首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of retinoic acid (RA; vitamin A acid) on macrophage function were investigated by measuring the capacities of mouse peritoneal macrophages to associate with (i.e., bind and internalize) and kill the unicellular parasite Trypanosoma cruzi. The presence of 10(-8) to 10(-6) M RA in co-cultures of macrophages and blood forms of the parasite markedly increased their interaction as evidenced by significant increases in both the percentage of phagocytes associating with parasites and the average number of parasites per 100 cells. A similar effect was produced when either the macrophages or the trypanosomes were pretreated with RA, suggesting that both cell types could contribute to the noted effect. Although RA might have enhanced parasite-macrophage association by binding to both, its ability to stimulate phagocytosis was independently evidenced by a significant increase in the uptake of latex particles. RA-treated macrophages also took up larger numbers of dead T cruzi, denoting that parasite viability (i.e., infectivity) was not necessary for the production of the RA effect. The minimum pretreatment time for RA to significantly stimulate macrophage association with T. cruzi was 30 min, although a 45-min pretreatment was necessary for a maximal effect to be seen under our experimental conditions. The RA effect was reversible because, once optimally induced, it remained demonstrable for only 30 to 60 min after removal of the reagent; however, the effect persisted for at least 3 hr if RA was not removed. Transglutaminase activity appeared to be involved in the RA effect, because the latter was abrogated when the macrophages were treated with RA in the presence of cystamine, methylamine, or monodansylcadaverine, all of which inhibit transglutaminase activity by different mechanisms. RA also increased the capacity of macrophages to kill parasites internalized before the treatment. This cytotoxic capacity was inhibited by catalase, indicating that H2O2 played a role in the killing mechanism. RA treatment significantly increased the proportion of macrophages capable of reducing nitroblue tetrazolium. The present results indicated that RA was capable of activating macrophages, leading to greater uptake and killing of a protozoan parasite.  相似文献   

2.
Recombinant murine IFN-gamma (rMu-IFN-gamma) was demonstrated to be a potent in vivo activator of mouse peritoneal macrophages to kill Trypanosoma cruzi in vitro and to be capable of conferring protection against death from acute T. cruzi infection. Following i.p. injections of rMu-IFN-gamma, resident peritoneal macrophages were cultured and infected with T. cruzi in vitro. Numbers of intracellular parasites were determined at different times thereafter. Ten or 100 micrograms (1 microgram = 6.5 X 10(5) U) of Mu-IFN-gamma, injected both 24 and 4 h before macrophage harvest, induced up to 99% inhibition of T. cruzi. One microgram of rMu-IFN-gamma was not effective under these conditions. In vitro inhibition of T. cruzi by peritoneal macrophages occurred by 24 h after infection and continued until at least 120 h after infection. There were no significant differences in initial parasite uptake by macrophages from IFN-gamma-treated or control mice, indicating that the rMu-IFN-gamma induced parasite killing. One i.p. dose of 10 micrograms was as effective as two doses if the single injection was given 24 h before macrophage harvest. In subsequent experiments, mice were given multiple injections of 10 micrograms rMu-IFN-gamma beginning 24 h before or 2 h after infection with virulent T. cruzi. Mice treated with rMu-IFN-gamma had significantly lower parasitemias and decreased morbidity compared with control mice. Proliferative responses to Con A and antibody responses to SRBC were not significantly lowered in IFN-gamma-treated mice, in contrast to untreated infected controls. All of the IFN-gamma-treated mice survived acute T. cruzi infection, whereas 100% of saline-treated infected mice died. It was demonstrated in this study that rMu-IFN-gamma activated mouse macrophages in vivo to kill T. cruzi and that rMu-IFN-gamma significantly reduced morbidity and immune suppression, and eliminated mortality resulting from acute infection with this parasite.  相似文献   

3.
Trypanosoma cruzi: cytokine effects on macrophage trypanocidal activity   总被引:4,自引:0,他引:4  
Mouse macrophages infected with Trypanosoma cruzi in vitro may be activated to reduce parasite infection by interferon gamma (IFN-gamma). The addition of up to 10,000 units of IFN-gamma however, does not result in a 100% reduction of intracellular parasites. We, therefore, investigated the possibility that macrophages require an additional signal or signals to completely clear T. cruzi infection. Because the combination of IFN-gamma with lipopolysaccharide greatly enhanced macrophages ability to decrease the number of intracellular parasites, the interaction of IFN-gamma with tumor necrosis factor (TNF) was examined. TNF alone and the combination of TNF with IFN-gamma did not have a significant effect on reducing parasite numbers below that obtained with IFN-gamma alone. This was also true for lymphotoxin, a lymphokine similar to TNF in structure and function. The effect of IFN-gamma in combination with a cytokine-rich supernatant containing IL-2, IL-3, IL-4, IL-5, and IFN-gamma on macrophage clearance of the parasite was also examined. The cytokine-rich supernatant alone had no effect on reducing parasite infection of the macrophages; indeed, in some experiments the addition of the supernatant resulted in an increase in the level of parasite infection. However, 1000 units of IFN-gamma combined with the complex cytokine mixture caused a decrease in parasite infection of nearly 100% compared to that of control cultures treated with media alone. To determine which cytokine or cytokines in the supernatant were responsible for this synergistic activity, anti-cytokine antibodies were added to the supernatant prior to its addition with IFN-gamma to the cultures. Anti-IL-4 was the only antibody found to inhibit the synergism of IFN-gamma with the cytokine-rich supernatant. IL-4, however, did not significantly enhance the ability of IFN-gamma to induce macrophage clearance of the parasite, and IL-4 alone caused a slight increase in parasite infection in vitro. These results further define the role that cytokines play in T. cruzi infection of macrophages in vitro and suggest that the interaction of cytokine networks within this system is complex.  相似文献   

4.
The effects of leukotriene B4 (LTB4) on mouse peritoneal macrophage (MPH) association with and destruction of Trypanosoma cruzi were studied. The presence of 10(-8) to 10(-6) M LTB4 in co-cultures of MPH and T. cruzi enhanced their association (a term meaning surface binding and internalization), as evidenced by increases in the percentage of MPH associating with trypanosomes and the number of parasites per 100 MPH. Pretreatment of either parasites or MPH with LTB4 increased their association with the untreated counterpart, suggesting that the enhancement was a composite of effects on both cells. The effect of LTB4 on MPH was reversible, because normal levels of MPH-parasite association were recorded 60 min after the LTB4 pretreatment. However, the enhancement was demonstrable after the MPH were incubated with LTB4 for up to 24 hr, indicating that the effect lasted if LTB4 was present. Pretreatment with LTB4 also increased the capacity of MPH to take up glutaraldehyde-killed T. cruzi or latex beads, suggesting that LTB4 stimulated phagocytosis. Pretreatment of rat heart myoblasts--which are not phagocytic--with LTB4 also increased parasite association, suggesting that phagocytic ability was not an absolute requirement for production of the enhancement and that LTB4-induced alterations of the cell membrane facilitating parasite invasion may also be involved. An effect of LTB4 on MPH cytotoxicity was denoted by an increased rate of intracellular parasite killing. Two inhibitors of guanylate cyclase abrogated the enhancing effect of LTB4, suggesting that increased MPH levels of cyclic GMP--known to be increased by LTB4--mediated the effect. Because inflammatory cells, such as are found in acute chagasic lesions, are known to produce increased amounts of leukotrienes, the stimulatory effects of LTB4 could contribute to host defense against T. cruzi infection.  相似文献   

5.
Trypanosoma cruzi is the causative agent of Chagas' disease. Novel chemotherapy with the drug K11777 targets the major cysteine protease cruzain and disrupts amastigote intracellular development. Nevertheless, the biological role of the protease in infection and pathogenesis remains unclear as cruzain gene knockout failed due to genetic redundancy. A role for the T. cruzi cysteine protease cruzain in immune evasion was elucidated in a comparative study of parental wild type- and cruzain-deficient parasites. Wild type T. cruzi did not activate host macrophages during early infection (<60 min) and no increase in ~P iκB was detected. The signaling factor NF-κB P65 colocalized with cruzain on the cell surface of intracellular wild type parasites, and was proteolytically cleaved. No significant IL-12 expression occurred in macrophages infected with wild type T. cruzi and treated with LPS and BFA, confirming impairment of macrophage activation pathways. In contrast, cruzain-deficient parasites induced macrophage activation, detectable iκB phosphorylation, and nuclear NF-κB P65 localization. These parasites were unable to develop intracellularly and survive within macrophages. IL 12 expression levels in macrophages infected with cruzain-deficient T. cruzi were comparable to LPS activated controls. Thus cruzain hinders macrophage activation during the early (<60 min) stages of infection, by interruption of the NF-κB P65 mediated signaling pathway. These early events allow T. cruzi survival and replication, and may lead to the spread of infection in acute Chagas' disease.  相似文献   

6.
The effect of incubation with lectins of the macrophages or two evolutive stages of Trypanosoma cruzi (noninfective epimastigotes and infective trypomastigotes) on the ingestion of the parasites by mouse peritoneal macrophages was studied. Lectins which bind to residues of mannose (Lens culinaris, LCA), N-acetyl-D-glucosamine or N-acetylneuraminic acid (Triticum vulgaris, WGA), beta-D-galactose (Ricinus communis, RCA), N-acetyl-D-galactosamine (Phaseolus vulgaris, PHA; Dolichos biflorus, DBA; and Wistaria floribunda, WFA), fucose (Lotus tetragonolobus, LTA), and N-acetylneuraminic acid (Limulus polyphemus, LPA) were used. By lectin blockage we concluded that, alpha-D-mannose-like, beta-D-galactose and N-acetyl-D-galactosamine (PHA, reagent) residues, located on the macrophage's surface are required for both epi- and trypomastigote uptake, while N-acetylneuraminic acid and fucose residues, impede trypomastigote ingestion but do not interfere with epimastigote interiorization. Macrophages' N-acetyl-D-glucosamine residues are required for epimastigote uptake. On the other hand, from the T. cruzi surface, mannose residues prevent ingestion of epi- and trypomastigotes. Galactose residues participate in endocytosis of trypomastigotes, but hinder epimastigote interiorization. Exposed N-acetyl-D-glucosamine residues are required for uptake of the two evolutive forms. N-acetylneuraminic acid residues on the trypomastigote membrane prevent their endocytosis by macrophages. These results together with those reported previously showing the effect of monosaccharides on the T. cruzi-macrophage interaction, indicate that (a) sugar residues located on the parasite and on macrophage surface play some role in the process of recognition of T. cruzi, (b) different macrophage carbohydrate-containing receptors are involved in the recognition of epimastigotes and trypomastigotes forms of T. cruzi, (c) N-acetylneuraminic acid residues located on the surface of trypomastigotes or macrophages impede the interaction of the parasite with these host cells, and suggest that (d) sugar-binding proteins located on the macrophage surface participate in the recognition of beta-D-galactose and N-acetyl-D-galactosamine residues located on the surface of trypomastigotes and exposed after blockage or splitting off of N-acetylneuraminic acid residues. Some lectins which bind to macrophages and block the ingestion of parasites did not interfere with their adhesion.  相似文献   

7.
We have reported that protein tyrosine kinases play an important role in the invasion of Trypanosoma cruzi into primary resident macrophages. In the present study we carry out immunofluorescence assays, using monoclonal anti-phosphotyrosine antibodies, to reveal an accumulation of tyrosine-phosphorylated residues at the site of parasite association with the macrophage surface, colocalizing with host cell F-actin-rich domains. SDS-PAGE analysis of macrophage cell line IC-21 tyrosine phosphoproteins, labeled with [(35)S] L-methionine, revealed several peptides with increased levels of phosphorylation upon interaction with the parasite. Among them, were detected bands of 140, 120, 112, 94, 73, 67, and 56 kDa that match the molecular weights of proteins described as being tyrosine phosphorylated during events that lead to actin assembly in mononuclear phagocytes. The pretreatment of IC-21 macrophages with the tyrosine kinase inhibitor tyrphostin 23 inhibited trypomastigote uptake showing that tyrosine phosphorylation is important for the parasite penetration in this particular cell line. Immunofluorescence microscopy, using antibodies against p85, the regulatory subunit of phosphatidylinositol 3-kinase (PI 3-kinase), placed this enzyme also in the same sites, in accordance to what is reported for phagocytosis. We suggest that once the components of T. cruzi trypomastigotes surface are recognized by macrophage receptors, they trigger the activation of a tyrosine phosphorylation cascade, PI 3-kinase recruitment, and assembly of actin filaments at the site of initial cell-to-cell contact, resembling the events described during phagocytosis. These achievements support the model for a phagocytic-like actin-dependent invasion mechanism for T. cruzi trypomastigotes into macrophages.  相似文献   

8.
Treatment of either mouse peritoneal macrophages (MPH) or invasive blood forms of Trypanosoma cruzi with human plasma fibronectin (FN) significantly enhanced their association (a term to mean surface attachment and parasite internalization) with the untreated counterpart in a dose-dependent manner. This effect involved increases in the percentage of MPH that associated with the parasites and in the number of parasites per MPH. By using indirect immunofluorescence, the percentages of FN-positive MPH and FN-positive parasites found in preparations of these cells were 26 and 13%, respectively, and increased to 70 and 73%, respectively, after incubation with FN for 60 min and multiple washings. These results demonstrated the presence of FN itself and FN-binding sites on the surface of MPH and T. cruzi. Incubation of FN-treated MPH and FN-treated parasites with gelatin, for which FN has a binding site, significantly reduced the stimulatory effect of FN. A reduction was also seen when FN-treated MPH were incubated with anti-FN antibody before adding the parasites. These observations suggested that FN might enhance association by bridging the interacting cells. The presence of excess soluble FN during MPH-parasite interaction also inhibited the association, possibly by blocking FN receptors on the MPH and parasite surfaces. Pretreatment of the MPH with FN enhanced the capacity of these cells to associate with either untreated latex beads or killed T. cruzi. These findings indicated, on the one hand, that the FN-mediated enhancement was not unique to living T. cruzi and, on the other, that this enhancement was not likely due to an FN-induced alteration of the MPH membrane that would render it more susceptible to active penetration by the parasites. Taken together, these results suggest that FN, produced by MPH, may play a role in infection of this cell type by T. cruzi.  相似文献   

9.
10.
Chicken macrophages, obtained by cultivation of blood monocytes, were infected with epimastigote and bloodstream trypomastigote forms of Trypanosoma cruzi strain Y. The percentage of macrophages containing parasites within parasitophorous vacuoles and of flagellates attached to cell surfaces was determined. By incubation of the macrophages at 4 degrees C or in the presence of cytochalasin B it was possible to dissociate the attachment from the internalization phases in the process of infection of macrophages. Both treatments had a marked effect on the internalization of epimastigote and trypomastigote forms. Cytochalasin B treatment and placement of the macrophages at 4 degrees C before infection inhibited this process by about 99 and 96%, respectively. These results suggest that endocytosis is the principal mechanism of internalization of T. cruzi by macrophages. They show also that epimastigote and trypomastigote forms of T. cruzi have a different rate of adhesion to the macrophage surface.  相似文献   

11.
Trypanosoma cruzi can infect and replicate in macrophages. During invasion, T. cruzi interacts with different macrophage receptors to induce its own phagocytosis. However, the nature of those receptors and the molecular mechanisms involved are poorly understood. In this study, we demonstrate that T. cruzi metacyclic trypomastigotes but not epimastigotes were able to induce Rab5 activation and binding to the early endosomes in peritoneal macrophages. In this process, active Rab5 colocalized with parasites in the phagosome and with the Rab5A effector molecule early endosomal antigen 1. Phagosome formation and T. cruzi internalization were inhibited in Raw 264.7 macrophages expressing a dominant-negative form of Rab5 [(S34N)Rab5]. Using T. cruzi membrane extracts, we verified that the Rab5 activation depends on the interaction between parasite surface molecules and macrophages surface molecule. In addition, during infection of macrophages, phosphatidylinositol 3-kinase (PI3K) pathway was activated. Assays carried out using a selective PI3K inhibitor (LY294002) showed that the PI3K activation is essential for Rab5 activation by T. cruzi infection and for the entrance and intracellular replication of T. cruzi in macrophages. Moreover, using macrophages from knockout mice, we found that activation of Rab5, fusion of early endosomes and phagocytosis induced by T. cruzi infection involved Toll-like receptor (TLR)2 but were independent of TLR4 receptors.  相似文献   

12.
Adhesion of Trypanosoma cruzi to host cells employs mechanisms which are complex and not completely understood. Upon infection, host cells release pro-inflammatory cytokines and chemokines in the environment. These had been found to be involved with increasing parasite uptake as well as killing by macrophages and cardiomyocytes. In the present study, we focused on the interaction of murine beta-chemokine CCL2 with trypomastigote forms of T. cruzi. We found that this chemokine directly triggers the chemotaxis and morphogenesis of trypomastigote forms of parasites. Binding assays showed that the interaction of CCL2 with molecules present in trypomastigote forms is abolished by the addition of condroitin 6-sulphate, a glycosaminoglycan. Moreover, we also observed that the parasite glycoproteins are the major players in this interaction. In summary, our study demonstrates a host ligand/parasite receptor interaction that may have relevant implications in the tissue tropism of this important parasitic disease.  相似文献   

13.
At the site of infection, pro-inflammatory cytokines locally produced by macrophages infected with Trypanosoma cruzi can activate surrounding non-professional phagocytes such as fibroblasts, epithelial and endothelial cells, which can be further invaded by the parasite. The effect of secreted soluble factors on the invasion of these cells remains, however, to be established. We show here that two epithelial cell lines become significantly susceptible to the infection by the Y strain of T. cruzi after tumour necrosis factor (TNF) treatment. The increase in the invasion was correlated with the increasing concentration of recombinant TNF added to cultures of HEK293T or LLC-MK2 cells. Supernatants taken from PMA-differentiated human monocytes infected with T. cruzi also increased the permissiveness of epithelial cells to subsequent infection with the parasite, which was inhibited by a TNF monoclonal antibody. Furthermore, the permissiveness induced by TNF was inhibited by TPCK, and led to significant decrease in the number of intracellular parasites, providing evidence that activation of NF-κB induced by TNF favours the invasion of the epithelial cell lines by T. cruzi through yet an unidentified mechanism. Our data indicate that soluble factors released from macrophages early in the infection favours T. cruzi invasion of non-professional phagocytic cells.  相似文献   

14.
A. Hoerauf    Ch. Rascher    R. Bang    A. Pahl    W. Solbach    K. Brune    M. Röllinghoff  & H. Bang 《Molecular microbiology》1997,24(2):421-429
The antiparasitic effects of cyclosporin A were examined in leishmanial infection by analysing the role of CsA-binding proteins (cyclophilins) in the host–parasite interaction. We hypothesized that the leishmanicidal effects of CsA on Leishmania major infected macrophages might be mediated through a cyclophilin of either the parasite or the host cell. Two cyclophilins (20 and 22 kDa) were purified from L. major parasites and N-terminally sequenced. Although enzyme activity of these cyclophilins was inhibited by CsA, pretreatment of L. major parasites with CsA did not result in reduction of a subsequent macrophage infection, arguing against a role of L. major cyclophilins as infectivity potentiators. However, host-cell cyclophilin A (CypA) was found to be critically involved in the intracellular replication of L. major parasites in murine macrophages. An antisense oligonucleotide to murine CypA was constructed and added to cultures of peritoneal macrophages prior to infection with L. major parasites. This treatment strongly reduced the expression of CypA in macrophages and resulted in the inhibition of the intracellular replication of L. major amastigotes. These data indicate that interaction of amastigotes with host-cell cyclophilin is an important part of the intracellular replication machinery of L. major and define, for the first time, a direct involvement of a cyclophilin in the survival strategies of an intracellular parasite.  相似文献   

15.
The effect of infection with Trypanosoma cruzi on the activity and isoenzyme composition of acid phosphatase within individual murine peritoneal macrophages maintained in vitro was studied. Concentrations of acid phosphatase activity and number of intracellular parasites were quantitated by using a computer-assisted cytospectrophotometry system. Changes in the isoenzyme composition of macrophages during infection with T. cruzi were detected by comparing the patterns of acid phosphatase levels between macrophages treated in the absence and presence of an enzyme inhibitor. It was observed that the concentration levels of acid phosphatase activity in macrophages did not change significantly by infection with T. cruzi. Also, the concentration levels of acid phosphatase activity did not change in macrophages uninfected but exposed to T. cruzi. On the other hand, the isoenzyme composition of acid phosphatase did change in macrophages exposed to or infected with T. cruzi. These results demonstrate that Trypanosoma cruzi affects the acid phosphatase composition of macrophages.  相似文献   

16.
Single doses of drugs active against Trypanosoma cruzi (megazol, nifurtimox and benznidazole) induce a rapid clearance of the blood parasites in experimentally infected mice. Furthermore, the in vitro phagocytosis and intracellular destruction by mouse peritoneal macrophage of blood forms collected from the treated animals is strongly enhanced as compared with parasites from untreated controls. The uptake of the blood forms by macrophages is significantly higher with megazol than with benznidazole and nifurtimox, a finding that concurs with data showing that megazol is also the most active compound in the living host. The possibility that macrophages participate in a synergic effect between the host immune response and chemotherapeutic effect is discussed.  相似文献   

17.
Cytotoxic-activated macrophages control Toxoplasma gondii growth by producing nitric oxide (NO). However, the parasite can partially inhibit NO production. NO is generated from arginine within the polyamine biosynthetic pathway. Two enzymes of this pathway are ornithine, decarboxylase (ODC) and arginine decarboxylase (ADC). The aim of the present work was to investigate whether T. gondii is able to modulate polyamine metabolism in macrophages. Toxoplasma gondii infection did not affect basal ODC or ADC activity. However, lipopolysaccharide induced an increase in ODC activity. Polyamine-treated macrophages exhibited a T. gondii-infection index similar to controls but a higher adhesion index; the parasite did not grow in methyl-ornithine (ODC inhibitor)-treated macrophages. The parasites were able to take up putrescine with a Km of 0.92 microM, indicating the presence of a high-affinity putrescine-transporter system. Putrescine-treated T. gondii actively penetrated macrophages and Vero cells. However, NO production and lysosomal parasitophorous vacuole fusion were not inhibited. Considered together, these results demonstrate that T. gondii requires polyamines for multiplication. However, as opposed to Trypanosoma cruzi and because of a relatively high-affinity putrescine-transporter system in the parasite, constitutive macrophage levels of putrescine seem sufficient to support T. gondii survival and multiplication.  相似文献   

18.
The phagocytosis of free Plasmodium chabaudi parasite by resident peritoneal macrophages of mouse was studied in an in vitro system. The effect of antimalarial antiserum (HIS) was assessed by preincubation of parasite macrophages and both parasite and macrophages with HIS prior to use in phagocytic assays. Highest phagocytic index was obtained with HIS pretreated parasites. The two activities viz. opsonic (parasite dependent) and cytophilic (macrophage dependent) were noted to operate independent of each other. The phagocytosis promoting activity was found to be complement dependent. The receptor site for binding of HIS opsonized but not medium opsonized parasite on the surface of macrophages was blocked by pretreatment of these cells with HIS-soluble antigen combination.  相似文献   

19.
Host macrophage infection by the parasite Leishmania donovani is heterogeneous, but it is not clear which factors are responsible for parasite recognition within the macrophages. One possible factor may be the alteration of the microviscosity of the macrophage membrane. This in turn may affect receptor expression and hence parasite infection. In this paper we describe alteration of the lipid composition and hence the microviscosity of the macrophage membrane in a controlled manner using liposome fusion technique. At a higher macrophage membrane microviscosity a larger number of parasites have been found to adhere to the macrophage surface. However, the proportion of parasites finally internalized when compared to parasites adhering to macrophages is inversely correlated with the artificially altered macrophage membrane microviscosity. The process of endocytosis has been examined in both native and lipid modified macrophages in the presence of several sugar antagonists. The results indicate (i) glucose and mannose are specifically involved in the binding process, and (ii) the microviscosity has a key role in controlling the macrophage parasite interaction. The results obtained so far support a model of endocytosis where expression of the receptor is a critical initial process dependent on the microviscosity of the membrane.  相似文献   

20.
Resident peritoneal macrophages from untreated mice develop microbicidal activity against amastigotes of the protozoan parasite Leishmania tropica (current nomenclature = Leishmania major) after in vitro exposure to LK from antigen-stimulated leukocyte culture fluids. This LK-induced macrophage microbicidal activity was completely abrogated by addition of 7:3 phosphatidylcholine: phosphatidylserine liposomes. Liposome inhibition was not due to direct toxic effects against the parasite or macrophage effector cell; factors in LK that induce macrophage microbicidal activity were not adsorbed or destroyed by liposome treatment. Other phagocytic particles, such as latex beads, had no effect on microbicidal activity. Moreover, liposome inhibition of activated macrophage effector function was relatively selective: LK-induced macrophage tumoricidal activity was not affected by liposome treatment. Liposome inhibition was dependent upon liposome dose (5 nmoles/culture) and time of addition of leishmania-infected, LK-treated macrophage cultures. Addition of liposomes through the initial 8 hr of culture completely inhibited LK-induced macrophage microbicidal activity; liposomes added after 16 hr had no effect. Similarly, microbicidal activity by macrophages activated in vivo by BCG or Corynebacterium parvum was not affected by liposome treatment. Liposome treatment also did not affect the increased resistance to infection induced in macrophages by LK. These data suggest that liposomes interfere with one or more early events in the induction of activated macrophages (macrophage-LK interaction) and not with the cytotoxic mechanism itself (parasite-macrophage interaction). These studies add to the growing body of data that implicate cell lipid in regulatory events controlling macrophage effector function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号