首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate, extent, and pattern of dechlorination of four Aroclors by inocula prepared from two polychlorinated biphenyl (PCB)-contaminated sediments were compared. The four mixtures used, Aroclors 1242, 1248, 1254, and 1260, average approximately three, four, five, and six chlorines, respectively, per biphenyl molecule. All four Aroclors were dechlorinated with the loss of meta plus para chlorines ranging from 15 to 85%. Microorganisms from an Aroclor 1242-contaminated site in the upper Hudson River dechlorinated Aroclor 1242 to a greater extent than did microorganisms from Aroclor 1260-contaminated sediments from Silver Lake, Mass. The Silver Lake inoculum dechlorinated Aroclor 1260 more rapidly than the Hudson River inoculum did and showed a preferential removal of meta chlorines. For each inoculum the rate and extent of dechlorination tended to decrease as the degree of chlorination of the Aroclor increased, especially for Aroclor 1260. The maximal observed dechlorination rates were 0.3, 0.3, and 0.2 μg-atoms of Cl removed per g of sediment per week for Aroclors 1242, 1248, and 1254, respectively. The maximal observed dechlorination rates for Hudson River and Silver Lake organisms for Aroclor 1260 were 0.04 and 0.21 μg-atoms of Cl removed per g of sediment per week, respectively. The dechlorination patterns obtained suggested that the Hudson River microorganisms were more capable than the Silver Lake organisms of removing the last para chlorine. These results suggest that there are different PCB-dechlorinating microorganisms at different sites, with characteristic specificities for PCB dechlorination.  相似文献   

2.
Two-phase partitioning bioreactors (TPPBs) can be used to biodegrade environmental contaminants after their extraction from soil. TPPBs are typically stirred tank bioreactors containing an aqueous phase hosting the degrading microorganism and an immiscible, non-toxic and non-bioavailable organic phase functioning as a reservoir for hydrophobic compounds. Biodegradation of these compounds in the aqueous phase results in thermodynamic disequilibrium and partitioning of additional compounds from the organic phase into the aqueous phase. This self-regulated process can allow the delivery of large amounts of hydrophobic substances to degrading microorganisms. This paper explores the reactor conditions under which the polychlorinated biphenyl (PCB) degrader Burkholderia xenovorans LB400 can degrade significant amounts of the PCB mixture Aroclor(R) 1242. Aroclor(R) degradation was found to stall after approximately 40 h if no carbon source other than PCBs was available in the reactor. Sodium pyruvate was found to be a suitable carbon source to maintain microbial activity against PCBs and to function as a substrate for additional cell growth. Both biphenyl (while required during the inoculum preparation) and glucose had a negative effect during the Aroclor(R) degradation phase. Initial Aroclor(R) 1242 degradation rates in the presence of pyruvate were high (6.2 mg L(-1) h(-1)) and 85% of an equivalent concentration of 100 mg Aroclor(R) 1242 per L aqueous phase could be degraded in 48 h, which suggest that solvent extraction of PCBs from soil followed by their biodegradation in TPPBs might be a feasible remediation option.  相似文献   

3.
A microcosm system to physically model the fate of Aroclor 1242 in Hudson River sediment was developed. In the dark at 22 to 25 degrees C with no amendments (nutrients, organisms, or mixing) and with overlying water being the only source of oxygen, the microcosms developed visibly distinct aerobic and anaerobic compartments in 2 to 4 weeks. Extensive polychlorinated biphenyl (PCB) biodegradation was observed in 140 days. Autoclaved controls were unchanged throughout the experiments. In the surface sediments of these microcosms, the PCBs were biologically altered by both aerobic biodegrading and reductive dechlorinating microorganisms, decreasing the total concentration from 64.8 to 18.0 micromol/kg of sediment in 1140 days. This is the first laboratory demonstration of meta dechlorination plus aerobic biodegradation in stationary sediments. In contrast, the primary mechanism of microbiological attack on PCBs in aerobic subsurface sediments was reductive dechlorination. The concentration of PCBs remained constant at 64.8 micromol/kg of sediment, but the average number of chlorines per biphenyl decreased from 3.11 to 1.84 in 140 days. The selectivities of microorganisms in these sediments were characterized by meta and para dechlorination. Our results provide persuasive evidence that naturally occurring microorganisms in the Hudson River have the potential to attack the PCBs from Aroclor 1242 releases both aerobically and anaerobically at rapid rates. These unamended microcosms represent a unique method for determining the fate of released PCBs in river sediments.  相似文献   

4.
一株联苯降解菌的特性及鉴定*   总被引:2,自引:0,他引:2  
孙艳  钱世钧   《微生物学通报》2004,31(6):23-26
从华北油田污染土壤中筛选出一株能够以联苯为唯一碳源和能源生长的菌株。该菌生长的最适联苯浓度为0.2%~0.4%,在联苯浓度为0.1%的培养基中培养36h后降解率达99.8%。该菌还可以降解苯甲酸钠、邻苯二酚、间苯二酚、对苯二酚和多氯联苯Aroclorl221、Aroclorl242等芳香族化合物。通过16S rDNA基因序列分析鉴定该菌为嗜吡啶红球菌(Rhodococcus pyridinovorans)。  相似文献   

5.
A bioluminescent reporter strain, Ralstonia eutropha ENV307(pUTK60), was constructed for the detection of polychlorinated biphenyls by inserting the biphenyl promoter upstream of the bioluminescence genes. In the presence of a nonionic surfactant, which enhances the solubility of chlorinated biphenyls, bioluminescence was induced three- to fourfold over background by biphenyl, monochlorinated biphenyls, and Aroclor 1242. The minimum detection limits for these compounds ranged from 0.15 mg/liter for 4-chlorobiphenyl to 1.5 mg/liter for Aroclor 1242.  相似文献   

6.
Evidence for substantial degradation of polychlorinated biphenyl mixtures Aroclor 1242, 1254, and 1260 by the white rot fungus Phanerochaete chrysosporium, based on congener-specific gas chromatographic analysis, is presented. Maximal degradation (percent by weight) of Aroclors 1242, 1254, and 1260 was 60.9, 30.5, and 17.6%, respectively. Most of the congeners in Aroclors 1242 and 1254 were degraded extensively both in low-N (ligninolytic) as well as high-N (nonligninolytic) defined media. Even more extensive degradation of the congeners was observed in malt extract medium. Congeners with varying numbers of ortho, meta, and para chlorines were extensively degraded, indicating relative nonspecificity for the position of chlorine substitutions on the biphenyl ring. Aroclor 1260, which has not been conclusively shown to undergo aerobic microbial degradation, was shown to undergo substantial net degradation by P. chrysosporium. Maximal degradation of Aroclor 1260 was observed in malt extract medium (18.4% on a molar basis), in which most of the individual congeners were degraded.  相似文献   

7.
We have isolated and characterized a strain of Alcaligenes eurtrophus, designated H850, that rapidly degrades a broad and unusual spectrum of polychlorinated biphenyls (PCBs) including many tetra- and pentachlorobiphenyls and several hexachlorobiphenyls. This strain, which was isolated from PCB-containing dredge spoils by enrichment on biphenyl, grows well on biphenyl and 2-chlorobiphenyl but poorly on 3- and 4-chlorobiphenyl. Capillary gas-chromatographic analysis showed that biphenyl-grown resting cells of H850 degraded the components of 38 of the 41 largest peaks of Aroclor 1242 and 15 of the 44 largest peaks of Aroclor 1254, resulting in an overall reduction of PCBs by 81% for Aroclor 1242 (10 ppm) and 35% for Aroclor 1254 (10 ppm) in 2 days. Furthermore, H850 metabolized the predominantly ortho-substituted PCB congeners that resulted from the environmental transformation of the more highly chlorinated congeners of Aroclor 1242 by the upper Hudson River anaerobic meta-, para-dechlorination agent system C (J. F. Brown, R. E. Wagner, Jr., D. L. Bedard, M. J. Brennan, J. C. Carnahan, R. J. May, and J. J. Tofflemire, Northeast Environ. Sci. 3:167-179, 1984). The congener selectivity patterns indicate that a two-step process consisting of anaerobic dechlorination followed by oxidation by H850 can effectively degrade all of the congeners in Aroclor 1242 and possibly all those in Aroclor 1254.  相似文献   

8.
We have isolated and characterized a strain of Alcaligenes eurtrophus, designated H850, that rapidly degrades a broad and unusual spectrum of polychlorinated biphenyls (PCBs) including many tetra- and pentachlorobiphenyls and several hexachlorobiphenyls. This strain, which was isolated from PCB-containing dredge spoils by enrichment on biphenyl, grows well on biphenyl and 2-chlorobiphenyl but poorly on 3- and 4-chlorobiphenyl. Capillary gas-chromatographic analysis showed that biphenyl-grown resting cells of H850 degraded the components of 38 of the 41 largest peaks of Aroclor 1242 and 15 of the 44 largest peaks of Aroclor 1254, resulting in an overall reduction of PCBs by 81% for Aroclor 1242 (10 ppm) and 35% for Aroclor 1254 (10 ppm) in 2 days. Furthermore, H850 metabolized the predominantly ortho-substituted PCB congeners that resulted from the environmental transformation of the more highly chlorinated congeners of Aroclor 1242 by the upper Hudson River anaerobic meta-, para-dechlorination agent system C (J. F. Brown, R. E. Wagner, Jr., D. L. Bedard, M. J. Brennan, J. C. Carnahan, R. J. May, and J. J. Tofflemire, Northeast Environ. Sci. 3:167-179, 1984). The congener selectivity patterns indicate that a two-step process consisting of anaerobic dechlorination followed by oxidation by H850 can effectively degrade all of the congeners in Aroclor 1242 and possibly all those in Aroclor 1254.  相似文献   

9.
Anaerobic microorganisms eluted from three sediments, one contaminated with polybrominated biphenyls (PBBs) and two contaminated with polychlorinated biphenyls, were compared for their ability to debrominate the commercial PBB mixture Firemaster. These microorganisms were incubated with reduced anaerobic mineral medium and noncontaminated sediment amended with Firemaster. Firemaster averages six bromines per biphenyl molecule; four of the bromines are substituted in the meta or para position. The inocula from all three sources were able to debrominate the meta and para positions. Microorganisms from the Pine River (St. Louis, Mich.) contaminated with Firemaster, the Hudson River (Hudson Falls, N.Y.) contaminated with Aroclor 1242, and Silver Lake (Pittsfield, Mass.) contaminated with Aroclor 1260 removed 32, 12, and 3% of the meta plus para bromines, respectively, after 32 weeks of incubation. This suggests that previous environmental exposure to PBBs enhances the debromination capability of the sediment microbial community through selection for different strains of microorganisms. The Pine River inoculum removed an average of 1.25 bromines per biphenyl molecule during a 32-week incubation period, resulting in a mixture potentially more accessible to aerobic degradation processes. No ortho bromine removal was observed. However, when Firemaster was incubated with Hudson River microorganisms that had been repeatedly transferred on a pyruvate medium amended with Aroclor 1242, 17% of the meta and para bromines were removed after 16 weeks of incubation and additional debromination products, including 2-bromobiphenyl and biphenyl, were detected. This suggests the possibility for ortho debromination, since all components of the Firemaster mixture have at least one ortho-substituted bromine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Anaerobic microorganisms eluted from three sediments, one contaminated with polybrominated biphenyls (PBBs) and two contaminated with polychlorinated biphenyls, were compared for their ability to debrominate the commercial PBB mixture Firemaster. These microorganisms were incubated with reduced anaerobic mineral medium and noncontaminated sediment amended with Firemaster. Firemaster averages six bromines per biphenyl molecule; four of the bromines are substituted in the meta or para position. The inocula from all three sources were able to debrominate the meta and para positions. Microorganisms from the Pine River (St. Louis, Mich.) contaminated with Firemaster, the Hudson River (Hudson Falls, N.Y.) contaminated with Aroclor 1242, and Silver Lake (Pittsfield, Mass.) contaminated with Aroclor 1260 removed 32, 12, and 3% of the meta plus para bromines, respectively, after 32 weeks of incubation. This suggests that previous environmental exposure to PBBs enhances the debromination capability of the sediment microbial community through selection for different strains of microorganisms. The Pine River inoculum removed an average of 1.25 bromines per biphenyl molecule during a 32-week incubation period, resulting in a mixture potentially more accessible to aerobic degradation processes. No ortho bromine removal was observed. However, when Firemaster was incubated with Hudson River microorganisms that had been repeatedly transferred on a pyruvate medium amended with Aroclor 1242, 17% of the meta and para bromines were removed after 16 weeks of incubation and additional debromination products, including 2-bromobiphenyl and biphenyl, were detected. This suggests the possibility for ortho debromination, since all components of the Firemaster mixture have at least one ortho-substituted bromine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Psychrotolerant polychlorinated biphenyl (PCB)-degrading bacteria were isolated at 7°C from PCB-contaminated Arctic soil by using biphenyl as the sole organic carbon source. These isolates were distinguished from each other by differences in substrates that supported growth and substrates that were oxidized. 16S ribosomal DNA sequences suggest that these isolates are most closely related to the genus Pseudomonas. Total removal of Aroclor 1242, and rates of removal of selected PCB congeners, by cell suspensions of Arctic soil isolates and the mesophile Burkholderia cepacia LB400 were determined at 7, 37, and 50°C. Total removal values of Aroclor 1242 at 7°C by LB400 and most Arctic soil isolates were similar (between 2 and 3.5 μg of PCBs per mg of cell protein). However the rates of removal of some individual PCB congeners by Arctic isolates were up to 10 times higher than corresponding rates of removal by LB400. Total removal of Aroclor 1242 and the rates of removal of individual congeners by the Arctic soil bacteria were higher at 37°C than at 7°C but as much as 90% lower at 50°C than at 37°C. In contrast, rates of PCB removal by LB400 were higher at 50°C than at 37°C. In all cases, temperature did not affect the congener specificity of the bacteria. These observations suggest that the PCB-degrading enzyme systems of the bacteria isolated from Arctic soil are cold adapted.  相似文献   

12.
An Altamont soil containing no measurable population of chlorobenzoate utilizers was examined for the potential to enhance polychlorinated biphenyl (PCB) mineralization by inoculation with chlorobenzoate utilizers, a biphenyl utilizer, combinations of the two physiological types, and chlorobiphenyl-mineralizing transconjugants. Biphenyl was added to all soils, and biodegradation of 14C-Aroclor 1242 was assessed by disappearance of that substance and by production of 14CO2. Mineralization of PCBs was consistently greatest (up to 25.5%) in soils inoculated with chlorobenzoate degraders alone. Mineralization was significantly lower in soils receiving all other treatments: PCB cometabolizer (10.7%); chlorobiphenyl mineralizers (8.7 and 14.9%); and mixed inocula of PCB cometabolizers and chlorobenzoate utilizers (11.4 and 18.0%). However, all inoculated soils had higher mineralization than did the uninoculated control (3.1%). PCB disappearance followed trends similar to that observed with the mineralization data, with the greatest degradation occurring in soils inoculated with the chlorobenzoate-degrading strains Pseudomonas aeruginosa JB2 and Pseudomonas putida P111 alone. While the mechanism by which the introduction of chlorobenzoate degraders alone enhanced biodegradation of PCBs could not be elucidated, the possibility that chlorobenzoate inoculants acquired the ability to metabolize biphenyl and possibly PCBs was explored. When strain JB2, which does not utilize biphenyl, was inoculated into soil containing biphenyl and Aroclor 1242, the frequency of isolates able to utilize biphenyl and 2,5-dichlorobenzoate increased progressively with time from 3.3 to 44.4% between 15 and 48 days, respectively. Since this soil contained no measurable level of chlorobenzoate utilizers yet did contain a population of biphenyl utilizers, the possibility of genetic transfer between the latter group and strain JB2 cannot be excluded.  相似文献   

13.
We investigated the microbial reductive dechlorination of both weathered (aged) and nonweathered (freshly added) Aroclor 1260 in aerobic soil from Resolution Island, Nunavut, Canada. Initial polychlorinated biphenyl (PCB) concentrations were 106 and 100 ppm, respectively. The aerobic soil samples were inoculated with anaerobic sediment, incubated at 30 degrees C until methanogenic, inoculated with a dechlorinating enrichment culture, and incubated a further 8 weeks. The average number of chlorine substituents per biphenyl molecule was biologically reduced from 6.6 to 5.1 and from 6.2 to 4.5 for weathered and nonweathered Aroclor 1260, respectively. Removal of hexa- and heptachlorobiphenyls (CBs), the major homolog groups present, was significantly greater for nonweathered than for weathered Aroclor 1260. Formation of dechlorination products, primarily 2,2',4,4'- and 2,2',4,6'-tetraCBs, was also significantly greater for nonweathered than for weathered Aroclor 1260. We additionally compared the dechlorination at 21 degrees C of weathered Aroclor 1260 in soils from Resolution Island and Saglek, Labrador, Canada. The average number of chlorine substituents per biphenyl molecule was biologically reduced from 6.7 to 5.1 and from 6.5 to 4.6, respectively. This study demonstrated the potential for bioremediation of aerobic soil contaminated with Aroclor 1260 and showed that weathering may limit such treatment to an extent variable among different soils.  相似文献   

14.
Enrichment of polychlorinated biphenyl (PCB)-dechlorinating microorganisms from PCB-contaminated sediments from the Upper Hudson River, N.Y., was attempted. The enrichment strategy was to use pyruvate as the electron donor and dechlorination of Aroclor 1242 as the electron acceptor. The enrichment medium also contained non-PCB-contaminated Hudson River sediments, which were required for the PCB-dechlorinating activity. An enrichment culture (that had stable PCBT-dechlorinating activity over nine serial transfers during 1 year) was established under these conditions; however, the rate of dechlorination did not increase after the second serial transfer. Dechlorination occurred primarily from the meta positions of the biphenyl molecule. Hydrogen could be substituted for pyruvate as the electron donor with equal activity, but when acetate was used as the electron donor a delay in dechlorination was observed. Sulfate and bromethane sulfonate inhibited dechlorination activity. The pyruvate-Aroclor 1242 enrichment also dechlorinated Aroclors 1248, 1254, and 1260; the extent of chlorine removed was the greatest for Aroclor 1254. For comparison, nonautoclaved non-PCB-contaminated Hudson River sediments used in the assay also dechlorinated Aroclors, but only after 12 to 16 weeks of incubation. This suggests that PCB-dechlorinating organisms were also present in these sediments but in numbers lower than those in the enrichment culture.  相似文献   

15.
Enrichment of polychlorinated biphenyl (PCB)-dechlorinating microorganisms from PCB-contaminated sediments from the Upper Hudson River, N.Y., was attempted. The enrichment strategy was to use pyruvate as the electron donor and dechlorination of Aroclor 1242 as the electron acceptor. The enrichment medium also contained non-PCB-contaminated Hudson River sediments, which were required for the PCB-dechlorinating activity. An enrichment culture (that had stable PCBT-dechlorinating activity over nine serial transfers during 1 year) was established under these conditions; however, the rate of dechlorination did not increase after the second serial transfer. Dechlorination occurred primarily from the meta positions of the biphenyl molecule. Hydrogen could be substituted for pyruvate as the electron donor with equal activity, but when acetate was used as the electron donor a delay in dechlorination was observed. Sulfate and bromethane sulfonate inhibited dechlorination activity. The pyruvate-Aroclor 1242 enrichment also dechlorinated Aroclors 1248, 1254, and 1260; the extent of chlorine removed was the greatest for Aroclor 1254. For comparison, nonautoclaved non-PCB-contaminated Hudson River sediments used in the assay also dechlorinated Aroclors, but only after 12 to 16 weeks of incubation. This suggests that PCB-dechlorinating organisms were also present in these sediments but in numbers lower than those in the enrichment culture.  相似文献   

16.
Burkholderia xenovorans strain LB400, which possesses the biphenyl pathway, was engineered to contain the oxygenolytic ortho dehalogenation (ohb) operon, allowing it to grow on 2-chlorobenzoate and to completely mineralize 2-chlorobiphenyl. A two-stage anaerobic/aerobic biotreatment process for Aroclor 1242-contaminated sediment was simulated, and the degradation activities and genetic stabilities of LB400(ohb) and the previously constructed strain RHA1(fcb), capable of growth on 4-chlorobenzoate, were monitored during the aerobic phase. The population dynamics of both strains were also followed by selective plating and real-time PCR, with comparable results; populations of both recombinants increased in the contaminated sediment. Inoculation at different cell densities (10(4) or 10(6) cells g(-1) sediment) did not affect the extent of polychlorinated biphenyl (PCB) biodegradation. After 30 days, PCB removal rates for high and low inoculation densities were 57% and 54%, respectively, during the aerobic phase.  相似文献   

17.
Tuning biphenyl dioxygenase for extended substrate specificity.   总被引:12,自引:0,他引:12  
Highly substituted polychlorinated biphenyls (PCBs) are known to be very resistant to aerobic biodegradation, particularly the initial attack by biphenyl dioxygenase. Functional evolution of the substrate specificity of biphenyl dioxygenase was demonstrated by DNA shuffling and staggered extension process (StEP) of the bphA gene coding for the large subunit of biphenyl dioxygenase. Several variants with an extended substrate range for PCBs were selected. In contrast to the parental biphenyl dioxygenases from Burkholderia cepacia LB400 and Pseudomonas pseudoalcaligenes KF707, which preferentially recognize either ortho- (LB400) or para- (KF707) substituted PCBs, several variants degraded both congeners to about the same extent. These variants also exhibited superior degradation capabilities toward several tetra- and pentachlorinated PCBs as well as commercial PCB mixtures, such as Aroclor 1242 or Aroclor 1254. Sequence analysis confirmed that most variants contained at least four to six template switches. All desired variants contained the Thr335Ala and Phe336Ile substitutions confirming the importance of this critical region in substrate specificity. These results suggest that the block-exchange nature of gene shuffling between a diverse class of dioxygenases may be the most useful approach for breeding novel dioxygenases for PCB degradation in the desired direction.  相似文献   

18.
Growth rates and final cell yields of a polychlorinated biphenyl (PCB)-sensitive pseudomonad isolated from the open ocean were reduced in a dose-dependent manner by 10 to 100 μg of Aroclor 1254 per liter, a commercial mixture of PCB isomers added to its culture medium. Effects on growth rates were detected within 1 h (approximately one doubling time) of treatment. By 4 h posttreatment, the amounts of deoxyribonucleic acid and ribonucleic acid per cell in exponentially growing populations treated with sublethal doses of Aroclor were detectably lower than in appropriate controls. Corresponding cell protein values were slightly higher than in controls. Selective degradation of cell proteins or nucleic acids was not detected in cells whose growth was totally suppressed for 4 h by PCBs. Cells whose growth rate was inhibited 20 to 50% by Aroclor synthesized protein at normal rates for periods in excess of 5 h from the time the chlorinated hydrocarbons were added. In contrast, rates per cell of adenine uptake and adenine incorporation into deoxyribonucleic acid and total nucleic acids by the cells treated with PCBs were significantly lower than in control cells. Intracellular adenine pools of cells whose growth was inhibited to 20% of the control rate by PCBs were 30% smaller and appeared to require a longer interval to equilibrate than those of untreated cells. This may indicate impaired transport and/or efflux of this nucleic acid precursor through the membrane of affected cells. Inhibition of nucleic acid synthesis in this sensitive bacterium by PCBs could explain the observed inhibitory effects of the chlorinated hydrocarbons on its growth.  相似文献   

19.
Abstract Pseudomonas sp. HV3 grows on naphthalene but not on biphenyl, as the sole source of carbon. When the cells of Pseudomonas sp. HV3 grown on naphthalene were shaken with biphenyl as the carbon source in a mineral salt solution, a yellow metabolite identified as the meta -cleavage product of biphenyl was excreted. The degradation of biphenyl stopped here, but was completed if either 2-methyl-4-chlorophenoxy acetic acid (MCPA)-degrading mixed culture or a Nocardia strain was added to the growth solution. Neither of these uses naphthalene or biphenyl as growth substrate. The mixed culture of Pseudomonas sp. HV3 and Nocardia sp. also degrades the commercial polychlorinated biphenyl (PCB) mixture Aroclor 1221. A yellow metabolite was likewise produced in the degradation, and sometimes two different peaks of the yellow metabolite were observed. The gas chromatography-mass spectrometry (GC-MS) analyses showed that 40–87% of Aroclor 1221 was degraded during an incubation time of 6–21 days. Chlorobenzoic acids were found as metabolites.  相似文献   

20.
A rapid Tenax-GC extraction technique has been evaluated for use in conjunction with aqueous biodegradation assays for polyaromatic hydrocarbons and polychlorinated biphenyls. The method was quantitatively efficient and reproducible for phenanthrene, but variable and not quantitative for Aroclor 1254 (polychlorinated biphenyls). Aqueous sample volumes and varying concentrations of organic matter influenced polychlorinated biphenyl and polyaromatic hydrocarbon extraction efficiency. Phenanthrene recovery was decreased by soil extract but unaffected by spent bacteriological culture medium. Both types of organic matter caused significant reduction of Aroclor 1254 recovery. Polyaromatic hydrocarbon and polychlorinated biphenyl biodegradation assays, performed with reservoir samples, supported the laboratory evaluation. The study demonstrated the utility of the Tenax-GC extraction technique for phenanthrene analysis in biodegradation assessment; however, Tenax-GC extraction was not appropriate for Aroclor 1254 biodegradation studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号