首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteolipid protein (PLP) is the most abundant transmembrane protein in myelin of the central nervous system. Conflicting models of PLP topology have been generated by computer predictions based on its primary sequence and experiments with purified myelin. We have examined the initial events in myelin synthesis, including the insertion and orientation of PLP in the plasma membrane, in rat oligodendrocytes which express PLP and the other myelin-specific proteins when cultured without neurons (Dubois-Dalcq, M., T. Behar, L. Hudson, and R. A. Lazzarini. 1986. J. Cell Biol. 102:384-392). These cells, identified by the presence of surface galactocerebroside, the major myelin glycolipid, were stained with six anti-peptide antibodies directed against hydrophilic or short hydrophobic sequences of PLP. Five of these anti-peptide antibodies specifically stained living oligodendrocytes. Staining was only seen approximately 10 d after PLP was first detected in the cytoplasm of fixed and permeabilized cells, suggesting that PLP is slowly transported from the RER to the cell surface. The presence of PLP domains on the extracellular surface was also confirmed by cleavage of such domains with proteases and by antibody-dependent complement-mediated lysis of living oligodendrocytes. Our results indicate that PLP has only two transmembrane domains and that the great majority of the protein, including its amino and carboxy termini, is located on the extracellular face of the oligodendrocyte plasma membrane. This disposition of the PLP molecule suggests that homophilic interactions between PLP molecules of apposed extracellular faces may mediate compaction of adjacent bilayers in the myelin sheath.  相似文献   

2.
Peptides according to amino-acid sequences of the N- and C-terminus of lipophilin (proteolipid protein, PLP) (Gly1-Phe15 = 1; Thr261-Phe276 = 6) and of the other four hydrophilic domains (Glu37-Leu60 = 2; Arg97-Leu112 = 3; Gly119-Gly127 = 3A; Trp144-Tyr156 = 3B; Lys191-Ala203 = 4; Asn222-Phe232 = 5) have been synthesized by the solid-phase Fmoc method, linked covalently to keyhole limpet hemocyanin (KLH) and used as antigens. Monospecific antibodies against these antigens were isolated by affinity chromatography. Each antibody recognized its epitope in isolated partially delipidated PLP with the ELISA technique, western blot, thin sections of paraffin embedded rat brains and in the plasma membrane of appropriately fixed/permeabilized rat oligodendrocytes in culture. After fixation with formaldehyde antipeptide 3A antibody stained intact non-permeabilized cells. Therefore the epitope 3A must be located on the extracellular surface of the membrane. This is in full support of our previous biochemical results on the orientation of lipophilin in the myelin membrane.  相似文献   

3.
4.
Sialoadhesin is a macrophage-restricted transmembrane glycoprotein of 185 kDa that mediates cell–cell interactions through recognition of Neu5Acα2,3Gal in glycoconjugates. The extracellular region of sialoadhesin is composed of seventeen immunoglobulin-like domains, of which the amino-terminal two are highly-related structurally and functionally to the amino-terminal domains of CD22, myelin associated glycoprotein and CD33. These proteins, collectively known as the sialoadhesin family, are able to mediate sialic acid-dependent binding with distinct specificities for both the type of sialic acid and its linkage to subterminal sugars. In this review we discuss our recent studies on sialoadhesin and suggest how this molecule may contribute to a range of macrophage functions, both under normal conditions as well as during inflammatory reactions. Abbreviations: Ig, immunoglobulin; CEA, carcinoembryonic antigen; MAG, myelin associated glycoprotein; SMP Schwann cell myelin protein; mAb, monoclonal antibody; Chinese hamster ovary (CHO); UTR, untranslated region This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

5.
Proteolipid protein (PLP) is a major structural component of central nervous system (CNS) myelin. Evidence exists that PLP or the related splice variant DM-20 protein may also play a role in early development of oligodendrocytes (OLs), the cells that form CNS myelin. There are several naturally occurring mutations of the PLP gene that have been used to study the roles of PLP both in myelination and in OL differentiation. The PLP mutation in the jimpy (jp) mouse has been extensively characterized. These mutants produce no detectable PLP and exhibit an almost total lack of CNS myelin. Additionally, most OLs in affected animals die prematurely, before producing myelin sheaths. We have studied cultures of jp CNS in order to understand whether OL survival and myelin formation require production of normal PLP. When grown in primary cultures, jp OLs mimic the relatively undifferentiated phenotype of jp OLs in vivo. They produce little myelin basic protein (MBP), never immunostain for PLP, and rarely elaborate myelin-like membranes. We report here that jp OLs grown in medium conditioned by normal astrocytes synthesize MBP and incorporate it into membrane expansions. Some jp OLs grown in this way stain with PLP antibodies, including an antibody to a peptide sequence specific for the mutant jp PLP. This study shows that: (1) an absence of PLP does not necessarily lead to dysmyelination or OL death; (2) OLs are capable of translating at least a portion of the predicted jp PLP; (3) the abnormal PLP made in the cultured jp cells is not toxic to OLs. These results also highlight the importance of environmental factors in controlling OL phenotype. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
Paralytic tremor (Plp-pt) is a missense mutation of the myelin proteolipid gene (Plp) in rabbits. The myelin yield in the Plp-pt brain is reduced and the protein and lipid composition of central nervous system (CNS) myelin is abnormal. We studied the intracellular transport of the normal and Plp-pt mutant PLP and DM-20 in transiently transfected Cos-7 cells. While the mutant PLP accumulates in the rough endoplasmic reticulum and does not reach the plasma membrane, the spliced isoform of PLP, mutant DM-20, is normally transported to the cell surface and integrated into the membrane. Analysis of rabbit sciatic nerves revealed that concentration of peripheral nervous system (PNS) myelin proteins is normal in Plp-pt myelin. In the PNS like in the CNS, the level of Plp gene products is subnormal. But this does not affect myelination, in the PNS where PLP, present in low concentration, is not a structural component of compact myelin. The normal level of Plp gene expression in Schwann cells is low and these results suggest that, in the Plp-pt PNS, Schwann cell function is not affected by the deficiency in PLP and/or the impairment of intracellular PLP transport. Special issue dedicated to Dr Marion E. Smith.  相似文献   

7.
Myelin, the multilayered membrane which surrounds nerve axons, is the only example of a membranous structure where contact between extracellular surfaces of membrane from the same cell occurs. The two major glycosphingolipids (GSLs) of myelin, galactosylceramide (GalC) and its sulfated form, galactosylceramide I(3)-sulfate (SGC), can interact with each other by trans carbohydrate-carbohydrate interactions across apposed membranes. They occur in detergent-insoluble lipid rafts containing kinases and thus may be located in membrane signaling domains. These signaling domains may contact each other across apposed extracellular membranes, thus forming glycosynapses in myelin. Multivalent forms of these carbohydrates, GalC/SGC-containing liposomes, or galactose conjugated to albumin, have been added to cultured oligodendrocytes (OLs) to mimic interactions which might occur between these signaling domains when OL membranes or the extracellular surfaces of myelin come into contact. These interactions between multivalent carbohydrate and the OL membrane cause co-clustering or redistribution of myelin GSLs, GPI-linked proteins, several transmembrane proteins, and signaling proteins to the same membrane domains. They also cause depolymerization of the cytoskeleton, indicating that they cause transmission of a signal across the membrane. Their effects have similarities to those of anti-GSL antibodies on OLs, shown by others, suggesting that the multivalent carbohydrate interacts with GalC/SGC in the OL membrane. Communication between the myelin sheath and the axon regulates both axonal and myelin function and is necessary to prevent neurodegeneration. Participation of transient GalC and SGC interactions in glycosynapses between the apposed extracellular surfaces of mature compact internodal myelin might allow transmission of signals throughout the myelin sheath and thus facilitate myelin-axonal communication.  相似文献   

8.
S Y Shaw  R A Laursen  M B Lees 《FEBS letters》1989,250(2):306-310
The existence of disulfide crosslinks limits the number of possible folded structures a protein can assume. Thus localization of disulfide and thiol groups is a key to understanding the conformation and orientation of myelin proteolipid protein (PLP) in the myelin membrane. [14C]Carboxamidomethylated PLP was fragmented with chymotrypsin, and the resulting mixture was partially separated by reversed-phase HPLC. Purified 14C-labeled peptides and a disulfide containing peptide were characterized by amino acid analysis. These experiments showed that Cys-32 and Cys-34 are free thiols, and are presumably on the interior of the cell or within the membrane bilayer, and that Cys-200 and Cys-219 are joined by a disulfide bond, and are probably located on the extracellular face of the membrane. Sequence analysis experiments indicate that Cys-5, Cys-6 and Cys-9 are linked by disulfides, probably to other parts of the protein on the extracellular face of the membrane.  相似文献   

9.
To test sodium channel structural models, we defined the epitopes for nineteen independently cloned monoclonal antibodies previously generated against purified, detergent-solubilized, adult rat skeletal muscle sodium channel protein using channel proteolysis, synthetic peptides, and fusion proteins. All identified epitopes were continuous and unique to the skeletal muscle subtype α-subunit. Of the nineteen independent clones, seventeen had epitopes located either in the origin of the amino-terminus or in the interdomain 2–3 region while only two antibodies had epitopes located in the mid-portion of the interdomain 1–2 region. No immunogenic regions were identified on the α-subunit's extracellular regions, interdomain 3–4 segment, or carboxyl-terminus or on channel β-subunits. While immune tolerance may explain the lack of immunogenicity of extracellular regions, the lack of immunogenicity of most of the channel's cytoplasmic mass may be due to segment inaccessibility from organization of these regions as globular domains, to insertion of parts of these regions into the membrane phase, or to interaction with other protein elements. The definition of monoclonal antibody epitopes allows us to reinterpret previously reported monoclonal antibody competition studies, providing independent support for our model of sodium channel cytoplasmic domain structure. In addition, these data suggest additional testable hypotheses concerning the interactions of the sodium channel amino- and carboxyl-termini with each other as well as with other protein elements. Received: 4 March 1998/Revised: 15 May 1998  相似文献   

10.
Summary The major membrane protein of the bovine lens fiber cell is a 26-kilodalton (kD) protein (MP26), which appears to be a component of the extensive junctional specializations found in these cells. To examine the arrangement of MP26 within the junctional membranes, various proteases were incubated with fiber cell membranes that had been isolated with or without urea and/or detergents. These membranes were analyzed with electron microscopy and SDS-PAGE to determine whether the junctional specializations or the proteins were altered by proteolysis. Microscopy revealed no obvious structural changes. Electrophoresis showed that chymotrypsin, papain, and trypsin degraded MP26 to 21–22 kD species. A variety of protease treatments, including overnight digestions, failed to generate additional proteolysis. Regions on MP26 which were sensitive to these three proteases overlapped. Smaller peptides were cleaved from MP26 with V8 protease and carboxypptidases A and B. Protein domains cleaved by these proteases also overlapped with regions sensitive to chymotrypsin, papain, and trypsin. Specific inhibition of the carboxypeptidases suggested that cleavage obtained with these preparations was not likely due to contaminating endoproteases. Since antibodies are not thought to readily penetrate the 2–3 nm extracellular gap in the fiber cell junctions, antibodies to MP26 were used to analyze the location of the protease-sensitive domains. Antisera were applied to control (26 kD) and proteolyzed (22 kD) membranes, with binding being evaluated by means of ELISA reactions on intact membranes. Antibody labeling was also done following SDS-PAGE and transfer to derivatized paper. Both assays showed a significant decrease in binding following proteolysis, with the 22 kD product showing no reaction with the anti-MP26 sera. These investigations suggest that MP26 is arranged with approximately fourfifths of the primary sequence “protected” by the lipid bilayer and the narrow extracellular gap. One-fifth of the molecule, including the C-terminus, appears to be exposed on the cytoplasmic side of the membrane.  相似文献   

11.
Computer-generated "hydropathic" profiles were constructed for graphic comparison of the amino acid sequences for P2 protein, 18.5 kilodalton (kDa) myelin basic protein (BP), and myelin proteolipid protein (PLP). Profiles were also obtained for cytochrome b5, a membrane protein known to be capable of reversible association with lipid bilayers and of a size comparable to that of the myelin BPs. Analysis of the PLP sequence produced profiles generally compatible with the suggestions that PLP has three transbilayer and two bilayer intercalating segments. Profiles for P2 and 18.5 kDa BP were found to contain hydrophilic segments separated by relatively short hydrophobic regions. Whereas hydropathic indices in hydrophobic regions of P2, 18.5 kDa BP, and PLP fall in the value ranges recently reported for cores of globular proteins and intrabilayer domains of membrane proteins, hydrophobic sections of P2 and 18.5 kDa BP have hydropathic indices similar to those in the hydrophobic core (transprotein) regions of globular proteins. None of them are comparable to the region of cytochrome b5 known to anchor that protein in its membrane or to the segments of PLP sequence proposed as intrabilayer domains. This comparison suggests that neither BP has structural characteristics compatible with insertion into the hydrocarbon core of the myelin lipid bilayer, a conclusion that is consistent with a recently published study that identified the bilayer penetrating proteins of myelin with a hydrophobic probe. The above findings suggest an enhancement for some details of myelin architecture and a cautious approach to interpreting data for BP intercalation into bilayers.  相似文献   

12.
 Splenectomy and corticosteroids are the treatment of choice for patients with immune thrombocytopenic purpura (ITP). However, for the 10%–15% of patients who do not respond to conventional therapy, high-dose i.v. IgG can induce life-saving transient responses. The benefits of i.v. IgG have been attributed to Fc receptor blockade; however, the involvement of the individual Fc receptors for IgG (FcγR) in ITP remain to be more completely defined. Recently a mAb, designated mAb H22, which recognizes an epitope on FcγRI (CD64) outside the ligand-binding domain, was humanized. Because mAb H22 is a human IgG1 and FcγRI has a high affinity for human IgG1 antibodies, we predicted that mAb H22 would bind to the FcγRI ligand-binding site through its Fc domain and to its external FcγRI epitope through both Fab domains. These studies demonstrate that mAb H22 blocked FcγRI-mediated phagocytosis of opsonized red blood cells more effectively than an irrelevant IgG. Moreover, cross-linking FcγRI with mAb H22 down-modulated FcγRI expression on monocytes, an effect seen within 2 h. Accepted: 14 October 1997  相似文献   

13.
14.
Since it was first described 25 years ago, phosphorylation has come to be recognized as a widespread and dynamic post-translational modification of myelin protein. In this review, the phosphorylation characteristics of myelin basic protein, protein zero (P0), myelin-associated glycoprotein and 2′3′ cyclic nucleotide 3′-phosphodiesterase are summarized. Emphasis is placed on recent advances in our knowledge concerning the protein kinases involved and the sites, of phosphorylation in the amino acid sequences, where known. The possible roles of myelin protein phosphorylation in modulating myelin structure, the process of myelin assembly and mediation of signal transduction events are discussed. Special issue dedicated to Dr. Marion E. Smith.  相似文献   

15.
Myelin Membrane Structure and Composition Correlated: A Phylogenetic Study   总被引:8,自引:4,他引:4  
We have correlated myelin membrane structure with biochemical composition in the CNS and PNS of a phylogenetic series of animals, including elasmobranchs, teleosts, amphibians, and mammals. X-ray diffraction patterns were recorded from freshly dissected, unfixed tissue and used to determine the thicknesses of the liquid bilayer and the widths of the spaces between membranes at their cytoplasmic and extracellular appositions. The lipid and protein compositions of myelinated tissue from selected animals were determined by TLC and sodium dodecyl sulfate-polyacrylamide gel electrophoresis/immunoblotting, respectively. We found that (1) there were considerable differences in lipid (particularly glycolipid) composition, but no apparent phylogenetic trends; (2) the lipid composition did not seem to affect either the bilayer thickness, which was relatively constant, or the membrane separation; (3) the CNS of elasmobranch and teleost and the PNS of all four classes contained polypeptides that were recognized by antibodies against myelin P0 glycoprotein; (4) antibodies against proteolipid protein (PLP) were recognized only by amphibian and mammalian CNS; (5) wide extracellular spaces (ranging from 36 to 48 A) always correlated with the presence of P0-immunoreactive protein; (6) the narrowest extracellular spaces (approximately 31 A) were observed only in PLP-containing myelin; (7) the cytoplasmic space in PLP-containing myelin (approximately 31 A) averaged approximately 5 A less than that in P0-containing myelin; (8) even narrower cytoplasmic spaces (approximately 24 A) were measured when both P0 and 11-13-kilodalton basic protein were detected; (9) proteins immunoreactive to antibodies against myelin P2 basic protein were present in elasmobranch and teleost CNS and/or PNS, and in mammalian PNS, but not in amphibian tissues; and (10) among mammalian PNS myelins, the major difference in structure was a variation in membrane separation at the cytoplasmic apposition. These findings demonstrate which features of myelin structure have remained constant and which have become specifically altered as myelin composition changed during evolutionary development.  相似文献   

16.
Summary Several conflicting models have been proposed for the membrane arrangement of the major myelin proteolipid (PLP). We have compared features of the sequence of PLP with those of other eukaryotic integral membrane proteins, with the view of identifying the most likely transmembrane topology. A new, simple model is suggested, which features four hydrophobic -helices spanning the whole thickness of the lipid bilayer. Its orientation may be such that both the N-and C-termini face the cytosol. None of the biochemical, biophysical or immunological experiments hitherto reported provides incontrovertible evidence against the model. The effect or absence thereof of various PLP mutations is discussed in the frame, of the proposed 4-helix topology.  相似文献   

17.
Myelin is a special multilamellar structure involved in various functions in the nervous system. In the central nervous system, the oligodendrocyte (OL) produces myelin and has a unique morphology. OLs have a dynamic membrane sorting system associated with cytoskeletal organization, which aids in the production of myelin. Recently, it was reported that the assembly and disassembly of actin filaments is crucial for myelination. However, the partner myosin molecule which associates with actin filaments during the myelination process has not yet been identified. One candidate myosin is unconventional myosin ID (Myo1d) which is distributed throughout central nervous system myelin; however, its function is still unclear. We report here that Myo1d is expressed during later stages of OL differentiation, together with myelin proteolipid protein (PLP). In addition, Myo1d is distributed at the leading edge of the myelin-like membrane in cultured OL, colocalizing mainly with actin filaments, 2′,3′-cyclic nucleotide phosphodiesterase and partially with PLP. Myo1d-knockdown with specific siRNA induces significant morphological changes such as the retraction of processes and degeneration of myelin-like membrane, and finally apoptosis. Furthermore, loss of Myo1d by siRNA results in the impairment of intracellular PLP transport. Together, these results suggest that Myo1d may contribute to membrane dynamics either in wrapping or transporting of myelin membrane proteins during formation and maintenance of myelin.  相似文献   

18.
Membrane properties such as potentials (intracellular, extracellular, electrotonic) and axonal excitability indices (strength–duration and charge–duration curves, strength–duration time constants, rheobasic currents, recovery cycles) can now be measured in healthy subjects and patients with demyelinating neuropathies. They are regarded here in two cases of simultaneously reduced paranodal seal resistance and myelin lamellae in one to three consecutive internodes of human motor nerve fiber. The investigations are performed for 70 and 96% myelin reduction values. The first value is not sufficient to develop a conduction block, but the second leads to a block and the corresponding demyelinations are regarded as mild and severe. For both the mild and severe demyelinations, the paranodally internodally focally demyelinated cases (termed as PIFD1, PIFD2, and PIFD3, respectively, with one, two, and three demyelinated internodes) are simulated using our previous double-cable model of the fiber. The axon model consists of 30 nodes and 29 internodes. The membrane property abnormalities obtained can be observed in vivo in patients with demyelinating forms of Guillain-Barré syndrome (GBS) and multifocal motor neuropathy (MMN). The study confirms that focal demyelinations are specific indicators for acquired demyelinating neuropathies. Moreover, the following changes have been calculated in our previous papers: (1) uniform reduction of myelin thickness in all internodes (Stephanova et al. in Clin Neurophysiol 116: 1153–1158, 2005); (2) demyelination of all paranodal regions (Stephanova and Daskalova in Clin Neurophysiol 116: 1159–1166, 2005a); (3) simultaneous reduction of myelin thickness and paranodal demyelination in all internodes (Stephanova and Daskalova in Clin Neurophysiol 116: 2334–2341, 2005b); and (4) reduction of myelin thickness of up to three internodes (Stephanova et al., in J Biol Phys, 2006a,b, DOI: 10.1007/s10867-005-9001-9; DOI: 10.1007/s10867-006-9008-x). The mem- brane property abnormalities obtained in the homogenously demyelinated cases are quite different and abnormally greater than those in the case investigated here of simultaneous reduction in myelin thickness and paranodal demyelination of up to three internodes. Our previous and present results show that unless focal demyelination is severe enough to cause outright conduction block, changes are so slight as to be essentially indistinguishable from normal values. Consequently, the excitability-based approaches that have shown strong potential as diagnostic tools in systematically demyelinated conditions may not be useful in detecting mild focal demyelinations, independently of whether they are internodal, paranodal, or paranodal internodal.  相似文献   

19.
The ability of mature oligodendrocytes (OLs) to recover from insult is important in repair of damage following demyelination. Since regulation of Ca2+ levels within cells plays a critical role in function and survival, this study investigates the effects of changes in cytoplasmic Ca2+ on the viability of cultured mouse OLs and their ability to maintain membrane sheets. Mature OLs in culture respond rapidly to the calcium ionophore A23187 and promptly return to resting Ca2+ levels when the ionophore is removed. Longer exposure to 0.1–1.0 μM A23187 leads to microtubule disruption, membrane sheet retraction and eventual cell death; nuclear lysis occurs in many of the OLs, as reported by Scolding, et al. (1) for rat OLs. In our cultures, mature OLs were more susceptible to nuclear lysis than were immature OLs or astroglia. Release of intracellular Ca2+ stores with thapsigargin at 5–10 μM also leads to retraction of membrane sheets. Following 6 hours of continuous exposure to thapsigargin, the effects on membrane sheets are reversed over the next 12 hours. After 18 hours of continuous exposure to thapsigargin, only occasional nuclear lysis is observed, but a number of the mature OLs show signs of DNA fragmentation, indicating that apoptotic death is occurring. Our results suggest that mature OLs cannot survive a prolonged influx of extracellular calcium as readily as immature OLs and astroglia, but have mechanisms to withstand similar increases in cytoplasmic Ca2+ following sustained release of intracellular stores. Special issue dedicated to Dr. Marion E. Smith.  相似文献   

20.
Myelin is phagocytosed by microglia (MG) and to a somewhat lesser extent by peritoneal macrophages (Mϕ) in a dose- and time-dependent manner. In serum-free medium opsonization of rat myelin significantly enhances binding and ingestion, more by rat macrophages than by microglia. Furthermore the requirement for opsonization is not restricted to anti-myelin antibodies as the difference in the rate of myelin uptake by macrophages is largely eliminated when they are cultured in 10% fetal calf serum. Binding and ingestion of both myelin and opsonized myelin are inhibited to the same dose-dependent extent by zymosan, oxidized LDL, peroxidase-antiperoxidase (PAP), opsonized erythrocytes and the anti-CR3 antibody OX42 implicating lectin, scavenger, Fc and complement receptors in the phagocytosis of myelin. Thus while the differential uptake of myelin and opsonized myelin by macrophages would indicate a central role for the Fc receptor, binding inhibition studies implicate a range of membrane receptors which would obviate the need for antigen-antibody complexing to stimulate phagocytosis. Uptake of both myelin preparations by macrophages or microglia is stimulated by interferon-γ and inhibited by TGF-β, and the process of ingestion results in increased nitric oxide release and decreased superoxide production, the effect being more pronounced when myelin is opsonized. Special issue dedicated to Dr. Marion E. Smith.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号