首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intramolecular electron transfer (ET) between the CuA center and heme a in bovine cytochrome c oxidase was investigated by pulse radiolysis. CuA, the initial electron acceptor, was reduced by 1-methyl nicotinamide radicals in a diffusion-controlled reaction, as monitored by absorption changes at 830 nm. After the initial reduction phase, the 830 nm absorption was partially restored, corresponding to reoxidation of the CuA center. Concomitantly, the absorption at 445 nm and 605 nm increased, indicating reduction of heme a. The rate constants for heme a reduction and CuA reoxidation were identical within experimental error and independent of the enzyme concentration. This demonstrates that a fast intramolecular electron equilibration is taking place between CuA and heme a. The rate constants for CuA --> heme a ET and the reverse (heme a --> CuA) process were found to be 13 000 s-1 and 3700 s-1, respectively, at 25 degrees C and pH 7.4. This corresponds to an equilibrium constant of 3.4 under these conditions. Thermodynamic and activation parameters of the ET reactions were determined. The significance of these results, particularly the observed low activation barriers, are discussed within the framework of the known three-dimensional structure, ET pathways and reorganization energies.  相似文献   

2.
M Oliveberg  B G Malmstr?m 《Biochemistry》1991,30(29):7053-7057
Internal electron-transfer reactions in cytochrome oxidase following flash photolysis of the CO compounds of the enzyme reduced to different degrees (2-4 electron equiv) have been followed at 445, 605, and 830 nm. Apart from CO dissociation and recombination, two kinetic phases are seen both at 445 and at 605 nm with rate constants of 2 x 10(5) and 1.3 x 10(4) s-1, respectively; at 605 nm, an additional phase with a rate constant of 400 s-1 is resolved. At 830 nm, only the second reaction phase (rate constant of 1.3 x 10(4) s-1) is observed. The amplitude of the first phase is largest with the two-electron-reduced enzyme, whereas that of the second phase is maximal at the three-electron-reduction level. Neither phase shows any marked pH dependence. The reaction in the first phase has a free energy of activation of 41 kJ mol-1 and an entropy of activation of -14 JK-1 mol-1. Analysis suggests that the two rapid reaction phases represent internal electron redistributions between the bimetallic site and cytochrome a, and between cytochrome a and CuA, respectively. The slow phase (400 s-1) probably involves a structural rearrangement.  相似文献   

3.
M Oliveberg  B G Malmstr?m 《Biochemistry》1992,31(14):3560-3563
The reactions of the fully reduced, three-electron-reduced, and mixed-valence cytochrome oxidase with molecular oxygen have been followed in flow-flash experiments, starting from the CO complexes, at 445 and 830 nm at pH 7.4 and 25 degrees C. With the fully reduced and the three-electron-reduced enzyme, four kinetic phases with rate constants in the range from 1 x 10(5) to 10(3) s-1 can be observed. The initial fast phase is associated with an absorbance increase at 830 nm. This is followed by an absorbance decrease (2.8 x 10(4) s-1), the amplitude of which increases with the degree of reduction of the oxidase. The third phase (6 x 10(3) s-1) displays the largest absorbance change at both wavelengths in the fully reduced enzyme and is not seen in the mixed-valence oxidase at 830 nm; a change with opposite sign but with a similar rate constant is found at 445 nm in this enzyme form. The slowest phase (10(3) s-1) is also largest in the fully reduced oxidase and not seen in the mixed-valence enzyme. It is suggested that O2 initially binds to reduced CuB and is then transferred to cytochrome a3 before electron transfer from cytochrome a/CuA takes place. The fast oxidation of cytochrome a seen with the fully reduced enzyme is suggested not to occur during natural turnover. A reaction cycle for the complete turnover of the enzyme is presented. In this cycle, the oxidase oscillates between electron input and output states of the proton pump, characterized by cytochrome a having a high and a low reduction potential, respectively.  相似文献   

4.
The kinetics of the reduction of resting cytochrome oxidase and of its cyanide complex by 5,10-dihydro-5- methylphenazine (MPH) have been characterized by rapid-scan and fixed-wavelength stopped-flow spectrophotometry in the Soret, visible, and near-IR spectral regions. In this study, we focused on a form of the resting enzyme that is characterized by a Soret absorption maximum at 424 nm. These experiments complement earlier work on the reduction of a 418 nm absorbing form of the resting enzyme [ Halaka , F.G., Babcock , G. T., & Dye, J. L. (1981) J. Biol. Chem. 256, 1084-1087]. The reduction of cytochrome a is accomplished in a second-order reaction with a rate constant of 3 X 10(5) M-1 s-1. The reduction of the 830-nm absorber, Cua, is closely coupled to but lags the reduction of cytochrome a; we have resolved a rate constant of about 20 s-1 for the copper reduction. The reduction of cytochrome a proceeds with a rate constant that is nearly independent of the spectral properties of the resting enzyme and of the ligation state of cytochrome a3. The reduction of cytochrome a3 occurs by slow, intramolecular electron transfer. We have resolved two phases for this process that have rate constants of approximately 0.2 s-1 and approximately 0.02 s-1 for both the 418- and 424-nm forms of the resting enzyme. It appears, therefore, that spectroscopic heterogeneity at the cytochrome a3 site in the resting enzyme exerts very little influence on the kinetics of the anaerobic reduction of the oxidase metal centers. From this we conclude that the rate of electron transfer to the a3 site is probably controlled by the protein conformation and not primarily by local factors within the a3 environment.  相似文献   

5.
Intramolecular electron transfer between CuA and heme a in solubilized bacterial (Paracoccus denitrificans) cytochrome c oxidase was investigated by pulse radiolysis. CuA, the initial electron acceptor, was reduced by 1-methylnicotinamide radicals in a diffusion-controlled reaction, as monitored by absorption changes at 825 nm, followed by partial restoration of the absorption and paralleled by an increase in the heme a absorption at 605 nm. The latter observations indicate partial reoxidation of the CuA center and the concomitant reduction of heme a. The rate constants for heme a reduction and CuA reoxidation were identical within experimental error and independent of the enzyme concentration and its degree of reduction, demonstrating that a fast intramolecular electron equilibration is taking place between CuA and heme a. The rate constants for CuA --> heme a ET and the reverse heme a --> CuA process were found to be 20,400 s(-1) and 10,030 s(-1), respectively, at 25 degrees C and pH 7.5, which corresponds to an equilibrium constant of 2.0. Thermodynamic and activation parameters of these intramolecular ET reactions were determined. The significance of the results, particularly the low activation barriers, is discussed within the framework of the enzyme's known three-dimensional structure, potential ET pathways, and the calculated reorganization energies.  相似文献   

6.
Laser flash photolysis was used to study the reaction of photoproduced 5-deazariboflavin (dRFH.), lumiflavin (LFH.), and riboflavin (RFH.) semiquinone radicals with the redox centers of purified chicken liver sulfite oxidase. Kinetic studies of the native enzyme with dRFH. yielded a second-order rate constant of 4.0 X 10(8) M-1 s-1 for direct reduction of the heme and a first-order rate constant of 310 s-1 for intramolecular electron transfer from the Mo center to the heme. The reaction with LFH. gave a second-order rate constant of 2.9 X 10(7) M-1 s-1 for heme reduction. Reoxidation of the reduced heme due to intramolecular electron transfer to the Mo center gave a first-order rate constant of 155 s-1. The direction of intramolecular electron transfer using dRFH. and LFH. was independent of the buffer used for the experiment. The different first-order rate constants observed for intramolecular electron transfer using dRFH. and LFH. are proposed to result from chemical differences at the Mo site. Flash photolysis studies with cyanide-inactivated sulfite oxidase using dRFH. and LFH. resulted in second-order reduction of the heme center with rate constants identical with those obtained with the native enzyme, whereas the first-order intramolecular electron-transfer processes seen with the native enzyme were absent. The isolated heme peptide of sulfite oxidase gave only second-order kinetics upon laser photolysis and confirmed that the first-order processes observed with the native enzyme involve the Mo site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Heme-copper relationship of cytochrome oxidase in rat brain in situ   总被引:1,自引:0,他引:1  
The role of copper aa3 in relation to heme aa3 of cytochrome oxidase in electron transfer and oxygen utilization is poorly understood in vitro. In an attempt to study this in situ, we have simultaneously monitored the steady state redox changes of heme aa3 and copper aa3 in an isolated perfused rat head model (skull intact, muscle removed). By means of reflectance spectrophotometry the redox reactions of heme aa3 and copper aa3 were continuously monitored using 605-625 nm and 815-920 nm wavelength pairs, respectively. The reaction kinetics of these components in response to transient perfusion interruption in energized and de-energized preparations were then examined. We found that in response to perfusion interruption, soon after full reduction, the copper signal begins to change toward oxidation despite continuation of anoxic insult and progressive reduction of heme aa3. This phenomenon disappeared by pretreatment of the preparation with 2,4-dinitrophenol. A schematic sequence of electron transport in situ is proposed which emphasizes an active role for Cua in this sequence.  相似文献   

8.
Proton and electron transfer events during the reaction of solubilized fully reduced bovine heart cytochrome c oxidase with molecular oxygen were investigated using the flow-flash technique. Time-resolved spectral changes resulting from ligand binding and electron transfer events were detected simultaneously with pH changes in the bulk. The kinetics and spectral changes in the visible region (450-750 nm) were probed by optical multichannel detection, allowing high spectral resolution on time scales from 50 ns to 50 ms. Experiments were carried out in the presence and absence of pH-sensitive dyes (carboxyfluorescein at pH 6.5, phenol red at pH 7.5, and m-cresol purple at pH 8.5) which permitted separation of spectral changes due to proton transfer from those caused by ligand binding and electron transfer. The transient spectra recorded in the absence of dye were analyzed by singular-value decomposition and multiexponential fitting. Five apparent lifetimes (0.93 microseconds, 10 microseconds, 36 microseconds, 90 microseconds, and 1.3 ms at pH 7.5) could consistently be distinguished and provided a basis for a reaction mechanism consistent with our most recent kinetic model [Sucheta, A., Szundi, I., and Einarsdóttir, O. (1999) Biochemistry 37, 17905-17914]. The dye response indicated that proton uptake occurred concurrently with the two slowest electron transfer steps, in agreement with previous results based on single-wavelength detection [Hallén, S., and Nilsson, T. (1992) Biochemistry 31, 11853-11859]. The stoichiometry of the proton uptake reactions was approximately 1.3 +/- 0.3, 1.4 +/- 0.3, and 1.6 +/- 0.5 protons per enzyme at pH 6.5, 7.5, and 8.5, respectively. The electron transfer between heme a and CuA was limited by proton uptake on a 90 microseconds time scale. We have established the lower limit of the true rate constant for the electron transfer between CuA and heme a to be approximately 2 x 10(5) s-1.  相似文献   

9.
In stopped-flow experiments in which oxidized cytochrome c oxidase was mixed with ferrocytochrome c in the presence of a range of oxygen concentrations and in the absence and presence of cyanide, a fast phase, reflecting a rapid approach to an equilibrium, was observed. Within this phase, one or two molecules of ferrocytochrome were oxidized per haem group of cytochrome a, depending on the concentration of ferrocytochrome c used. The reasons for this are discussed in terms of a mechanism in which all electrons enter through cytochrome a, which, in turn, is in rapid equilibrium with a second site, identified with 'visible' copper (830 nm-absorbing) Cud (Beinert et al., 1971). The value of the bimolecular rate constant for the reaction between cytochromes c2+ and a3+ was between 10(6) and 10(7) M(-1)-S(-1); some variability from preparation to preparation was observed. At high ferrocytochrome c concentrations, the initial reaction of cytochrome c2+ with cytochrome a3+ could be isolated from the reaction involving the 'visible' copper and the stoicheiometry was found to approach one molecule of cytochrome c2+ oxidized for each molecule of cytochrome a3+ reduced. At low ferrocytochrome c concentrations, however, both sites (i.e. cytochrome a and Cud) were reduced simultaneously and the stoicheiometry of the initial reaction was closer to two molecules of cytochrome c2+ oxidized per molecule of cytochrome a reduced. The bleaching of the 830 nm band lagged behind or was simultaneous with the formation of the 605 nm band and does not depend on the cytochrome c concentration, whereas the extinction at the steady-state does. The time-course of the return of the 830 nm-absorbing species is much faster than the bleaching of the 605 nm-absorbing component, and parallels that of the turnover phase of cytochrome c2+ oxidation. Additions of cyanide to the oxidase preparations had no effect on the observed stoicheiometry or kinetics of the reduction of cytochrome a and 'visible' copper, but inhibited electron transfer to the other two sites, cytochrome a3 and the undetectable copper, Cuu.  相似文献   

10.
The effect of ionic strength on the one-electron reduction of oxidized bovine cytochrome c oxidase by reduced bovine cytochrome c has been studied by using flavin semiquinone reductants generated in situ by laser flash photolysis. In the absence of cytochrome c, direct reduction of the heme a prosthetic group of the oxidase by the one-electron reductant 5-deazariboflavin semiquinone occurred slowly, despite a driving force of approximately +1 V. This is consistent with a sterically inaccessible heme a center. This reduction process was independent of ionic strength from 10 to 100 mM. Addition of cytochrome c resulted in a marked increase in the amount of reduced oxidase generated per laser flash. Reduction of the oxidase at the heme a site was monophasic, whereas oxidation of cytochrome c was multiphasic, the fastest phase corresponding in rate constant to the reduction of the heme a. During the fast kinetic phase, 2 equiv of cytochrome c was oxidized per heme a reduced. We presume that the second equivalent was used to reduce the Cua center, although this was not directly measured. The first-order rate-limiting process which controls electron transfer to the heme a showed a marked ionic strength effect, with a maximum rate constant occurring at mu = 110 mM (1470 s-1), whereas the rate constant obtained at mu = 10 mM was 630 s-1 and at mu = 510 mM was 45 s-1. There was no effect of "pulsing" the enzyme on this rate-limiting one-electron transfer process. These results suggest that there are structural differences in the complex(es) formed between mitochondrial cytochrome c and cytochrome c oxidase at very low and more physiologically relevant ionic strengths, which lead to differences in electron-transfer rate constants.  相似文献   

11.
The effect of CO on the optical absorbance spectrum of partially reduced cytochrome c oxidase has been studied. The changes at 432 and 590 nm suggest that the cytochrome alpha2/3+ - CO compound is formed preferentially and that concomitantly a second electron is taken up by the enzyme. From the CO-induced changes at 830 nm it is concluded that in the partially reduced enzyme addition of CO causes reoxidation of the copper component of cytochrome c oxidase. Addition of CO to partially reduced enzyme (2 electrons per 4 metal ions) also brings about a decrease in the intensities of electron paramagnetic resonance signals of high-spin heme iron near g = 6 and of the low-spin heme at g = 2.6. Concomitantly both the low-spin heme a signal at g = 3 and the copper signal at g = 2 increase in intensity. These results demonstrate that formation of the reduced diamagnetic cytochrome a3 - CO compound is accompanied by reoxidation of both the copper component detectable by electron paramagnetic resonance and possibly also by cytochrome a.  相似文献   

12.
Kobayashi K  Tagawa S  Mogi T 《Biochemistry》1999,38(18):5913-5917
Cytochrome bd is a two-subunit ubiquinol oxidase in the aerobic respiratory chain of Escherichia coli and binds hemes b558, b595, and d as the redox metal centers. Taking advantage of spectroscopic properties of three hemes which exhibit distinct absorption peaks, we investigated electron transfer within the enzyme by the technique of pulse radiolysis. Reduction of the hemes in the air-oxidized, resting-state enzyme, where heme d exists in mainly an oxygenated form and partially an oxoferryl and a ferric low-spin forms, occurred in two phases. In the faster phase, radiolytically generated N-methylnicotinamide radicals simultaneously reduced the ferric hemes b558 and b595 with a second-order rate constant of 3 x 10(8) M-1 s-1, suggesting that a rapid equilibrium occurs for electron transfer between two b-type hemes long before 10 micros. In the slower phase, an intramolecular electron transfer from heme b to the oxoferryl and the ferric heme d occurred with the first-order rate constant of 4.2-5.6 x 10(2) s-1. In contrast, the oxygenated heme d did not exhibit significant spectral change. Reactions with the fully oxidized and hydrogen peroxide-treated forms demonstrated that the oxidation and/or ligation states of heme d do not affect the heme b reduction. The following intramolecular electron transfer transformed the ferric and oxoferryl forms of heme d to the ferrous and ferric forms, respectively, with the first-order rate constants of 3.4 x 10(3) and 5.9 x 10(2) s-1, respectively.  相似文献   

13.
1. Techniques and experiments are described concerned with the millisecond kinetics of EPT-detectable changes brought about in cytochrome c oxidase by reduced cytochrome c and, after reduction with various agents, by reoxidation with O2 or ferricyanide. Some experiments in the presence of ligands are also reported. Light absorption was monitored by low-temperature reflectance spectroscopy. 2. In the rapid phase of reduction of cytochrome c oxidase by cytochrome c (less than 50 ms) approx. 0.5 electron equivalent per heme a is transferred mainly to the low-spin heme component of cytochrome c oxidase and partly to the EPR-detectable copper. In a slow phase (less than 1 s) the copper is reoxidized and high-spin ferric heme signals appear with a predominant rhombic component. Simultaneously the absorption band at 655 nm decreases and the Soret band at 444 nm appears between the split Soret band (442 and 447 nm) of reduced cytochrome a. 3. On reoxidation of reduced enzyme by oxygen all EPR and optical features are restored within 6 ms. On reoxidation by O2 in the presence of an excess of reduced cytochrome c, states can be observed where the low-spin heme and copper signals are largely absent but the absorption at 655 nm is maximal, indicating that the low-spin heme and copper components are at the substrate side and the component(s) represented in the 655 nm absorption at the O2 side of the system. On reoxidation with ferricyanide the 655 nm absorption is not readily restored but a ferric high-spin heme, represented by a strong rhombic signal, accumulates. 4. On reoxidation of partly reduced enzyme by oxygen, the rhombic high-spin signals disappear within 6 ms., whereas the axial signals disappear more slowly, indicating that these species are not in rapid equilibrium. Similar observations are made when partly reduced enzyme is mixed with CO. 5. The results of this and the accompanying paper are discussed and on this basis an assignment of the major EPR signals and of the 655 nm absorption is proposed, which in essence is that published previously (Hartzell, C.R., Hansen, R.E. and Beinert, H. (1973) Proc. Natl. Acad. Sci. U.S. 70, 2477-2481). Both the low-spin (g=o; 2.2; 1.5) and slowly appearing high-spin (g=6; 2) signals are attributed to ferric cytochrome a, whereas the 655 nm absorption is thought to arise from ferric cytochrome a3, when it is present in a state of interaction with EPR-undectectable copper. Alternative possibilities and possible inconsistencies with this proposal are discussed.  相似文献   

14.
Kobayashi K  Tagawa S  Mogi T 《Biochemistry》2000,39(50):15620-15625
To elucidate a unique mechanism for the quinol oxidation in the Escherichia coli cytochrome bo, we applied pulse radiolysis technique to the wild-type enzyme with or without a single bound ubiquinone-8 at the high-affinity quinone binding site (Q(H)), using N-methylnicotinamide (NMA) as an electron mediator. With the ubiquinone bound enzyme, the reduction of the oxidase occurred in two phases as judged from kinetic difference spectra. In the faster phase, the transient species with an absorption maximum at 440 nm, a characteristic of the formation of ubisemiquinone anion radical, appeared within 10 micros after pulse radiolysis. In the slower phase, a decrease of absorption at 440 nm was accompanied by an increase of absorption at 428 and 561 nm, characteristic of the reduced form. In contrast, with the bound ubiquinone-8-free wild-type enzyme, NMA radicals directly reduced hemes b and o, though the reduction yield was low. These results indicate that a pathway for an intramolecular electron transfer from ubisemiquinone anion radical at the Q(H) site to heme b exists in cytochrome bo. The first-order rate constant of this process was calculated to be 1.5 x 10(3) s(-1) and is comparable to a turnover rate for ubiquinol-1. The rate constant for the intramolecular electron transfer decreased considerably with increasing pH, though the yields of the formation of ubisemiquinone anion radical and the subsequent reduction of the hemes were not affected. The pH profile was tightly linked to the stability of the bound ubisemiquinone in cytochrome bo [Ingledew, W. J., Ohnishi, T., and Salerno, J. C. (1995) Eur. J. Biochem. 227, 903-908], indicating that electron transfer from the bound ubisemiquinone at the Q(H) site to the hemes slows down at the alkaline pH where the bound ubisemiquinone can be stabilized. These findings are consistent with our previous proposal that the bound ubiquinone at the Q(H) site mediates electron transfer from the low-affinity quinol oxidation site in subunit II to low-spin heme b in subunit I.  相似文献   

15.
The reaction of the electrostatic cytochrome c-cytochrome oxidase complex with oxygen is measured by transient absorption spectroscopy. The oxygen reaction is initiated by photolytic removal of CO from cytochrome oxidase, using a flash-pumped dye laser. The subsequent reaction of the cytochrome c-cytochrome oxidase complex with oxygen is reported at 550, 605, 744, and 830 nm at different cytochrome c:cytochrome oxidase ratios and different oxygen concentrations. In the absence of cytochrome c the time course of the reaction of the oxidase is well described by a triple exponential process at any of the measured wavelengths. The three processes are well resolved at high O2 levels (i.e. greater than 200 microM), where they reach first-order rate limits of 2.4 x 10(4), 7.5 x 10(3), and 650 s-1. When cytochrome c is added the oxidation of cytochrome a and one of the redox active cooper centers (CuA) are interrupted. The maximal effect of cytochrome c on the oxidation of the oxidase occurs at a c:aa3 ratio of 1. Cytochrome c reacts in a biphasic process with rates of up to 7 x 10(3) and 550 s-1 at high oxygen. The fast phase takes up 60% of the process, and this is independent of the cytochrome c:cytochrome oxidase ratio. The results are discussed in the context of a model in which electron entry into cytochrome oxidase from cytochrome c is via CuA, and cytochrome a functions to mediate electron transfer from CuA to the oxygen binding site. The role of CuA as initial electron acceptor in cytochrome c oxidase is related to its physical proximity to cytochrome c is the cytochrome c-cytochrome oxidase complex.  相似文献   

16.
Mixtures of cytochrome c oxidase and cytochrome c have been titrated by coulometrically generated reductant, methyl viologen radical cation, and physiological oxidant, O2. Charge distribution among the heme components in mixtures of these two redox enzymes has been evaluated by monitoring the absorbance changes at 605 and 550 nm. Differences in the pathway of the electron transfer process during a reduction cycle as compared to an oxidation cycle are indicated by variations found in the absorbance behavior of the heme components during successive reductive and oxidative titrations. It is apparent that the potential of the cytochrome a heme is dependent upon whether oxidation or reduction is occurring.  相似文献   

17.
The kinetics of the electron-transfer process which occurs between ferrocytochrome c and partially reduced mammalian cytochrome oxidase were studied by the rapid spectrophotometric techniques of stopped flow and temperature jump. Stopped-flow experiments showed initial very fast extinction changes at 605 nm and at 563 nm, indicating the simultaneous reduction of cytochrome a and oxidation of ferrocytochrome c. During this 'burst' phase, say the first 50 ms after mixing, it was invariably found that more cytochrome c had been oxidized than cytochrome a had been reduced. This discrepancy in electron equivalents may be accounted for by the rapid reduction of another redox site in the enzyme, possibly that associated with the extinction changes observed at 830 nm. During the incubation period in which the partially reduced oxidase was prepared, the rate of reduction of cytochrome a by ferrocytochrome c, at constant reactant concentrations, decreased with time. Temperature-jump experiments showed the presence of two relaxation processes. The faster of the two phases was assigned to the electron-transfer reaction between cytochrome c and cytochrome a. A study of the concentration-dependence of the reciprocal relaxation time for this phase yielded a rate constant of 9 X 10(6)M-1-s-1 for the electron transfer from cytochrome c to cytochrome a, and a value of 8.5 X 10(6)M-1-s-1 for the reverse reaction. The equilibrium constant for the electron-transfer reaction is therefore close to unity. The slower phase has been interpreted as signalling the transfer of electrons between cytochrome a and another redox site within the oxidase molecule.  相似文献   

18.
The first step in the catalytic cycle of cytochrome oxidase, the one-electron reduction of the fully oxidized enzyme, was investigated using a new photoactive binuclear ruthenium complex, [Ru(bipyrazine)2]2(quaterpyridine), (Ru2Z). The aim of the work was to examine differences in the redox kinetics resulting from pulsing the oxidase (i.e., fully reducing the enzyme followed by reoxidation) just prior to photoreduction. Recent reports indicate transient changes in the redox behavior of the metal centers upon pulsing. The new photoreductant has a large quantum yield, allowing the kinetics data to be acquired in a single flash. The net charge of +4 on Ru2Z allows it to bind electrostatically near CuA in subunit II of cytochrome oxidase. The photoexcited state Ru(II*) of Ru2Z is reduced to Ru(I) by the sacrificial electron donor aniline, and Ru(I) then reduces CuA with yields up to 60%. A stopped-flow-flash technique was used to form the pulsed state of cytochrome oxidase (the "OH" state) from several sources (bovine heart mitochondria, Rhodobacter sphaeroides, and Paracoccus denitrificans). Upon mixing the fully reduced anaerobic enzyme with oxygenated buffer containing Ru2Z, the oxidized OH state was formed within 5 ms. Ru2Z was then excited with a laser flash to inject one electron into CuA. Electron transfer from CuA --> heme a --> heme a3/CuB was monitored by optical spectroscopy, and the results were compared with the enzyme that had not been pulsed to the OH state. Pulsing had a significant effect in the case of the bovine oxidase, but this was not observed with the bacterial oxidases. Electron transfer from CuA to heme a occurred with a rate constant of 20,000 s-1 with the bovine cytochrome oxidase, regardless of whether the enzyme had been pulsed. However, electron transfer from heme a to the heme a3/CuB center in the pulsed form was 63% complete and occurred with biphasic kinetics with rate constants of 750 s-1 and 110 s-1 and relative amplitudes of 25% and 75%. In contrast, one-electron injection into the nonpulsed O form of the bovine oxidase was only 30% complete and occurred with monophasic kinetics with a rate constant of 90 s-1. This is the first indication of a difference between the fast form of the bovine oxidase and the pulsed OH form. No reduction of heme a3 is observed, indicating that CuB is the initial electron acceptor in the one-electron reduced pulsed bovine oxidase.  相似文献   

19.
M A Cusanovich  G Tollin 《Biochemistry》1980,19(14):3343-3347
Cytochrome c-552 from Chromatium vinosum is an unusual heme protein in that it contains two hemes and one flavin per molecule. To investigate whether intramolecular electron transfer occurs in this protein, we have studied its reduction by external photoreduced flavin by using pulsed-laser excitation. This approach allows us to measure reduction kinetics on the mirosecond time scale. Both fully reduced lumiflavin and lumiflavin semiquinone radical reduce cytochrome c-552 with second-order rate constants of approximately 1.4 x 10(6) M-1s-1 and 1.9 x 10(8) M-1 s-1, respectively. Kinetic and spectral data and the results of similar studies with riboflavin indicate that both the flavin and heme moieties of cytochrome c-552 are reduced simultaneously on a millisecond time scale, with the transient formation of a protein-bound flavin anion radical. This is suggested to be due to rapid intramolecular electron transfer. Further, steric restrictions play an important role in the reduction reaction. Studies were conducted on the redox processes following photolysis of CO-ferrocytochrome c-552 in which the flavin was partly oxidized to resolve the kinetics of electron transfer between the heme and flavin of cytochrome c-552. Based on these results, we conclude that intramolecular electron transfer from ferrous heme to oxidized flavin occurs with a first-order rate constant of greater than 1.4 x 10(6) s-1.  相似文献   

20.
Farver O  Chen Y  Fee JA  Pecht I 《FEBS letters》2006,580(14):3417-3421
The 1-methyl-nicotinamide radical (MNA(*)), produced by pulse radiolysis has previously been shown to reduce the Cu(A)-site of cytochromes aa(3), a process followed by intramolecular electron transfer (ET) to the heme a but not to the heme a(3) [Farver, O., Grell, E., Ludwig, B., Michel, H. and Pecht, I. (2006) Rates and equilibrium of CuA to heme a electron transfer in Paracoccus denitrificans cytochrome c oxidase. Biophys. J. 90, 2131-2137]. Investigating this process in the cytochrome ba(3) of Thermus thermophilus (Tt), we now show that MNA(*) also reduces Cu(A) with a subsequent ET to the heme b and then to heme a(3), with first-order rate constants 11200 s(-1), and 770 s(-1), respectively. The results provide clear evidence for ET among the three spectroscopically distinguishable centers and indicate that the binuclear a(3)-Cu(B) center can be reduced in molecules containing a single reduction equivalent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号