% of the bound [3H]PDBu. Thus diacylglycerols can selectively activate certain functions of leukocyte chemoattractant receptor. The data suggest that a discrete pool of protein kinase C may mediate activation of the respiratory burst in PMN.  相似文献   

10.
Prior studies demonstrated that conversion of sphingomyelin to ceramide via sphingomyelinase action resulted in the generation of free sphingoid bases and inactivation of protein kinase C in human leukemia (HL-60) cells (Kolesnick, R. N. (1989) J. Biol. Chem. 264, 7617-7623). The present studies define the novel phospholipid ceramide 1-phosphate in these cells and present evidence for formation of this compound by preferential utilization of ceramide derived from spingomyelin. A ceramide 1-phosphate standard, prepared enzymatically via diacylglycerol kinase, was utilized for localization. In cells labeled to equilibrium with 32Pi to label the head group of the molecule, the basal ceramide 1-phosphate level was 30 +/- 2 pmol/10(6) cells. Generation of ceramide via the use of exogenous sphingomyelinase resulted in time- and concentration-dependent formation of ceramide 1-phosphate. As little as 3.8 x 10(-5) units/ml was effective and a 3-fold increase was observed with a maximal concentration of 3.8 x 10(-2) units/ml; ED50 approximately 2 x 10(-4) units/ml. This effect was observed by 5 min and maximal at 30 min. Similarly, in cells labeled with [3H]serine to probe the sphingoid base backbone, the basal level of ceramide 1-phosphate was 39 +/- 5 pmol/10(6) and increased 2.5-fold with sphingomyelinase; ED 50 approximately 5 x 10(-5) units/ml. To determine the source of the phosphate moiety, studies were performed with cells short term labeled with 32Pi and resuspended in medium without radiolabel. Under these conditions, sphingomyelin was virtually unlabeled. Nevertheless, sphingomyelin (3.8 x 10(-2) units/ml) induced a 12-fold increase in radiolabel incorporation, suggesting ceramide 1-phosphate formation occurred via ceramide phosphorylation. This event appeared specific for ceramide derived from sphingomyelin since ceramide from glycosphingolipids was not converted to ceramide 1-phosphate. In sum, these studies demonstrate the novel phospholipid ceramide 1-phosphate in HL-60 cells and suggest the possibility that a path exists from sphingomyelin to ceramide 1-phosphate via the phosphorylation of ceramide.  相似文献   

11.
Antibodies to surface immunoglobulins activate inositol phospholipid hydrolysis in B-lymphocytes, but very little is known concerning their effects on cAMP levels. In other cells, products from the hydrolysis of phosphatidylinositol 4,5-bisphosphate can increase and/or potentiate cAMP accumulation. In this study we have examined whether goat anti-mouse IgM (mu-chain-specific) stimulates and/or potentiates increases in the cAMP levels of splenocytes from athymic nude mice. Goat anti-mouse IgM, by itself, stimulated a 60% increase in cAMP within 2 min. Pretreating the cell suspensions at 37 degrees C with anti-IgM produced opposite effects on the forskolin- and prostaglandin E1 (PGE1)-induced increase in cAMP. Anti-IgM (25 micrograms/ml) potentiated the rise in cAMP induced by 100 microM forskolin 76%, but it decreased the response to 50 nM PGE1 by 30%. Direct activation of protein kinase C (Ca2+/phospholipid-dependent enzyme) by 12-O-tetradecanoylphorbol 13-acetate and/or sn-1,2-dioctanoylglycerol resulted in a similar pattern of responses. A 3-min preincubation with 97 nM 12-O-tetradecanoylphorbol 13-acetate potentiated the forskolin-induced response from 1.7 +/- 0.1 to 4.3 +/- 0.6 pmol of cAMP/10(6) cells but reduced the PGE1 response from 0.98 +/- 0.06 to 0.51 +/- 0.03 pmol of cAMP/10(6) cells. Similarly, preincubating the cells for 3 min with 5 microM sn-1,2-dioctanoylglycerol increased the forskolin response from 1.7 +/- 0.1 to 5.1 +/- 0.2 pmol of cAMP/10(6) cells but reduced the response to PGE1 from 1.15 +/- 0.03 to 0.75 +/- 0.04 pmol of cAMP/10(6) cells. Thus, activation of protein kinase C by hydrolysis products of inositol phospholipids, 12-O-tetradecanoylphorbol 13-acetate, or exogenous diacylglycerols modified adenylate cyclase itself and sites upstream of adenylate cyclase such as the receptor or G proteins coupling the receptor to the cyclase. Furthermore, modification of the PGE1 response by anti-IgM provides a mechanism by which antigen can differentially regulate T- and B-cells responding to macrophage-produced prostaglandins during an immune response.  相似文献   

12.
It has been found that 1,2- but not 1,3-diacylglycerols stimulated phosphorylation of the insulin receptor of cultured human monocyte-like (U-937) and lymphoblastoid (IM-9) cells both in the intact- and broken-cell systems. The stimulation of the receptor's beta-subunit phosphorylation was dose-dependent, with optimal effect at 100 micrograms/ml of diacylglycerol. The effects of insulin and 1,2-diacylglycerols on the phosphorylation of partially purified insulin receptors were additive. Phosphoamino acid analysis showed a major effect of diacylglycerols on phosphorylation of tyrosine residues. The diacylglycerols also stimulated tyrosine kinase activity of the partially purified U-937 and IM-9 insulin receptors 2.5-3.5-fold when measured by phosphorylation of an exogenous substrate, poly(Glu80Tyr20) in the absence of any added insulin, calcium or phospholipid. Since this diacylglycerol effect could not be reproduced under conditions optimal for protein kinase C activation and the purified protein kinase C did not stimulate phosphorylation of the beta-subunit of the insulin receptor in this system, it is unlikely that the diacylglycerol effect was mediated by protein kinase C. Since these exogenous 1,2-diacylglycerols at the same high concentration also inhibited 125I-insulin binding to the insulin receptor of the intact U-937 and IM-9 cells, diacylglycerols could modulate the function of the insulin receptor and insulin action in human mononuclear cells.  相似文献   

13.
In osteoblast-like MC3T3-E1 cells, we have recently reported that sphingosine 1-phosphate among sphingomyelin metabolites acts as a second messenger for tumor necrosis factor-alpha (TNF)-induced interleukin-6 (IL-6) synthesis. In the present study, we investigated the effect of extracellular sphingomyelinase on IL-6 synthesis in MC3T3-E1 cells. Sphingomyelinase stimulated IL-6 synthesis in a time-dependent manner for up to 24 h. This stimulative effect was dose dependent in the range between 1 and 300 mU/ml. Calphostin C, a highly and potent inhibitor of protein kinase C, enhanced sphingomyelinase-induced IL-6 synthesis. DL-Threo-dihydrosphingosine, an inhibitor of sphingosine kinase, significantly inhibited the IL-6 synthesis induced by sphingomyelinase. Sphingomyelinase markedly elicited sphingomyelin hydrolysis. In addition, the effect of a combination of sphingomyelinase and TNF on IL-6 synthesis was synergistic. These results strongly suggest that extracellular sphingomyelinase induces sphingomyelin hydrolysis in osteoblasts, resulting in IL-6 synthesis, and that protein kinase C acts as a negative controller of the IL-6 synthesis.  相似文献   

14.
15.
The influence of diacylglycerols, which are physiological activators of protein kinase C, on the production of tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor type 1 (PAI-1) by human umbilical vein endothelial cells (HUVEC) was studied in order to gain insight into the regulation of fibrinolysis by these cells. 1,2-dioctanoyl-sn-glycerol (diC8) stimulated tPA production in a dose- and time-dependent manner. The tPA antigen in cell supernatants increased from 0.9 ng/10(6) cells in unstimulated cells to 12.4 ng (10(6) cells after incubation with 400 microM diC8 for 24 hours. In contrast, PAI-1 production was not influenced by diC8, whereas phorbol 12-myristate 13-acetate (PMA) or thrombin stimulated both, tPA and PAI-1 production by HUVEC. Staurosporine and H7, which are inhibitors of protein kinase C, inhibited tPA synthesis by HUVEC. The degree of inhibition was dependent on the agonist used. While diC8-induced tPA production was inhibited to more than 80% by H7 (10 microM) and staurosporine (10 nM), higher doses of inhibitors were required to inhibit thrombin- and PMA-induced tPA production. Thrombin-induced PAI-1 production was inhibited to more than 80% by H7 (10 microM) and to about 50% by staurosporine, whereas PMA-induced PAI-1 production was not inhibited by staurosporine, and only to about 50% by higher doses of H7 (30 microM). These data suggest that activation of protein kinase C is a common intracellular trigger mechanism for the induction of tPA synthesis by HUVEC. Protein kinase C is most likely also involved in the regulation of PAI-1 synthesis by HUVEC.  相似文献   

16.
The phospholipid, sn-1,2-diacylglycerol, and calcium dependencies of rat brain protein kinase C were investigated with a mixed micellar assay (Hannun, Y., Loomis, C., and Bell, R.M. (1985) J. Biol. Chem. 260, 10039-10043). Protein kinase C activity was independent of the number of Triton X-100, phosphatidylserine (PS), and sn-1,2-dioleoylglycerol (diC18:1) mixed micelles. Activation was strongly dependent on the mole per cent of PS and diC18:1. Activity of protein kinase C was dependent on PS, diC18:1, and calcium in mixed micelles prepared from detergents other than Triton X-100. This is consistent with the micelle providing an inert surface into which the lipid cofactors partition. Molecular sieve chromatography provided direct evidence for the homogeneity of Triton X-100, PS, and diC18:1 mixed micelles. Mixing studies and surface dilution studies indicated that PS and diC18:1 rapidly equilibrate among the mixed micelles. At saturating calcium, the diC18:1 dependence was strongly dependent on the mole per cent PS present. At 10 mol % PS, 0.25 mol % diC18:1 gave maximal activity whereas 6 mol % PS and 6 mol % diC18:1 did not give maximal activity. diC18:1 dependencies were hyperbolic at all PS levels tested. The data support the conclusion that a single molecule of diC18:1/micelle is sufficient to activate monomeric protein kinase C. The mole per cent PS required for maximal activation was reduced markedly as the mole per cent diC18:1 increased. Under all conditions tested, the PS dependence of protein kinase C activation lagged until greater than 3 mol % PS was present. Then activation occurred in a cooperative manner with Hill numbers near 4. These data indicate that 4 or more molecules of PS are required to activate monomeric protein kinase C. PS was the most effective of all the phospholipids tested in the mixed micelle assay. diC18:1 was found to modulate the amount of calcium required for maximal activity. As the level of Ca2+ increased, the mole per cent PS required reached a limiting value of 3 mol %. A number of sn-1,2-diacylglycerols containing short chain fatty acids activated protein kinase C in a saturable manner in mixed micelles. The data are discussed in relation to a model for protein kinase activation.  相似文献   

17.
Cross-linking of membrane IgM (mIgM) on both normal resting B cells and on the murine B cell lymphoma WEHI-231 activates the phosphoinositide signal transduction pathway. The initial event in this pathway is the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdInsP2), which results in the generation of two second-messengers: inositol trisphosphate (InsP3), which can cause the release of Ca2+ from intracellular stores, and diacylglycerol (DG), which activates protein kinase C. In examining the effects of exogenous activation of protein kinase C on WEHI-231 cells, we found that phorbol esters blocked some of the biologic effects of anti-IgM on WEHI-231 cells. The mechanism of this effect was investigated. Phorbol ester treatment of WEHI-231 cells blocked the ability of anti-IgM to stimulate production of inositol phosphates and accumulation of phosphatidic acid, the phosphorylated product of DG. Phorbol esters also blocked the ability of anti-IgM to cause an increase in intracellular Ca2+. Thus, it is clear that phorbol esters block anti-IgM-stimulated PtdInsP2 hydrolysis in WEHI-231 cells. In addition, a synthetic DG, dioctanoylglycerol (diC8), also blocked anti-IgM-stimulated inositol phosphate production and the anti-IgM-stimulated rise in cytoplasmic Ca2+. The ability of phorbol esters and diC8 to block mIgM-mediated signaling may reflect a feedback inhibition mechanism by which activated protein kinase C limits the magnitude and duration of receptor signaling.  相似文献   

18.
Prior studies showed that sphingomyelinase action and the free sphingoid bases inhibited protein kinase C (Kolesnick, R. N., and Clegg, S. (1988) J. Biol. Chem. 263, 6534-6537). The present studies investigated whether sphingomyelinase action also inhibited a biologic process mediated via protein kinase C, phorbol ester-induced differentiation of HL-60 promyelocytic cells into macrophages. The potent phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) stimulated time- and concentration-dependent conversion of HL-60 cells into macrophages, ED50 congruent to 5 x 10(-10) M. Differentiation involved growth inhibition, adherence of the suspended cells to tissue culture plastic, morphologic changes, and development of specific enzymatic markers. Sphingomyelinase, which increased the level of sphingoid bases and inactivated protein kinase C, prevented this event. In control incubations, cell number increased 2.10-fold over 24 h, and 2 +/- 1% of the cells were adherent. In incubations with TPA (0.5 nM), cell number increased only 1.75-fold, and 30% were adherent. Sphingomyelinase (3.8 x 10(-5) unit/ml) restored growth to incubations containing TPA to 2.02-fold and reduced adherence to 15%. Sphingomyelinase (3.8 x 10(-2) unit/ml) also restored growth partially and reduced adherence to a maximal concentration of TPA (3 nM). Similar results were obtained with the sphingoid base sphingosine (3-4.5 microM). Sphingomyelinase antagonized the morphologic changes associated with conversion to the macrophage phenotype. Untreated HL-60 cells presented typical promyelocytic morphology with large nuclei, little cytoplasm, and uniformity of nuclear and cell shape. TPA induced a larger cell population with abundant cytoplasm and unusual shape. Sphingomyelinase prevented these changes. Sphingomyelinase blocked TPA-induced increases in the macrophage marker enzymes, acid phosphatase and alpha-naphthyl acetate esterase. These studies indicate that the action of a sphingomyelinase, like the sphingoid bases, blocks phorbol ester-induced differentiation of HL-60 cells into macrophages and provides further support for the concept that sphingomyelinase action may be sufficient to comprise a physiologically relevant inhibitory pathway for protein kinase C.  相似文献   

19.
Sphingosine inhibited protein kinase C activity and phorbol dibutyrate binding. When the mechanism of inhibition of activity and phorbol dibutyrate binding was investigated in vitro using Triton X-100 mixed micellar methods, sphingosine inhibition was subject to surface dilution; 50% inhibition occurred when sphingosine was equimolar with sn-1,2-dioleoylglycerol (diC18:1) or 40% of the phosphatidylserine (PS) present. Sphingosine inhibition was modulated by Ca2+ and by the mole percent of diC18:1 and PS present. Sphingosine was a competitive inhibitor with respect to diC18:1, phorbol dibutyrate, and Ca2+. Increasing levels of PS markedly reduced inhibition by sphingosine. Since protein kinase C activity shows a cooperative dependence on PS, the kinetic analysis of competitive inhibition was only suggestive. Sphingosine inhibited phorbol dibutyrate binding to protein kinase C but did not cause protein kinase C to dissociate from the mixed micelle surface. Sphingosine addition to human platelets blocked thrombin and sn-1,2-dioctanoylglycerol-dependent phosphorylation of the 40-kDa (47 kDa) dalton protein. Moreover, sphingosine was subject to surface dilution in platelets. The mechanism of sphingosine inhibition is discussed in relation to a previously proposed model of protein kinase C activation. The possible physiological role of sphingosine as a negative effector of protein kinase C is suggested and a plausible cycle for its generation is presented. The potential physiological significance of sphingosine inhibition of protein kinase C is further established in accompanying papers on HL-60 cells (Merrill, A. H., Jr., Sereni, A. M., Stevens, V. L., Hannun, Y. A., Bell, R. M., Kinkade, J. M., Jr. (1986) J. Biol. Chem. 261, 12010-12615) and human neutrophils (Wilson, E., Olcott, M. C., Bell, R. M., Merrill, A. H., Jr., and Lambeth, J. D. (1986) J. Biol. Chem. 261, 12616-12623). These results also suggest that sphingosine will be a useful inhibitor for investigating the function of protein kinase C in vitro and in living cells.  相似文献   

20.
Protein phosphorylation mediated by cAMP-dependent protein kinase is instrumental in maintaining meiotic arrest of mouse oocytes. To assess whether protein phosphorylation mediated by calcium/phospholipid-dependent protein kinase (protein kinase C) might also inhibit the resumption of meiosis, we treated oocytes with activators of this enzyme. The active phorbol esters 12-O-tetra-decanoyl phorbol-13-acetate (TPA) and 4 beta-phorbol 12,13-didecanoate (4 beta-PDD) inhibited germinal vesicle breakdown (GVBD), as did a more natural activator of protein kinase, C, sn-1,2-dioctanoylglycerol (diC8). An inactive phorbol ester, 4 alpha-phorbol 12,13-didecanoate (4 alpha-PDD), did not inhibit GVBD. We then examined whether protein kinase C activators inhibit a step in the cAMP-modulated pathway that regulates resumption of meiosis. TPA did not inhibit the maturation-associated decrease in oocyte cAMP. Microinjected heat-stable protein inhibitor of cAMP-dependent protein kinase failed to induce GVBD in the presence of TPA. Both TPA and diC8 partially inhibited specific changes in oocyte phosphoprotein metabolism that are tightly correlated with resumption of meiosis; these agents also induced the apparent phosphorylation of specific oocyte proteins. These results suggest that protein kinase C activators may inhibit resumption of meiosis by acting distal to a decrease in cAMP-dependent protein kinase activity, but prior to changes in oocyte phosphoprotein metabolism that are presumably required for resumption of meiosis. Finally, we compared the effects of db-cAMP and protein kinase C activators on polar body emission following GVBD. TPA, 4 beta-PDD or diC8, but not 4 alpha-PDD or db-cAMP, inhibited polar body emission in a dose-dependent manner. The morphology and cytology of oocytes in which polar body emission was inhibited by TPA or 4 beta-PDD differed from that of oocytes treated with diC8. Thirty to 60% of the former were round in shape and exhibited a clump of chromosomes but no spindle; the remainder were distended in shape and exhibited a metaphase I spindle. All oocytes treated with diC8, however, were round, had dispersed chromosomes, and no spindle. These results suggest that, in contrast to resumption of meiosis, polar body emission is inhibited by activation of protein kinase C but not cAMP-dependent protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号