首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2,2,2-Trifluoroethanol (TFE) is widely used to induce helix formation in peptides and proteins, but the mechanism behind this effect is still poorly understood. Several recent papers have proposed that TFE acts by selectively desolvating the peptide backbone groups of the helix state. Infrared (IR) spectroscopy of the amide I band of polypeptides can be used to probe both secondary structure and backbone solvation, making this technique well suited for addressing the effect of TFE on polypeptide conformation. In this paper, we report the IR spectra as a function of TFE concentration for an alanine-rich peptide based on the repeat (AAKAA)(n)(). The IR spectra confirm that TFE desolvates the helical state of the peptide to a greater extent than the random coil state. Moreover, using a series of specifically (13)C-labeled peptides, the precise residues desolvated in the presence of TFE were identified. The residues most desolvated by TFE are the alanines located at position i - 4 in the sequence, where i is a lysine residue. This pattern of desolvation is consistent with molecular dynamics simulations which predict strong interactions between the lysine side chain at position n and the backbone carbonyl of the alanine at position i - 4. This is the first direct spectroscopic evidence of specific desolvation of helix backbone atoms in model alanine-rich peptides.  相似文献   

2.
Decatur SM 《Biopolymers》2000,54(3):180-185
The effect of N-acetylation on the conformation of alanine-rich helical peptides is examined using isotope-edited Fourier transform infrared (FTIR) spectroscopy. A series of peptides with sequence AA(AAKAA)(3)AAY has been prepared; each peptide incorporates four (13)C-labeled alanines. These peptides have two amide I' bands in their FTIR spectra: one corresponding to the (12)C amino acids, and one assigned to the (13)C amino acids. The intensity and frequency of the (13)C amide I' band varies systematically with the position of the labels in the sequence and the presence or absence of an N-acetyl capping group. The intensity of the (13)C amide I' band correlates with helix stability at the labeled residues as predicted by thermodynamic models of the helix-coil transition. These results suggest that FTIR spectroscopy combined with specific isotope labeling can be used to dissect the conformation of helical peptides at the residue level.  相似文献   

3.
A molecular dynamics simulation of a simple model membrane system composed of a single amphiphilic helical peptide (ace-K2GL16K2A-amide) in a fully hydrated 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer was performed for a total of 1060 ps. The secondary structure of the peptide and its stability were described in terms of average dihedral angles, phi and psi, and the C alpha torsion angles formed by backbone atoms; by the average translation per residue along the helix axis; and by the intramolecular peptide hydrogen bonds. The results indicated that residues 6 through 15 remain in a stable right-handed alpha-helical conformation, whereas both termini exhibit substantial fluctuations. A change in the backbone dihedral angles for residues 16 and 17 is accompanied by the loss of two intramolecular hydrogen bonds, leading to a local but long-lived disruption of the helix. The dynamics of the peptide was characterized in terms of local and global helix motions. The local motions of the N-H bond angles were described in terms of the autocorrelation functions of P2[cos thetaNH(t, t + tau)] and reflected the different degrees of local peptide order as well as a variation in time scale for local motions. The chi1 and chi2 dihedral angles of the leucine side chains underwent frequent transitions between potential minima. No connection between the side-chain positions and their mobility was observed, however. In contrast, the lysine side chains displayed little mobility during the simulation. The global peptide motions were characterized by the tilting and bending motions of the helix. Although the peptide was initially aligned parallel to the bilayer normal, during the simulation it was observed to tilt away from the normal, reaching an angle of approximately 25 degrees by the end of the simulation. In addition, a slight bend of the helix was detected. Finally, the solvation of the peptide backbone and side-chain atoms was also investigated.  相似文献   

4.
Chen Z  Xu P  Barbier JR  Willick G  Ni F 《Biochemistry》2000,39(42):12766-12777
The solution conformations of a selectively osteogenic 1-31 fragment of the human parathyroid hormone (hPTH), hPTH(1-31)NH(2), have been characterized by use of very high field NMR spectroscopy at 800 MHz. The combination of the CalphaH proton and (13)Calpha chemical shifts, (3)J(NH)(alpha) coupling constants, NH proton temperature coefficients, and backbone NOEs reveals that the hPTH(1-31)NH(2) peptide has well-formed helical structures localized in two distinct segments of the polypeptide backbone. There are also many characteristic NOEs defining specific side-chain/backbone and side-chain/side-chain contacts within both helical structures. The solution structure of hPTH(1-31)NH(2) contains a short N-terminal helical segment for residues 3-11, including the helix capping residues 3 and 11 and a long C-terminal helix for residues 16-30. The two helical structures are reinforced by well-defined capping motifs and side-chain packing interactions within and at both ends of these helices. On one face of the C-terminal helix, there are side-chain pairs of Glu22-Arg25, Glu22-Lys26, and Arg25-Gln29 that can form ion-pair and/or hydrogen bonding interactions. On the opposite face of this helix, there are characteristic hydrophobic interactions involving the aromatic side chain of Trp23 packing against the aliphatic side chains of Leu15, Leu24, Lys27, and Leu28. There is also a linear array of hydrophobic residues from Val2, to Leu7, to Leu11 and continuing on to residues His14 and Leu15 in the hinge region and to Trp23 in the C-terminal helix. Capping and hydrophobic interactions at the end of the N-terminal and at the beginning of the C-terminal helix appear to consolidate the helical structures into a V-shaped overall conformation for at least the folded population of the hPTH(1-31)NH(2) peptide. Stabilization of well-folded conformations in this linear 1-31 peptide fragment and possibly other analogues of human PTH may have a significant impact on the biological activities of the PTH peptides in general and specifically for the osteogenic/anabolic activities of bone-building PTH analogues.  相似文献   

5.
Hydration is a key determinant of the folding, dynamics, and function of proteins. In this study, temperature-dependent Fourier transform infrared (FTIR) spectroscopy combined with singular value decomposition (SVD) and global fitting were used to investigate both the interaction of water with α-helical proteins and the cooperative thermal unfolding of these proteins. This methodology has been applied to an isolated α-helix (Fs peptide) and to globular α-helical proteins including the helical subdomain and full-length villin headpiece (HP36 and HP67). The results suggest a unique IR signature for the interaction of water with the helical amide carbonyl groups of the peptide backbone. The IR spectra indicate a weakening of the net hydrogen bond strength of water to the backbone carbonyls with increasing temperature. This weakening of the backbone solvation occurs as a discrete transition near the maximum of the temperature-dependent hydrophobic effect, not a continuous change with increasing temperature. Possible molecular origins of this effect are discussed with respect to previous molecular dynamics simulations of the temperature-dependent solvation of the helix backbone.  相似文献   

6.
Inai Y  Hirabayashi T 《Biopolymers》2001,59(5):356-369
Sequential nona- and dodecapeptides possessing three and four (Z)-beta -(1-naphthyl)dehydroalanine (Delta(Z)Nap) residues, Boc-(L-Ala-Delta(Z)Nap-L-Leu)(n)-OCH(3) (n = 3 and 4; Boc = t-butoxycarbonyl), were synthesized to design a rigid 3(10)-helical backbone for a regular arrangement of functional groups using dehydropeptides. Their solution conformations were investigated by NMR and CD analyses, and theoretical energy calculations. Both peptides were found to adopt a 3(10)-helical conformation in CDCl(3) from their nuclear Overhauser effect spectroscopy (NOESY) spectra, which showed intense cross peaks for N(i)H-N(i+1)H proton pairs, but no cross peaks for C(alpha)(i)H-N(i+4)H pairs. The predominance of a 3(10)-helix was also supported by solvent accessibility of NH resonances. CD spectra of both peptides in tetrahydrofuran showed strong exciton couplets at around 228 nm assignable to naphthyl side chains, which are regularly arranged along a right-handed helical backbone. Chain-length effects on conformational preference in sequential peptide -(Ala-Delta(Z)Nap-Leu)(n)- were discussed based on spectroscopic analysis, energy minimization, and molecular dynamics simulations. Consequently, the repeating number n > or = 3 forms predominantly a right-handed 3(10)-helical conformation. The energy calculation also revealed that the midpoint naphthyl groups of peptide n = 4 are highly restricted to one stable orientation. In conclusion, beta-substituted alpha,beta-dehydroalanine is expected to be a unique tool for designing a rigid molecular frame of 3(10)-helix along which beta-functional groups are regularly arranged in a specific manner.  相似文献   

7.
The conformational behaviour of delta Ala has been investigated by quantum mechanical method PCILO in the model dipeptide Ac-delta Ala-NHMe and in the model tripeptides Ac-X-delta Ala-NHMe with X = Gly, Ala, Val, Leu, Abu and Phe and is found to be quite different. The computational results suggest that in the model tripeptides the most stable conformation corresponds to phi 1 = -30 degrees, psi 1 = 120 degrees and phi 2 = psi 2 = 30 degrees in which the > C = 0 of the acetyl group is involved in hydrogen bond formation with N-H of the amide group. Similar results were obtained for the conformational behaviour of D-Ala in Ac-D-Ala-NHMe and Ac-Ala-D-Ala-NHMe. The conformational behaviour of the amino acids delta Ala, D-Ala, Val and Aib in model tripeptides have been utilized in the designing of left handed helical peptides. It is shown that the peptide HCO-(Ala-D-Ala)3-NHMe can adopt both left and right handed helix whereas in the peptide Ac-(Ala-delta Ala)3-NHMe the lowest energy conformer is beta-bend ribbon structure. Left handed helical structure with phi = 30 degrees, psi = 60 degrees for D-Ala residues and phi = psi = 30 degrees for delta Ala is found to be more stable by 4 kcal mole-1 than the corresponding right handed helical structure for the peptide Ac-(D-Ala-delta Ala)3-NHMe. In both the peptides Ac-(Val-delta Ala)3-NHMe and Ac-(D-Val-delta Ala)3-NHMe the most stable conformer is the left handed helix. Comparisons of results for Ac-(Ala-delta Ala)3-NHMe and Ac(Val-delta Ala)3-NHMe and Ac-(D-Ala-delta Ala)3-NHMe and Ac-(D-Val-delta Ala)3-NHMe also reveal that the Val residues facilitate the population of 3(10) left handed helix over the other conformers. It is also shown that the conformational behaviour of Aib residue depends on the chirality of neighbouring amino acids, i.e. Ac-(Aib-Ala)3-NHMe adopts right handed helical structure whereas Ac-(Aib-D-Ala)3-NHMe is found to be in left handed helical structure.  相似文献   

8.
We tested the hypothesis that the recurrence of hydrophobic amino acids in a polypeptide at positions falling in an axial, hydrophobic strip if the sequence were coiled as an alpha helix, can lead to helical nucleation on a hydrophobic surface. The hydrophobic surface could anchor such residues, whereas the peptide sequence grows in a helical configuration that is stabilized by hydrogen bonds among carbonyl and amido NH groups along the peptidyl backbone of the helix, and by other intercycle interactions among amino acid side chains. Such bound, helical structures might protect peptides from proteases and/or facilitate transport to a MHC-containing compartment and thus be reflected in the selection of T cell-presented segments. Helical structure in a series of HPLC-purified peptides was estimated from circular dichroism measurements in: 1) 0.01 M phosphate buffer, pH 7.0, 2) that buffer with 45% trifluoroethanol (TFE), and 3) that buffer with di-O-hexadecyl phosphatidylcholine vesicles. By decreasing the dielectric constant of the buffer, TFE enhances intrapeptide interactions generally, whereas the lipid vesicles only provide a surface for hydrophobic interactions. The peptides varied in their strip-of-helix hydrophobicity indices (SOHHI; the mean Kyte-Doolittle hydrophobicities of residues in an axial strip of an alpha helix) and in proline content. Structural order for peptides with helical circular dichroism spectra was estimated as percentage helicity from circular dichroism theta 222 nm values and peptide concentration. A prototypic alpha helical peptide with three cycles plus two amino acids and an axial hydrophobic strip of four leucyl residues (SOHHI = 3.8) was disordered in phosphate buffer, 58% helical in that buffer with 48% TFE, and 36% helical in that buffer with vesicles. Percentage helicity in the presence of vesicles of the subset of peptides without proline followed their SOHHI values. Peptides with multiple prolyl residues had circular dichroism spectra with strong signals, but since they did not have altered spectra in the presence of vesicles relative to phosphate buffer alone, the hydrophobic surface of the vesicle did not appear to stabilize those structures.  相似文献   

9.
CD and nmr spectroscopy were used to compare the conformational properties of two related peptides. One of the peptides, Model AB, was designed to adopt a helix-turn-extended strand (αβ) tertiary structure in water that might be stabilized by hydrophobic interactions between two leucine residues in the amino-terminal segment and two methionine residues in the carboxyl terminal segment. The other peptide, AB Helix, has the same amino acid sequence as Model AB except that it lacks the-Pro-Met-Thr-Met-Thr-Gly segment at the carboxyl-terminus. Although the carboxyl-terminal segment of Model AB was found to be unstructured, its presence increases the number of residues in a helical conformation, shifts the pKas of three ionizable side chains by 1 pH unit or more compared to an unstructured peptide, stabilizes the peptide as a monomer in high concentrations of ammonium sulfate, increases the conformational stability of residues at the terminal ends of the helix, and results in many slowly exchanging amide protons throughout the entire backbone of the peptide. These results suggest that interactions between adjacent segments in a small peptide can have significant structure organizing effects. Similar kinds of interactions may be important in determining the structure of early intermediates in protein folding and may be useful in the de novo design of independently folding peptides. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
A significant fraction of the amino acids in proteins are alpha helical in conformation. Alpha helices in globular proteins are short, with an average length of about twelve residues, so that residues at the ends of helices make up an important fraction of all helical residues. In the middle of a helix, H-bonds connect the NH and CO groups of each residue to partners four residues along the chain. At the ends of a helix, the H-bond potential of the main chain remains unfulfilled, and helix capping interactions involving bonds from polar side chains to the NH or CO of the backbone have been proposed and detected. In a study of synthetic helical peptides, we have found that the sequence Ser-Glu-Asp-Glu stabilizes the alpha helix in a series of helical peptides with consensus sequences. Following the report by Harper and Rose, which identifies SerXaaXaaGlu as a member of a class of common motifs at the N termini of alpha helices in proteins that they refer to as “capping boxes,” we have reexamined the side chain–main chain interactions in a varient sequence using 1H NMR, and find that the postulated reciprocal side chain-backbone bonding between the first Ser and last Glu side chains and their peptide NH partners can be resolved: Deletion of two residues N terminal to the Ser-Glu-Asp-Glu sequence in these peptides has no effect on the initiation of helical structure, as defined by two-dimensional (2D) NMR experiments on this variant. Thus the capping box sequence Ser-Glu-Asp-Glu inhibits N terminal fraying of the N terminus of alpha helix in these peptides, and shows the side chain–main chain interactions proposed by Harper and Rose. It thus acts as a helix initiating signal. Since normal a helix cannot propagate beyond the N terminus of this structure, the box acts as a termination signal in this direction as well. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
Helix propensities of the amino acids have been measured in alanine-based peptides in the absence of helix-stabilizing side-chain interactions. Fifty-eight peptides have been studied. A modified form of the Lifson-Roig theory for the helix-coil transition, which includes helix capping (Doig AJ, Chakrabartty A, Klingler TM, Baldwin RL, 1994, Biochemistry 33:3396-3403), was used to analyze the results. Substitutions were made at various positions of homologous helical peptides. Helix-capping interactions were found to contribute to helix stability, even when the substitution site was not at the end of the peptide. Analysis of our data with the original Lifson-Roig theory, which neglects capping effects, does not produce as good a fit to the experimental data as does analysis with the modified Lifson-Roig theory. At 0 degrees C, Ala is a strong helix former, Leu and Arg are helix-indifferent, and all other amino acids are helix breakers of varying severity. Because Ala has a small side chain that cannot interact significantly with other side chains, helix formation by Ala is stabilized predominantly by the backbone ("peptide H-bonds"). The implication for protein folding is that formation of peptide H-bonds can largely offset the unfavorable entropy change caused by fixing the peptide backbone. The helix propensities of most amino acids oppose folding; consequently, the majority of isolated helices derived from proteins are unstable, unless specific side-chain interactions stabilize them.  相似文献   

12.
D J Tobias  C L Brooks 《Biochemistry》1991,30(24):6059-6070
We used molecular dynamics simulations to study the folding/unfolding of one of turn of an alpha helix in Ac-(Ala)3-NHMe and Ac-(Val)3-NHMe. Using specialized sampling techniques, we computed free energy surfaces as functions of a conformational coordinate that corresponds to alpha helices at small values and to extended conformations at large values. Analysis of the peptide conformations populated during the simulations showed that alpha helices, reverse turns, and extended conformations correspond to minima on the free energy surfaces of both peptides. The free energy difference between alpha helix and extended conformations, determined from the equilibrium constants for helix unfolding, is approximately -1 kcal/mol for Ac-(Ala)3-NHMe and -5 kcal/mol for Ac-(Val)3-NHMe. The mechanism observed in our simulations, which includes reverse turns as important intermediates along the helix folding/unfolding pathway, is consistent with a mechanism proposed previously. Our results predict that both peptides (but especially the Ala peptide) have a much larger equilibrium constant for helix initiation than is predicted by the helix-coil transition theory with the host-guest parameters. We also predict a much greater difference in the equilibrium constants than the theory predicts. Insofar as helix initiation is concerned, our results suggest that the large difference between the helical propensities of Ala and Val cannot be explained by simple concepts such as side-chain rotamer restriction or unfavorable steric interactions. Rather, the origin of the difference appears to be quite complicated because it involves subtle differences in the solvation of the two peptides. The two peptides have similar turn-extended equilibria but very different helix-turn equilibria, and the difference in helical propensities reflects the fact that the helix-turn equilibrium strongly favors the turns in Ac-(Val)3-NHMe, while it favors the helices in Ac-(Ala)3-NHMe. We also computed thermodynamic decompositions of the free energy surfaces, and these revealed that the helix-turn equilibria are vastly different primarily because the changes in peptide-water interactions that accompany helix-to-turn conformational changes are qualitatively different for the two peptides.  相似文献   

13.
The temperature dependence of helical propensities for the peptides Ac-ZGG-(KAAAA)(3)X-NH(2) (Z = Y or G, X = A, K, and D-Arg) were studied both experimentally and by MD simulations. Good agreement is observed in both the absolute helical propensities as well as relative helical content along the sequence; the global minimum on the calculated free energy landscape corresponds to a single alpha-helical conformation running from K4 to A18 with some terminal fraying, particularly at the C-terminus. Energy component analysis shows that the single helix state has favorable intramolecular electrostatic energy due to hydrogen bonds, and that less-favorable two-helix globular states have favorable solvation energy. The central lysine residues do not appear to increase helicity; however, both experimental and simulation studies show increasing helicity in the series X = Ala --> Lys --> D-Arg. This C-capping preference was also experimentally confirmed in Ac-(KAAAA)(3)X-GY-NH(2) and (KAAAA)(3)X-GY-NH(2) sequences. The roles of the C-capping groups, and of lysines throughout the sequence, in the MD-derived ensembles are analyzed in detail.  相似文献   

14.
Pairs of leucine side chains, spaced either (i,i+3) or (i,i+4), are known to stabilize alanine-based peptide helices, Experiments with new peptide sequences confirm that the (i,i+4) pair interaction is markedly stronger than the (i,i+3) pair interaction. This result is not expected from reported Monte Carlo simulations, which predict that the (i,i+3) interaction is slightly stronger. The interaction strength can be predicted from recently reported measurements of buried non-polar surface area, obtained from structures in the Protein Data Bank: the agreement is reasonable for the (i,i+3) LL interaction but underestimates the (i,i+4) LL interaction. Solvation of peptide groups in the helix backbone may contribute to the different strengths of the two LL pair interactions because different chi(1) leucine rotamers are used and the (i,i+3) pair shields two peptide groups whereas the (i,i+4) pair shields only one. A rough estimate of the backbone solvation effect, based on the difference between the helix propensities of leucine and alanine, agrees with the size of the difference between the (i,i+3) and (i,i+4) leucine pair interactions.  相似文献   

15.
The incorporation of alpha-aminoisobutyryl (Aib) residues into peptide sequences facilitates helical folding. Aib-containing sequences have been chosen for the design of rigid helical segments in a modular approach to the construction of a synthetic protein mimic. The helical conformation of the synthetic peptide Boc-Aib-(Val-Ala-Leu-Aib)3-OMe in crystals is established by X-ray diffraction. The 13-residue apolar peptide adopts a helical form in the crystal with seven alpha-type hydrogen bonds in the middle and 3(10)-type hydrogen bonds at either end. The helices stack in columns, zigzag rather than linear, by means of direct NH...OC head to tail hydrogen bonds. Leucyl side chains are extended on one side of the helix and valyl side chains on the other side. Water molecules form hydrogen bonds with several backbone carbonyl oxygens that also participate in alpha-helix hydrogen bonds. There is no apparent distortion of the helix caused by hydration. The space group is P2(1)2(1)2(1), with a = 9.964 (3) A, b = 20.117 (3) A, c = 39.311 (6) A, Z = 4, and dx = 1.127 g/cm3 for C64H106N13O16.1.33H2O. The final agreement factor R was 0.089 for 3667 data observed greater than 3 sigma(F) with a resolution of 0.9 A.  相似文献   

16.
We have used molecular dynamics simulations to investigate the effect of phosphorylation and mutation on the cytoplasmic domain of phospholamban (PLB), a 52-residue protein that regulates the calcium pump in cardiac muscle. Simulations were carried out in explicit water systems at 300 K for three peptides spanning the first 25 residues of PLB: wild-type (PLB(1-25)), PLB(1-25) phosphorylated at Ser16 and PLB(1-25) with the R9C mutation, which is known to cause human heart disease. The unphosphorylated peptide maintains a helical conformation from 3 to 15 throughout a 26-ns simulation, in agreement with spectroscopic data. Comparison with simulations of a fourth peptide truncated at Pro21 showed the importance of the region from 17 to 21 in preventing local unfolding of the helix. The results suggest that residues 11-16 are more likely to unfold when specific capping motifs are not present. It is proposed that protein kinase A exploits the intrinsic flexibility of the 11-21 region when binding PLB. In agreement with available CD and NMR data, the simulations show a decrease in the helical content upon phosphorylation. The phosphorylated peptide is characterized by helix spanning residues 3-11, followed by a turn that optimizes the salt-bridge interaction between the side chains of the phosphorylated Ser-16 and Arg-13. Replacing Arg-9 with Cys results in unfolding of the helix from C9 and an overall decrease of the helical conformation. The simulations show that initiation of unfolding is due to increased solvent accessibility of the backbone atoms near the smaller Cys. It is proposed that the loss of inhibitory potency upon Ser-16 phosphorylation or R9C mutation of PLB is due to a similar mechanism, in which the partial unfolding of the cytoplasmic helix of PLB results in a conformation that interacts with the cytoplasmic domain of the calcium pump to relieve its inhibition.  相似文献   

17.
Structural parameters for standard peptide helices (alpha, 3(10), 3(1) left-handed) were fully ab initio optimized for Ac-(L-Ala)(9)-NHMe and for Ac-(L-Pro)(9)-NHMe (poly-L-proline-PLP I and PLP II-forms), in order to better understand the relative stability and minimum energy geometries of these conformers and the dependence of the ir absorption and vibrational CD (VCD) spectra on detailed variation in these conformations. Only the 3(10)-helical Ala-based conformation was stable in vacuum for this decaamide structure, but both Pro-based conformers minimized successfully. Inclusion of solvent effects, by use of the conductor-like screening solvent model (COSMO), enabled ab initio optimizations [at the DFT/B3LYP/SV(P) level] without any constraints for the alpha- and 3(10)-helical Ala-based peptides as well as the two Pro-based peptides. The geometries obtained compare well with peptide chain torsion angles and hydrogen-bond distances found for these secondary structure types in x-ray structures of peptides and proteins. For the simulation of VCD spectra, force field and intensity response tensors were obtained ab initio for the complete Ala-based peptides in vacuum, but constrained to the COSMO optimized torsional angles, due to limitations of the solvent model. Resultant spectral patterns reproduce well many aspects of the experimental spectra and capture the differences observed for these various helical types.  相似文献   

18.
The collagen triple helix is characterized by the repeating sequence motif Gly-Xaa-Yaa, where Xaa and Yaa are typically proline and (2S,4R)-4-hydroxyproline (4(R)Hyp), respectively. Previous analyses have revealed that H-(Pro-4(R)Hyp-Gly)(10)-OH forms a stable triple helix, whereas H-(4(R)Hyp-Pro-Gly)(10)-OH does not. Several theories have been put forth to explain the importance of proline puckering and conformation in triple helix formation; however, the details of how they affect triple helix stability are unknown. Underscoring this, we recently demonstrated that the polypeptide Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) forms a triple helix that is more stable than Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2). Here we report crystal the structure of the H-(Gly-4(R)Hyp-4(R)Hyp)(9)-OH peptide at 1.55 A resolution. The puckering of the Yaa position 4(R)Hyp in this structure is up (Cgamma exo), as has been found in other collagen peptide structures. Notably, however, the 4(R)Hyp in the Xaa position also takes the up pucker, which is distinct from all other collagen structures. Regardless of the notable difference in the Xaa proline puckering, our structure still adopts a 7/2 superhelical symmetry similar to that observed in other collagen structures. Thus, the basis for the observed differences in the thermodynamic data of the triple helix<--> coil transition between our peptide and other triple helical peptides likely results from contributions from the unfolded state. Indeed, the unfolded state of the H-(Gly-4(R)Hyp-4(R)Hyp)(9)-OH peptide seems to be stabilized by a preformed polyproline II helix in each strand, which could be explained by the presence of a unique repeating intra-strand water-mediated bridge observed in the H-(Gly-4(R)Hyp-4(R)Hyp)(9)-OH structure, as well as a higher amount of trans peptide bonds.  相似文献   

19.
Model peptides based on -(Aib-Ala)(n)-, and (Aib)(n)-Leu-(Aib)(2) sequences, which have varying amounts of 3(10)-helical character, were studied by use of vibrational and electronic circular dichroism (VCD and ECD) and Fourier transform infrared (FTIR) absorption spectroscopies to test the correlation of spectral response and conformation. The data indicate that these peptides, starting from a length of about four to six residues, predominantly adopt a 3(10)-helical conformation at room temperature. The longest model peptides, depending on the series, may evidence some alpha-helical contribution to the spectra, while the shorter ones, with less than six residues, have much less order. The IR absorption spectra (as supported by theory) showed only small frequency changes between 3(10)- and alpha-helices. By contrast, solvent effects are a source of much bigger perturbations. The ECD results show that the intensity ratio for the approximately 222-nm to approximately 208-nm bands, while useful for distinguishing between these two helical types in some sequences, may have a narrower range of application than VCD. However, the VCD data presented here continue to support the proposed discrimination between alpha- and 3(10)-helices based on qualitative amide I and II bandshape differences. The present study shows the intensities of the 3(10)-helical amide I (peak-to-peak) to its amide II VCD to be of the same order and useful for discriminating them from alpha-helices, whose amide I dominates the amide II in intensity. This qualitative result is experimentally independent of the amount of alphaMe-substituted residues in the sequence. These experimental VCD results are consistent in detail with theoretical spectral simulations for Ac-(Ala)(8)-NH(2), Ac-(Aib-Ala)(4)-NH(2), and Ac-(Aib)(8)-NH(2) in 3(10)- and alpha-helical conformations.  相似文献   

20.
Isotope-edited infrared spectroscopy has the ability to probe the segmental properties of long biopolymers. In this work, we have compared the infrared spectra of a model helical peptide ((12)C) Ac-W-(E-A-A-A-R)(6)-A-NH(2), described originally by Merutka et al. (Biochemistry 1991;30:4245-4248) and three derivatives that are (13)C labeled at the backbone carbonyl of alanines. The locations of six isotopically labeled alanines are at the N-terminal, C-terminal, and the middle two repeating units of the peptide. Variation in temperature from 1 degrees to 91 degrees C transformed the peptides from predominantly helical to predominantly disordered state. Amplitude and position of the infrared amide I' absorption bands from (12)C- and (13)C-labeled segments provided information about the helical content. Temperature dependence of infrared spectra was used to estimate segmental stability. As a control measure of overall peptide stability and helicity (independent of labeling), the temperature dependence of circular dichroism spectra in the far-UV range at identical conditions (temperature and solvent) as infrared spectra was measured. The results indicate that the central quarter of the 32 amino acids helix has the maximal helicity and stability. The midpoint of the melting curve of the central quarter of the helix is 5.4 +/- 0.8 degrees C higher than that of the termini. The N-terminal third of the helix is more helical and is 2.0 +/- 1.4 degrees C more stable than the C-terminus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号