首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 457 毫秒
1.
Proteolipid protein (PLP) is the most abundant transmembrane protein in myelin of the central nervous system. Conflicting models of PLP topology have been generated by computer predictions based on its primary sequence and experiments with purified myelin. We have examined the initial events in myelin synthesis, including the insertion and orientation of PLP in the plasma membrane, in rat oligodendrocytes which express PLP and the other myelin-specific proteins when cultured without neurons (Dubois-Dalcq, M., T. Behar, L. Hudson, and R. A. Lazzarini. 1986. J. Cell Biol. 102:384-392). These cells, identified by the presence of surface galactocerebroside, the major myelin glycolipid, were stained with six anti-peptide antibodies directed against hydrophilic or short hydrophobic sequences of PLP. Five of these anti-peptide antibodies specifically stained living oligodendrocytes. Staining was only seen approximately 10 d after PLP was first detected in the cytoplasm of fixed and permeabilized cells, suggesting that PLP is slowly transported from the RER to the cell surface. The presence of PLP domains on the extracellular surface was also confirmed by cleavage of such domains with proteases and by antibody-dependent complement-mediated lysis of living oligodendrocytes. Our results indicate that PLP has only two transmembrane domains and that the great majority of the protein, including its amino and carboxy termini, is located on the extracellular face of the oligodendrocyte plasma membrane. This disposition of the PLP molecule suggests that homophilic interactions between PLP molecules of apposed extracellular faces may mediate compaction of adjacent bilayers in the myelin sheath.  相似文献   

2.
Peptides according to amino-acid sequences of the N- and C-terminus of lipophilin (proteolipid protein, PLP) (Gly1-Phe15 = 1; Thr261-Phe276 = 6) and of the other four hydrophilic domains (Glu37-Leu60 = 2; Arg97-Leu112 = 3; Gly119-Gly127 = 3A; Trp144-Tyr156 = 3B; Lys191-Ala203 = 4; Asn222-Phe232 = 5) have been synthesized by the solid-phase Fmoc method, linked covalently to keyhole limpet hemocyanin (KLH) and used as antigens. Monospecific antibodies against these antigens were isolated by affinity chromatography. Each antibody recognized its epitope in isolated partially delipidated PLP with the ELISA technique, western blot, thin sections of paraffin embedded rat brains and in the plasma membrane of appropriately fixed/permeabilized rat oligodendrocytes in culture. After fixation with formaldehyde antipeptide 3A antibody stained intact non-permeabilized cells. Therefore the epitope 3A must be located on the extracellular surface of the membrane. This is in full support of our previous biochemical results on the orientation of lipophilin in the myelin membrane.  相似文献   

3.
S Y Shaw  R A Laursen  M B Lees 《FEBS letters》1989,250(2):306-310
The existence of disulfide crosslinks limits the number of possible folded structures a protein can assume. Thus localization of disulfide and thiol groups is a key to understanding the conformation and orientation of myelin proteolipid protein (PLP) in the myelin membrane. [14C]Carboxamidomethylated PLP was fragmented with chymotrypsin, and the resulting mixture was partially separated by reversed-phase HPLC. Purified 14C-labeled peptides and a disulfide containing peptide were characterized by amino acid analysis. These experiments showed that Cys-32 and Cys-34 are free thiols, and are presumably on the interior of the cell or within the membrane bilayer, and that Cys-200 and Cys-219 are joined by a disulfide bond, and are probably located on the extracellular face of the membrane. Sequence analysis experiments indicate that Cys-5, Cys-6 and Cys-9 are linked by disulfides, probably to other parts of the protein on the extracellular face of the membrane.  相似文献   

4.
Paralytic tremor (Plp-pt) is a missense mutation of the myelin proteolipid gene (Plp) in rabbits. The myelin yield in the Plp-pt brain is reduced and the protein and lipid composition of central nervous system (CNS) myelin is abnormal. We studied the intracellular transport of the normal and Plp-pt mutant PLP and DM-20 in transiently transfected Cos-7 cells. While the mutant PLP accumulates in the rough endoplasmic reticulum and does not reach the plasma membrane, the spliced isoform of PLP, mutant DM-20, is normally transported to the cell surface and integrated into the membrane. Analysis of rabbit sciatic nerves revealed that concentration of peripheral nervous system (PNS) myelin proteins is normal in Plp-pt myelin. In the PNS like in the CNS, the level of Plp gene products is subnormal. But this does not affect myelination, in the PNS where PLP, present in low concentration, is not a structural component of compact myelin. The normal level of Plp gene expression in Schwann cells is low and these results suggest that, in the Plp-pt PNS, Schwann cell function is not affected by the deficiency in PLP and/or the impairment of intracellular PLP transport. Special issue dedicated to Dr Marion E. Smith.  相似文献   

5.
6.
Sialoadhesin is a macrophage-restricted transmembrane glycoprotein of 185 kDa that mediates cell–cell interactions through recognition of Neu5Acα2,3Gal in glycoconjugates. The extracellular region of sialoadhesin is composed of seventeen immunoglobulin-like domains, of which the amino-terminal two are highly-related structurally and functionally to the amino-terminal domains of CD22, myelin associated glycoprotein and CD33. These proteins, collectively known as the sialoadhesin family, are able to mediate sialic acid-dependent binding with distinct specificities for both the type of sialic acid and its linkage to subterminal sugars. In this review we discuss our recent studies on sialoadhesin and suggest how this molecule may contribute to a range of macrophage functions, both under normal conditions as well as during inflammatory reactions. Abbreviations: Ig, immunoglobulin; CEA, carcinoembryonic antigen; MAG, myelin associated glycoprotein; SMP Schwann cell myelin protein; mAb, monoclonal antibody; Chinese hamster ovary (CHO); UTR, untranslated region This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

7.
Summary The major membrane protein of the bovine lens fiber cell is a 26-kilodalton (kD) protein (MP26), which appears to be a component of the extensive junctional specializations found in these cells. To examine the arrangement of MP26 within the junctional membranes, various proteases were incubated with fiber cell membranes that had been isolated with or without urea and/or detergents. These membranes were analyzed with electron microscopy and SDS-PAGE to determine whether the junctional specializations or the proteins were altered by proteolysis. Microscopy revealed no obvious structural changes. Electrophoresis showed that chymotrypsin, papain, and trypsin degraded MP26 to 21–22 kD species. A variety of protease treatments, including overnight digestions, failed to generate additional proteolysis. Regions on MP26 which were sensitive to these three proteases overlapped. Smaller peptides were cleaved from MP26 with V8 protease and carboxypptidases A and B. Protein domains cleaved by these proteases also overlapped with regions sensitive to chymotrypsin, papain, and trypsin. Specific inhibition of the carboxypeptidases suggested that cleavage obtained with these preparations was not likely due to contaminating endoproteases. Since antibodies are not thought to readily penetrate the 2–3 nm extracellular gap in the fiber cell junctions, antibodies to MP26 were used to analyze the location of the protease-sensitive domains. Antisera were applied to control (26 kD) and proteolyzed (22 kD) membranes, with binding being evaluated by means of ELISA reactions on intact membranes. Antibody labeling was also done following SDS-PAGE and transfer to derivatized paper. Both assays showed a significant decrease in binding following proteolysis, with the 22 kD product showing no reaction with the anti-MP26 sera. These investigations suggest that MP26 is arranged with approximately fourfifths of the primary sequence “protected” by the lipid bilayer and the narrow extracellular gap. One-fifth of the molecule, including the C-terminus, appears to be exposed on the cytoplasmic side of the membrane.  相似文献   

8.
Proteolipid protein (PLP) is a major structural component of central nervous system (CNS) myelin. Evidence exists that PLP or the related splice variant DM-20 protein may also play a role in early development of oligodendrocytes (OLs), the cells that form CNS myelin. There are several naturally occurring mutations of the PLP gene that have been used to study the roles of PLP both in myelination and in OL differentiation. The PLP mutation in the jimpy (jp) mouse has been extensively characterized. These mutants produce no detectable PLP and exhibit an almost total lack of CNS myelin. Additionally, most OLs in affected animals die prematurely, before producing myelin sheaths. We have studied cultures of jp CNS in order to understand whether OL survival and myelin formation require production of normal PLP. When grown in primary cultures, jp OLs mimic the relatively undifferentiated phenotype of jp OLs in vivo. They produce little myelin basic protein (MBP), never immunostain for PLP, and rarely elaborate myelin-like membranes. We report here that jp OLs grown in medium conditioned by normal astrocytes synthesize MBP and incorporate it into membrane expansions. Some jp OLs grown in this way stain with PLP antibodies, including an antibody to a peptide sequence specific for the mutant jp PLP. This study shows that: (1) an absence of PLP does not necessarily lead to dysmyelination or OL death; (2) OLs are capable of translating at least a portion of the predicted jp PLP; (3) the abnormal PLP made in the cultured jp cells is not toxic to OLs. These results also highlight the importance of environmental factors in controlling OL phenotype. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
Myelin proteolipid protein--the first 50 years   总被引:1,自引:0,他引:1  
Myelin proteolipid protein (PLP), the most abundant protein of central nervous system (CNS) myelin, is a hydrophobic integral membrane protein. Because of its physical properties, which make it difficult to work with, progress towards determining the exact function(s) and disease associations of myelin PLP has been slow. However, recent molecular biology advances have given new life to investigations of PLP, and suggest that it has multiple functions within myelin and is of importance in several neurological disorders.  相似文献   

10.
Myelin, the multilayered membrane which surrounds nerve axons, is the only example of a membranous structure where contact between extracellular surfaces of membrane from the same cell occurs. The two major glycosphingolipids (GSLs) of myelin, galactosylceramide (GalC) and its sulfated form, galactosylceramide I(3)-sulfate (SGC), can interact with each other by trans carbohydrate-carbohydrate interactions across apposed membranes. They occur in detergent-insoluble lipid rafts containing kinases and thus may be located in membrane signaling domains. These signaling domains may contact each other across apposed extracellular membranes, thus forming glycosynapses in myelin. Multivalent forms of these carbohydrates, GalC/SGC-containing liposomes, or galactose conjugated to albumin, have been added to cultured oligodendrocytes (OLs) to mimic interactions which might occur between these signaling domains when OL membranes or the extracellular surfaces of myelin come into contact. These interactions between multivalent carbohydrate and the OL membrane cause co-clustering or redistribution of myelin GSLs, GPI-linked proteins, several transmembrane proteins, and signaling proteins to the same membrane domains. They also cause depolymerization of the cytoskeleton, indicating that they cause transmission of a signal across the membrane. Their effects have similarities to those of anti-GSL antibodies on OLs, shown by others, suggesting that the multivalent carbohydrate interacts with GalC/SGC in the OL membrane. Communication between the myelin sheath and the axon regulates both axonal and myelin function and is necessary to prevent neurodegeneration. Participation of transient GalC and SGC interactions in glycosynapses between the apposed extracellular surfaces of mature compact internodal myelin might allow transmission of signals throughout the myelin sheath and thus facilitate myelin-axonal communication.  相似文献   

11.
We have prepared a lambda gt10 cDNA library with the mRNA isolated from fetal calf brains which were actively myelinating. Using two oligonucleotides made according to the known amino acid sequence of myelin proteolipid protein (PLP or lipophilin), we have isolated several cDNA clones for this major intrinsic membrane protein of myelin. One of these clones, designated as pLP1, is found to contain 444 bp of coding sequence for the C-terminal half of PLP and 486 bp of 3' untranslated sequence. Using pLP1 as a hybridization probe, we have studied the regulation of PLP at the mRNA level during rat brain development. Our results show that the relative amounts of mRNA for PLP and that for the major extrinsic protein of the myelin membrane, myelin basic protein, increase coordinately during the course of myelination in the brain.  相似文献   

12.
In the central nervous system, lipid-protein interactions are pivotal for myelin maintenance, as these interactions regulate protein transport to the myelin membrane as well as the molecular organization within the sheath. To improve our understanding of the fundamental properties of myelin, we focused here on the lateral membrane organization and dynamics of peripheral membrane protein 18.5-kDa myelin basic protein (MBP) and transmembrane protein proteolipid protein (PLP) as a function of the typical myelin lipids galactosylceramide (GalC), and sulfatide, and exogenous factors such as the extracellular matrix proteins laminin-2 and fibronectin, employing an oligodendrocyte cell line, selectively expressing the desired galactolipids. The dynamics of MBP were monitored by z-scan point fluorescence correlation spectroscopy (FCS) and raster image correlation spectroscopy (RICS), while PLP dynamics in living cells were investigated by circular scanning FCS. The data revealed that on an inert substrate the diffusion rate of 18.5-kDa MBP increased in GalC-expressing cells, while the diffusion coefficient of PLP was decreased in sulfatide-containing cells. Similarly, when cells were grown on myelination-promoting laminin-2, the lateral diffusion coefficient of PLP was decreased in sulfatide-containing cells. In contrast, PLP''s diffusion rate increased substantially when these cells were grown on myelination-inhibiting fibronectin. Additional biochemical analyses revealed that the observed differences in lateral diffusion coefficients of both proteins can be explained by differences in their biophysical, i.e., galactolipid environment, specifically with regard to their association with lipid rafts. Given the persistence of pathological fibronectin aggregates in multiple sclerosis lesions, this fundamental insight into the nature and dynamics of lipid-protein interactions will be instrumental in developing myelin regenerative strategies.  相似文献   

13.
Computer-generated "hydropathic" profiles were constructed for graphic comparison of the amino acid sequences for P2 protein, 18.5 kilodalton (kDa) myelin basic protein (BP), and myelin proteolipid protein (PLP). Profiles were also obtained for cytochrome b5, a membrane protein known to be capable of reversible association with lipid bilayers and of a size comparable to that of the myelin BPs. Analysis of the PLP sequence produced profiles generally compatible with the suggestions that PLP has three transbilayer and two bilayer intercalating segments. Profiles for P2 and 18.5 kDa BP were found to contain hydrophilic segments separated by relatively short hydrophobic regions. Whereas hydropathic indices in hydrophobic regions of P2, 18.5 kDa BP, and PLP fall in the value ranges recently reported for cores of globular proteins and intrabilayer domains of membrane proteins, hydrophobic sections of P2 and 18.5 kDa BP have hydropathic indices similar to those in the hydrophobic core (transprotein) regions of globular proteins. None of them are comparable to the region of cytochrome b5 known to anchor that protein in its membrane or to the segments of PLP sequence proposed as intrabilayer domains. This comparison suggests that neither BP has structural characteristics compatible with insertion into the hydrocarbon core of the myelin lipid bilayer, a conclusion that is consistent with a recently published study that identified the bilayer penetrating proteins of myelin with a hydrophobic probe. The above findings suggest an enhancement for some details of myelin architecture and a cautious approach to interpreting data for BP intercalation into bilayers.  相似文献   

14.
To test sodium channel structural models, we defined the epitopes for nineteen independently cloned monoclonal antibodies previously generated against purified, detergent-solubilized, adult rat skeletal muscle sodium channel protein using channel proteolysis, synthetic peptides, and fusion proteins. All identified epitopes were continuous and unique to the skeletal muscle subtype α-subunit. Of the nineteen independent clones, seventeen had epitopes located either in the origin of the amino-terminus or in the interdomain 2–3 region while only two antibodies had epitopes located in the mid-portion of the interdomain 1–2 region. No immunogenic regions were identified on the α-subunit's extracellular regions, interdomain 3–4 segment, or carboxyl-terminus or on channel β-subunits. While immune tolerance may explain the lack of immunogenicity of extracellular regions, the lack of immunogenicity of most of the channel's cytoplasmic mass may be due to segment inaccessibility from organization of these regions as globular domains, to insertion of parts of these regions into the membrane phase, or to interaction with other protein elements. The definition of monoclonal antibody epitopes allows us to reinterpret previously reported monoclonal antibody competition studies, providing independent support for our model of sodium channel cytoplasmic domain structure. In addition, these data suggest additional testable hypotheses concerning the interactions of the sodium channel amino- and carboxyl-termini with each other as well as with other protein elements. Received: 4 March 1998/Revised: 15 May 1998  相似文献   

15.
A group of inherited neurological disorders are the X-chromosome linked dysmyelinoses, in which myelin membranes of the CNS are missing or perturbed due to a strongly reduced number of differentiated oligodendrocytes. In animal dysmyelinoses (jimpy mouse, msd-mouse, md rat, shaking pup) mutations of the main integral myelin membrane protein, proteolipid protein, have been identified. Pelizaeus-Merzbacher disease (PMD) or sudanophilic leucodystrophy is an X-linked dysmyelinosis in humans. We report here on the molecular basis of the defect of affected males of a PMD kindred. Rearrangements of the PLP gene were excluded by Southern blot hybridisation analysis and PCR amplification of overlapping domains of the PLP gene. Sequence analysis revealed one single C----T transition in exon IV, which leads to a threonine----isoleucine substitution within a hydrophobic intramembrane domain. The impact of this amino-acid exchange on the structure of PLP in the affected cis membrane domain is discussed. A space filling model of this domain suggests a tight packing of the alpha-helices of the loop which is perturbed by the amino-acid substitution in this PMD exon IV mutant. The C----T transition in exon IV abolishes a Hph I restriction site. This mutation at the recognition site for Hph I (RFLP) and allele-specific primers have been used for mutation screening the PMD kindred.  相似文献   

16.
CNS myelin was isolated from the spinal cord of the African lungfish Protopterus dolloi. Its proteins consisted of (1) two basic proteins (16,000 and 18,500 apparent Mr) that reacted with anti-human CNS myelin basic protein antibodies and (2) a major protein (29,000 apparent Mr) that stained with concanavalin A-horseradish peroxidase and bound to anti-rat CNS myelin proteolipid protein (PLP) antibodies. This dominant 29,000 Mr protein showed no reaction with antibodies against the major bovine PNS myelin glycoprotein P0. Following treatment with endoglycosidase F the 29,000 Mr protein was reduced in size to a 26,000 apparent Mr component that no longer bound concanavalin A but retained the anti-PLP reactivity. These results agree with a concanavalin A-binding oligosaccharide linked through asparagine to a protein backbone of PLP homology. The major 29,000 Mr lungfish CNS myelin protein was therefore termed g-PLP (glycosylated proteolipid protein). This is the first report demonstrating the occurrence of a PLP-cross-reactive protein in CNS myelin of a fish. It attests to the close phylogenetic relationship of lungfishes to amphibians. Amphibians were previously recognized as the oldest class bearing PLP in its CNS myelin.  相似文献   

17.
18.
 Splenectomy and corticosteroids are the treatment of choice for patients with immune thrombocytopenic purpura (ITP). However, for the 10%–15% of patients who do not respond to conventional therapy, high-dose i.v. IgG can induce life-saving transient responses. The benefits of i.v. IgG have been attributed to Fc receptor blockade; however, the involvement of the individual Fc receptors for IgG (FcγR) in ITP remain to be more completely defined. Recently a mAb, designated mAb H22, which recognizes an epitope on FcγRI (CD64) outside the ligand-binding domain, was humanized. Because mAb H22 is a human IgG1 and FcγRI has a high affinity for human IgG1 antibodies, we predicted that mAb H22 would bind to the FcγRI ligand-binding site through its Fc domain and to its external FcγRI epitope through both Fab domains. These studies demonstrate that mAb H22 blocked FcγRI-mediated phagocytosis of opsonized red blood cells more effectively than an irrelevant IgG. Moreover, cross-linking FcγRI with mAb H22 down-modulated FcγRI expression on monocytes, an effect seen within 2 h. Accepted: 14 October 1997  相似文献   

19.
20.
Myelin Membrane Structure and Composition Correlated: A Phylogenetic Study   总被引:8,自引:4,他引:4  
We have correlated myelin membrane structure with biochemical composition in the CNS and PNS of a phylogenetic series of animals, including elasmobranchs, teleosts, amphibians, and mammals. X-ray diffraction patterns were recorded from freshly dissected, unfixed tissue and used to determine the thicknesses of the liquid bilayer and the widths of the spaces between membranes at their cytoplasmic and extracellular appositions. The lipid and protein compositions of myelinated tissue from selected animals were determined by TLC and sodium dodecyl sulfate-polyacrylamide gel electrophoresis/immunoblotting, respectively. We found that (1) there were considerable differences in lipid (particularly glycolipid) composition, but no apparent phylogenetic trends; (2) the lipid composition did not seem to affect either the bilayer thickness, which was relatively constant, or the membrane separation; (3) the CNS of elasmobranch and teleost and the PNS of all four classes contained polypeptides that were recognized by antibodies against myelin P0 glycoprotein; (4) antibodies against proteolipid protein (PLP) were recognized only by amphibian and mammalian CNS; (5) wide extracellular spaces (ranging from 36 to 48 A) always correlated with the presence of P0-immunoreactive protein; (6) the narrowest extracellular spaces (approximately 31 A) were observed only in PLP-containing myelin; (7) the cytoplasmic space in PLP-containing myelin (approximately 31 A) averaged approximately 5 A less than that in P0-containing myelin; (8) even narrower cytoplasmic spaces (approximately 24 A) were measured when both P0 and 11-13-kilodalton basic protein were detected; (9) proteins immunoreactive to antibodies against myelin P2 basic protein were present in elasmobranch and teleost CNS and/or PNS, and in mammalian PNS, but not in amphibian tissues; and (10) among mammalian PNS myelins, the major difference in structure was a variation in membrane separation at the cytoplasmic apposition. These findings demonstrate which features of myelin structure have remained constant and which have become specifically altered as myelin composition changed during evolutionary development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号