首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caspase-independent death mechanisms have been shown to execute apoptosis in many types of neuronal injury. P53 has been identified as a key regulator of neuronal cell death after acute injury such as DNA damage, ischemia, and excitotoxicity. Here, we demonstrate that p53 can induce neuronal cell death via a caspase-mediated process activated by apoptotic activating factor-1 (Apaf1) and via a delayed onset caspase-independent mechanism. In contrast to wild-type cells, Apaf1-deficient neurons exhibit delayed DNA fragmentation and only peripheral chromatin condensation. More importantly, we demonstrate that apoptosis-inducing factor (AIF) is an important factor involved in the regulation of this caspase-independent neuronal cell death. Immunofluorescence studies demonstrate that AIF is released from the mitochondria by a mechanism distinct from that of cytochrome-c in neurons undergoing p53-mediated cell death. The Bcl-2 family regulates this release of AIF and subsequent caspase-independent cell death. In addition, we show that enforced expression of AIF can induce neuronal cell death in a Bax- and caspase-independent manner. Microinjection of neutralizing antibodies against AIF significantly decreased injury-induced neuronal cell death in Apaf1-deficient neurons, indicating its importance in caspase-independent apoptosis. Taken together, our results suggest that AIF may be an important therapeutic target for the treatment of neuronal injury.  相似文献   

2.
3.
4.
Bcl-X(L) mice display a similar neurodevelopmental phenotype as rb, DNA ligase IV, and XRCC4 mutant embryos, suggesting that endogenous Bcl-X(L) expression may protect immature neurons from death caused by DNA damage and/or cell cycle dysregulation. To test this hypothesis, we generated bcl-x/p53 double mutants and examined neuronal cell death in vivo and in vitro. Bcl-X(L)-deficient primary telencephalic neuron cultures were highly susceptible to the apoptotic effects of cytosine arabinoside (AraC), a known genotoxic agent. In contrast, neurons lacking p53, or both Bcl-X(L) and p53, were markedly, and equivalently, resistant to AraC-induced caspase-3 activation and death in vitro indicating that Bcl-X(L) lies downstream of p53 in DNA damage-induced neuronal death. Despite the ability of p53 deficiency to protect Bcl-X(L)-deficient neurons from DNA damage-induced apoptosis in vitro, p53 deficiency had no effect on the increased caspase-3 activation and neuronal cell death observed in the developing Bcl-X(L)-deficient nervous system. These findings suggest that Bcl-X(L) expression in the developing nervous system critically regulates neuronal responsiveness to an apoptotic stimulus other than inadequate DNA repair or cell cycle abnormalities.  相似文献   

5.
6.
7.
8.
9.
目的:探讨p21在红藻氨酸诱导的原代培养皮质神经元兴奋毒中的变化及可能机制。方法:原代培养大鼠皮质神经元经红藻氨酸(KA)处理24h后,激光共聚焦显微镜透射光下观察细胞损伤,应用Western blotting方法检测p21与p53蛋白表达的变化,用染色质免疫共沉淀(ChIP)-聚合酶链反应(PCR)方法检测p53与p21基因启动子上p53反应元件1结合情况。结果:KA处理后神经元明显损伤,部分细胞胞体缩小、变圆,突起变短、减少或消失,p21与p53蛋白表达上调,并且p53与p21基因启动子上的p53反应元件1结合增加。结论:在KA诱导的原代培养皮质神经元兴奋毒作用中p21蛋白表达上调,而p53直接参与了p21的激活。  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
Cytosine arabinoside (ara-C) is a nucleoside analog used in the treatment of hematologic malignancies. One of the major side effects of ara-C chemotherapy is neurotoxicity. In this study, we have further characterized the cell death induced by ara-C in sympathetic neurons. Similar to neurons undergoing trophic factor deprivation-induced apoptosis, ara-C-exposed neurons became hypometabolic before death and upregulated c-myb, c-fos, and Bim. Bax deletion delayed, but did not prevent, ara-C toxicity. Neurons died by apoptosis, indicated by the release of mitochondrial cytochrome-c and caspase-3 activation. p53-deficient neurons demonstrated decreased sensitivity to ara-C, but neither p53 nor multiple p53-regulated genes were induced. Mature neurons showed increased ara-C resistance. These results demonstrate that molecular mechanisms underlying ara-C-induced death are similar to those responsible for trophic factor deprivation-induced apoptosis. However, substantial differences in neuronal death after these two distinct stress stimuli exist since ara-C toxicity, unlike the developmental death, can proceed in the absence of Bax.  相似文献   

18.
19.
Calpains mediate p53 activation and neuronal death evoked by DNA damage   总被引:6,自引:0,他引:6  
DNA damage is an initiator of neuronal death implicated in neuropathological conditions such as stroke. Previous evidence has shown that apoptotic death of embryonic cortical neurons treated with the DNA damaging agent camptothecin is dependent upon the tumor suppressor p53, an upstream death mediator, and more distal death effectors such as caspases. We show here that the calcium-regulated cysteine proteases, calpains, are activated during DNA damage induced by camptothecin treatment. Moreover, calpain deficiency, calpastatin expression, or pharmacological calpain inhibitors prevent the death of embryonic cortical neurons, indicating the important role of calpain in DNA damage-induced death. Calpain inhibition also significantly reduced and delayed the induction of p53. Consistent with the actions of calpains upstream of p53 and the proximal nature of p53 death signaling, calpain inhibition inhibited cytochrome c release and DEVD-AFC cleavage activity. Taken together, our results indicate that calpains are a key mediator of p53 induction and consequent caspase-dependent neuronal death due to DNA damage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号