首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic exposure to Arsenic pollution in ground water is one of the largest environmental health disasters in the world. The toxicity of trivalent Arsenicals primarily happens due to its interaction with sulfhydryl groups in proteins. Arsenic binding to the protein can change the conformation of the protein and alter its interactions with other proteins leading to tissue damage. Therefore, much importance has been given to the studies of Arsenic bound proteins, for the purpose of understanding the origins of toxicity and to explore therapeutics. Here we study the dynamic effect of Arsenic on Connexin 43 (Cx43), a protein that forms the gap junctions, whose alteration deeply perturbs the cell-to-cell communication vital for maintaining tissue homeostasis. In silico molecular modelling and in vitro studies comparing Arsenic treated and untreated conditions show distinct results. Gap junction communication is severely disrupted by Arsenic due to reduced availability of unaltered Cx43 in the membrane bound form. In silico and Inductively Coupled Plasma Mass Spectrometry studies revealed the interaction of Arsenic to the Cx43 preferably occurs through surface exposed cysteines, thereby capping the thiol groups that form disulfide bonds in the tertiary structure. This leads to disruption of Cx43 oligomerization, and altered Cx43 is incompetent for transportation to the membrane surface, often forming aggregates primarily localizing in the endoplasmic reticulum. Loss of functional Cx43 on the cell surface have a deleterious effect on cellular homeostasis leading to selective vulnerability to cell death and tissue damage.  相似文献   

2.
Gap junctions are specialized membrane domains containing tens to thousands of intercellular channels. These channels permit exchange of small molecules (< 1000 Da) including ions, amino acids, nucleotides, metabolites and secondary messengers (e.g., calcium, glucose, cAMP, cGMP, IP3) between cells. The common reductionist view of these structures is that they are composed entirely of integral membrane proteins encoded by the 21 member connexin human gene family. However, it is clear that the normal physiological function of this structure requires interaction and regulation by a variety of proteins, especially kinases. Phosphorylation is capable of directly modulating connexin channel function but the most dramatic effects on gap junction activity occur via the organization of the gap junction structures themselves. This is a direct result of the short half-life of the primary gap junction protein, connexin, which requires them to be constantly assembled, remodeled and turned over. The biological consequences of this remodeling are well illustrated during cardiac ischemia, a process wherein gap junctions are disassembled and remodeled resulting in arrhythmia and ultimately heart failure. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.  相似文献   

3.
Phosphorylation of the gap junction protein connexin 43 (Cx43) by protein kinase C (PKC) decreases dye coupling in many cell types. We report an investigation of the regulation by PKC of Cx43 gap junctional hemichannels (GJH) expressed in Xenopus laevis oocytes. The activity of GJH was assessed from the uptake of hydrophilic fluorescent probes. PKC inhibitors increased probe uptake in isolated oocytes expressing recombinant Cx43, indicating that the regulatory effect occurs at the hemichannel level. We identified by mutational analysis the carboxy-terminal (CT) domain sequences involved in this response. We found that 1) Ser368 is responsible for the regulation of Cx43 GJH solute permeability by PKC-mediated phosphorylation, 2) CT domain residues 253-270 and 288-359 are not necessary for the effect of PKC, and 3) the prolinerich CT region is not involved in the effect of phosphorylation by PKC. Our results demonstrate that Ser368 (but not Ser372) is involved in the regulation of Cx43 solute permeability by PKC-mediated phosphorylation, and we conclude that different molecular mechanisms underlie the regulation of Cx43 by intracellular pH and PKC-mediated phosphorylation. protein kinase C blocker; dye loading; hemichannel  相似文献   

4.
It is not clear how the v-Src oncoprotein disrupts gap junctional communication (GJC) established by connexin43 (Cx43) in mammalian cells. In this study, an experimental system was established to stably express v-Src and wild type (wt) Cx43, or Y247F, Y265F, or Y247F/Y265F Cx43 mutants in a Cx43 knockout (KO) mouse cell line. When co-expressed with v-Src, the levels of phosphotyrosine (pTyr) from Y247F, Y265F, and Y247F/Y265F Cx43 mutants were reduced to approximately 57%, 10%, and 2% of the level of pTyr from wt Cx43, indicating that Y247 and Y265 were phosphorylation targets of v-Src in vivo. These data also implied that phosphorylation of Cx43 at Y265 was required for efficient phosphorylation of Cx43 at Y247. Most importantly, our measurements of GJC demonstrated that, in contrast to the wt Cx43 gap junction channels, the Y247F, Y265F, and Y247F/Y265F Cx43 channels were resistant to the disruption by v-Src. In conclusion, our studies support a model for processive phosphorylation of Cx43 on tyrosine, at the Y265 site followed by the Y247 site, in mediating the disruption of GJC induced by v-Src in mammalian cells.  相似文献   

5.
The oncogenic tyrosine kinase, v-Src, phosphorylates connexin43 (Cx43) on Y247 and Y265 and inhibits Cx43 gap junctional communication (GJC), the process of intercellular exchange of ions and metabolites. To test the role of a negative charge on Cx43 induced by tyrosine phosphorylation, we expressed Cx43 with glutamic acid substitutions at Y247 or Y265. The Cx43Y247E or Cx43Y265E channels were functional in Cx43 knockout fibroblasts, indicating that introducing a negative charge on Cx43 was not likely the mechanism for v-Src disruption of GJC. Cells coexpressing v-Src and the triple serine to alanine mutant, Cx43S255/279/282A, confirmed that mitogen-activated protein (MAP) kinase phosphorylation of Cx43 was not required for v-Src-induced disruption of GJC and that tyrosine phosphorylation was sufficient. In addition, v-Src cells containing v-Src-resistant gap junctions, Cx43Y247/265F, displayed properties of cell migration, adhesion, and proliferation similar to Cx43wt/v-Src cells, suggesting that Cx43 tyrosine phosphorylation and disruption of GJC are not involved in these transformed cell properties.  相似文献   

6.
The mechanism by which v-Src disrupts connexin (Cx)43 intercellular gap junctional communication (GJC) is not clear. In this study, we determined that Tyr247 (Y247) and the previously identified Tyr265 (Y265) site of Cx43 were the primary phosphorylation targets for activated Src in vitro. We established an in vivo experimental system by stably expressing v-Src and wild-type (wt) Cx43, or Y247F, Y265F, or Y247F/Y265F Cx43 mutants in a Cx43 knockout mouse cell line. Wt and mutant Cx43 localized to the plasma membrane in the absence or presence of v-Src. When coexpressed with v-Src, the Y247F, Y265F, and Y247F/Y265F Cx43 mutants exhibited significantly reduced levels of tyrosine phosphorylation compared with wt Cx43, indicating that Y247 and Y265 were phosphorylation targets of v-Src in vivo. Most importantly, GJC established by the Y247F, Y265F, and Y247F/Y265F Cx43 mutants was resistant to disruption by v-Src. Furthermore, we did not find evidence for a role for mitogen-activated protein kinase in mediating the disruption of GJC by v-Src. We conclude that phosphorylation on Y247 and Y265 of Cx43 is responsible for disrupting GJC in these mammalian cells expressing v-Src.  相似文献   

7.
To clarify the relationship of gap junction formation to phosphorylation of connexin43 (Cx43) in mouse preimplantation embryos, immunofluorescence and Western blot analysis were conducted. Immunofluorescence showed Cx43 positive spots first at the mid-eight-cell stage (6 hr postdivision to the eight-cell stage). The number of spots increased from 6 to 15 hr postdivision to the eight-cell stage. Western blot analysis suggested Cx43 to possibly be present in the nonphosphorylated form at the mid-four-cell stage (6 hr postdivision to the four-cell stage), and phosphorylated Cx43 to increase from the mid-eight-cell stage (6 hr post-division to the eight-cell stage) onward. Dibutyryl cAMP (dbcAMP), a protein kinase A (PKA) activator, added to the culture medium increased the phosphorylation of Cx43 and Cx43 positive spots. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), a protein kinase C (PKC) activator, increased the phosphorylation of Cx43, but decreased Cx43 positive spots. These results suggest that the phosphorylation of Cx43, induced by different protein kinase, leads to a different effect on gap junction formation in mouse preimplantation embryos.  相似文献   

8.
Previously we showed a rapid and transient inhibition of gap junctional communication (GJC) by platelet-derived growth factor (PDGF) in T51B rat liver epithelial cells expressing wild-type platelet-derived growth factor β receptors (PDGFrβ). This action of PDGF correlated with the hyperphosphorylation of the gap junction protein connexin43 (Cx43) and required PDGFrβ tyrosine kinase activity, suggesting the participation of protein kinases and phosphatases many of which are activated by PDGF treatment. In the present study, two such kinases, namely protein kinase C (PKC) and mitogen-activated protein kinase (MAPK), are investigated for their possible involvement in PDGF-induced closure of junctional channels and Cx43-phosphorylation. Down-regulation of PKC-isoforms by 12-O-tetradecanoylphorbol-13-acetate or pretreatment with the PKC inhibitor calphostin C, completely blocked PDGF action on GJC and Cx43. Activation of MAPK correlated with PDGF-induced Cx43 phosphorylation, and prevention of MAPK activation by PD98059 eliminated the PDGF effects. Interestingly, elimination of GJC recovery by cycloheximide was associated with a sustained activated-MAPK level. Based on these results we postulate that the activation of PKC and MAPK are required in PDGF-mediated Cx43 phosphorylation and junctional closure. J. Cell. Physiol. 176:332–341, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
We previously demonstrated that the gap junction protein connexin43 is translated as a 42-kD protein (connexin43-NP) that is efficiently phosphorylated to a 46,000-Mr species (connexin43-P2) in gap junctional communication-competent, but not in communication-deficient, cells. In this study, we used a combination of metabolic radiolabeling and immunoprecipitation to investigate the assembly of connexin43 into gap junctions and the relationship of this event to phosphorylation of connexin43. Examination of the detergent solubility of connexin43 in communication-competent NRK cells revealed that processing of connexin43 to the P2 form was accompanied by acquisition of resistance to solubilization in 1% Triton X-100. Immunohistochemical localization of connexin43 in Triton-extracted NRK cells demonstrated that connexin43-P2 (Triton-insoluble) was concentrated in gap junctional plaques, whereas connexin43-NP (Triton-soluble) was predominantly intracellular. Using either a 20 degrees C intracellular transport block or cell-surface protein biotinylation, we determined that connexin43 was transported to the plasma membrane in the Triton-soluble connexin43-NP form. Cell-surface biotinylated connexin43-NP was processed to Triton-insoluble connexin43-P2 at 37 degrees C. Connexin43-NP was also transported to the plasma membrane in communication defective, gap junction-deficient S180 and L929 cells but was not processed to Triton-insoluble connexin43-P2. Taken together, these results demonstrate that gap junction assembly is regulated after arrival of connexin43 at the plasma membrane and is temporally associated with acquisition of insolubility in Triton X-100 and phosphorylation to the connexin43-P2 form.  相似文献   

10.
The effects of connexin phosphorylation on gap junctional communication   总被引:13,自引:0,他引:13  
Gap junctions are specialized membrane domains composed of collections of channels that directly connect neighboring cells providing for the cell-to-cell diffusion of small molecules, including ions, amino acids, nucleotides, and second messengers. Vertebrate gap junctions are composed of proteins encoded by the "connexin" gene family. In most cases examined, connexins are modified post-translationally by phosphorylation. Phosphorylation has been implicated in the regulation of gap junctional communication at several stages of the connexin "lifecycle", such as the trafficking, assembly/disassembly, degradation, as well as, the gating of gap junction channels. Since connexin43 (Cx43) is widely expressed in tissues and cell lines, we understand the most about how it is regulated, and thus, connexin43 phosphorylation is a major focus of this review. Recent reports utilizing new methodologies combined with the latest genome information have shown that activation of several kinases including protein kinase A, protein kinase C, p34(cdc2)/cyclin B kinase, casein kinase 1, mitogen-activated protein (MAP) kinase and pp60(src) kinase can lead to phosphorylation at 12 of the 21 serine and two of the six tyrosine residues in the C-terminal region of connexin43. In several cases, use of site-directed mutants of these sites have shown that these specific phosphorylation events can be linked to changes in gap junctional communication.  相似文献   

11.
We used cell lines expressing wild-type connexin43 (Cx43) and Cx43 fused with enhanced green fluorescent protein (Cx43-EGFP) to examine mechanisms of gap junction channel gating. Previously it was suggested that each hemichannel in a cell-cell channel possesses two gates, a fast gate that closes channels to a nonzero conductance or residual state via fast (< approximately 2 ms) transitions and a slow gate that fully closes channels via slow transitions (> approximately 10 ms). Here we demonstrate that transjunctional voltage (V(j)) regulates both gates and that they are operating in series and in a contingent manner in which the state of one gate affects gating of the other. Cx43-EGFP channels lack fast V(j) gating to a residual state but show slow V(j) gating. Both Cx43 and Cx43-EGFP channels exhibit slow gating by chemical uncouplers such as CO(2) and alkanols. Chemical uncouplers do not induce obvious changes in Cx43-EGFP junctional plaques, indicating that uncoupling is not caused by dispersion or internalization of junctional plaques. Similarity of gating transitions during chemical gating and slow V(j) gating suggests that both gating mechanisms share common structural elements. Cx43/Cx43-EGFP heterotypic channels showed asymmetrical V(j) gating with fast transitions between open and residual states only when the Cx43 side was relatively negative. This result indicates that the fast V(j) gate of Cx43 hemichannels closes for relative negativity at its cytoplasmic end.  相似文献   

12.
In the human heart, ventricular myocytes express connexin 43 (Cx43) and traces of Cx45. In congestive heart failure, Cx43 levels decrease, Cx45 levels increase and gap junction size decreases. To determine whether alterations of connexin coexpression ratio influence gap junction size, we engineered a rat liver epithelial cell line that endogenously expresses Cx43 to coexpress inducible levels of Cx45 under stimulation of the insect hormone, ponasterone A. In cells induced to express Cx45, gap junction sizes are significantly reduced (by 15% to 20%; p < 0.001), an effect that occurs despite increased levels of junctional connexons made from both connexins. In contrast, coexpression of Cx40 with Cx43 does not lead to any change in gap junction size. These results are consistent with the idea that increased Cx45 expression in the failing ventricle contributes to decreased gap junction size.  相似文献   

13.
《FEBS letters》2014,588(8):1249-1258
The gap junction family of proteins is widely expressed in mammalian cells and form intercellular channels between adjacent cells, as well as hemichannels, for transport of molecules between the cell and the surrounding environment. In addition, gap junction proteins have recently been implicated as important for the regulation of cell adhesion and migration in a variety of cell types. The gap junction protein connexin43 (Cx43) regulates B lymphocyte adhesion, BCR- and LFA-1-mediated activation of the GTPase Rap1, and cytoskeletal rearrangements resulting in changes to cell shape and membrane spreading. We demonstrate here that the actin cytoskeleton is important for the distribution of Cx43 in the B cell plasma membrane and for other cell processes involving the cytoskeleton. Using shRNA knockdown of Cx43 in B lymphoma cells we show that Cx43 is also necessary for chemokine-mediated Rap 1 activation, motility, CXCL12-directed migration, and movement across an endothelial cell monolayer. These results demonstrate that in addition to its role in B cell spreading, Cx43 is an important regulator of B-cell motility and migration, processes essential for normal B-cell development and immune responses.  相似文献   

14.
Gap junction communication in some cells has been shown to be inhibited by pp60v-src, a protein tyrosine kinase encoded by the viral oncogene v-src. The gap junction protein connexin43 (Cx43) has been shown to be phosphorylated on serine in the absence of pp60v-src and on both serine and tyrosine in cells expressing pp60v-src. However, it is not known if the effect of v-src expression on communication results directly from tyrosine phosphorylation of the Cx43 or indirectly, for example, by activation of other second-messenger systems. In addition, the effect of v-src expression on communication based on other connexins has not been examined. We have used a functional expression system consisting of paired Xenopus oocytes to examine the effect of v-src expression on the regulation of communication by gap junctions comprised of different connexins. Expression of pp60v-src completely blocked the communication induced by Cx43 but had only a modest effect on communication induced by connexin32 (Cx32). Phosphoamino acid analysis showed that pp60v-src induced tyrosine phosphorylation of Cx43, but not Cx32. A mutation replacing tyrosine 265 of Cx43 with phenylalanine abolished both the inhibition of communication and the tyrosine phosphorylation induced by pp60v-src without affecting the ability of this protein to form gap junctions. These data show that the effect of pp60v-src on gap junctional communication is connexin specific and that the inhibition of Cx43-mediated junctional communication by pp60v-src requires tyrosine phosphorylation of Cx43.  相似文献   

15.
The present immunocytochemical study examines in the rat ovary the pattern of expression of connexin 43 (Cx43), a subunit of gap junctions. Using a well-characterized specific antiserum against rat Cx43, immunoreactivity was not detected in the fetal ovary, i.e., prior to follicular formation. However, in the ovary of 20-day-old, 35-day-old, and adult rats, strong Cx43-immunore-activity was associated with the cell borders of the follicular epithelium/granulosa cells of all developmental stages (primordial follicles, preantral and antral secondary follicles). In general, immunoreactivity of the granulosa cells of large antral follicles appeared more intense than the one of smaller follicles. Staining was also seen in oocytes (cytoplasmic staining). Theca cells of large antral follicles, but not of small follicles were immunoreactive. Immunoreactive interstitial cells were not seen in ovaries of 20- and 35-day-old animals, but staining in these cells was present in adult rats. In large follicles with signs of atresia, granulosa cells lacked Cx43-immunoreactivity, whereas Cx43-immunoreactivity in their theca interna strikingly increased. Corpora lutea in the cyclic adult rats were heterogeneously stained, with either no detectable immunoreactivity, staining of cell borders of most luteal cells, or with conspicuous staining of only a few cells. In the pregnant animals on gestation days (GD) 12, 14, and 17, all luteal cells stained strongly for Cx43 at the cell surface. Shortly before delivery (GD 21), however, the staining pattern vanished and only few, presumably luteal cells remained immunoreactive. In Western blots (using homogenates of whole ovaries), the Cx43 antiserum recognized a major band of approximate Mr 43 × 103, together with minor bands, which may reflect the presence of several differently phosphorylated Cx43 forms. This is indicated by treatment with alkaline phosphatase, which reduced the banding pattern to one single band. In summary, the gap junction molecule Cx43 is abundantly expressed in all endocrine compartments of the rat ovary. The staining pattern obtained in the present study indicates that Cx43 and presumably gap-junctional communication are associated with follicular development, atresia, and the development of the interstitial gland, as well as with the development and regression of the corpus luteum. The heterogeneous staining within the ovary furthermore hints to a contribution of the local intraovarian factors in the regulation of Cx43 expression. © 1995 Wiley-Liss, Inc.  相似文献   

16.
To elucidate whether the two different gap junction proteins connexin43 (Cx43) and connexin26 (Cx26) are expressed and localized in a similar manner in the adult rat cochlea, we performed three-dimensional confocal microscopy using cryosections and surface preparations. In the cochlear lateral wall, Cx43-positive spots were localized mainly in the stria vascularis and only a few spots were present in the spiral ligament, whereas Cx26-positive spots were detected in both the stria vascularis and the spiral ligament. In the spiral limbus, Cx43 was widely distributed, whereas Cx26 was more concentrated on the side facing the scala vestibuli and in the basal portion. In the organ of Corti, Cx43-positive spots were present between the supporting cells but they were fewer and much smaller than those of Cx26. These data demonstrated distinct differences between Cx43 and Cx26 in expression and localization in the cochlea. In addition, the area of overlap of zonula occludens-1 (ZO-1) immunolabeling with Cx43-positive spots was small, whereas it was fairly large with Cx26-positive spots in the cochlear lateral wall, suggesting that the differences are not associated with the structural difference between carboxyl terminals, i.e., those of Cx43 possess sequences for binding to ZO-1, whereas those of Cx26 lack these binding sequences.  相似文献   

17.
Summary Lens epithelial cells are physiologically coupled to each other and to the lens fibers by an extensive network of intercellular gap junctions. In the rat, the epithelial-epithelial junctions appear to contain connexin43, a member of the connexin family of gap junction proteins. Limitations on the use of rodent lenses for the study of gap junction formation and regulation led us to examine the expression of connexin43 in embryonic chick lenses. We report here that chick connexin43 is remarkably similar to its rat counterpart in primary amino acid sequence and in several key structural features as deduced by molecular cDNA cloning. The cross-reactivity of an anti-rat connexin43 serum with chick connexin43 permitted definitive immunocytochemical localization of chick connexin43 to lens epithelial gap junctional plaques and examination of the biosynthesis of connexin43 by metabolic radiolabeling and immunoprecipitation. We show that chick lens cells synthesize connexin43 as a single, 42-kD species that is efficiently posttranslationally converted to a 45-kD form. Metabolic labeling of connexin43 with32P-orthophosphate combined with dephosphorylation experiments reveals that this shift in apparent molecular weight is due solely to phosphorylation. These results indicate that embryonic chick lens is an appropriate system for the study of connexin43 biosynthesis and demonstrate for the first time that connexin43 is a phosphoprotein.  相似文献   

18.
Cell-cell communication through connexin43 (Cx43)-based gap junction channels is rapidly inhibited upon activation of various G protein-coupled receptors; however, the mechanism is unknown. We show that Cx43-based cell-cell communication is inhibited by depletion of phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P(2)) from the plasma membrane. Knockdown of phospholipase Cbeta3 (PLCbeta3) inhibits PtdIns(4,5)P(2) hydrolysis and keeps Cx43 channels open after receptor activation. Using a translocatable 5-phosphatase, we show that PtdIns(4,5)P(2) depletion is sufficient to close Cx43 channels. When PtdIns(4,5)P(2) is overproduced by PtdIns(4)P 5-kinase, Cx43 channel closure is impaired. We find that the Cx43 binding partner zona occludens 1 (ZO-1) interacts with PLCbeta3 via its third PDZ domain. ZO-1 is essential for PtdIns(4,5)P(2)-hydrolyzing receptors to inhibit cell-cell communication, but not for receptor-PLC coupling. Our results show that PtdIns(4,5)P(2) is a key regulator of Cx43 channel function, with no role for other second messengers, and suggest that ZO-1 assembles PLCbeta3 and Cx43 into a signaling complex to allow regulation of cell-cell communication by localized changes in PtdIns(4,5)P(2).  相似文献   

19.
Many cells express multiple connexins, the gap junction proteins that interconnect the cytosol of adjacent cells. Connexin43 (Cx43) channels allow intercellular transfer of Lucifer Yellow (LY, MW = 443 D), while connexin45 (Cx45) channels do not. We transfected full-length or truncated chicken Cx45 into a rat osteosarcoma cell line ROS-17/2.8, which expresses endogenous Cx43. Both forms of Cx45 were expressed at high levels and colocalized with Cx43 at plasma membrane junctions. Cells transfected with full-length Cx45 (ROS/Cx45) and cells transfected with Cx45 missing the 37 carboxyl-terminal amino acids (ROS/Cx45tr) showed 30-60% of the gap junctional conductance exhibited by ROS cells. Intercellular transfer of three negatively charged fluorescent reporter molecules was examined. In ROS cells, microinjected LY was transferred to an average of 11.2 cells/injected cell, while dye transfer between ROS/Cx45 cells was reduced to 3.9 transfer between ROS/Cx45 cells was reduced to 3.9 cells. In contrast, ROS/Cx45tr cells transferred LY to > 20 cells. Transfer of calcein (MW = 623 D) was also reduced by approximately 50% in ROS/Cx45 cells, but passage of hydroxycoumarin carboxylic acid (HCCA; MW = 206 D) was only reduced by 35% as compared to ROS cells. Thus, introduction of Cx45 altered intercellular coupling between cells expressing Cx43, most likely the result of direct interaction between Cx43 and Cx45. Transfection of Cx45tr and Cx45 had different effects in ROS cells, consistent with a role of the carboxyl-terminal domain of Cx45 in determining gap junction permeability or interactions between connexins. These data suggest that coexpression of multiple connexins may enable cells to achieve forms of intercellular communication that cannot be attained by expression of a single connexin.  相似文献   

20.
The precise spatial order of gap junctions at intercalated disks in adult ventricular myocardium is thought vital for maintaining cardiac synchrony. Breakdown or remodeling of this order is a hallmark of arrhythmic disease of the heart. The principal component of gap junction channels between ventricular cardiomyocytes is connexin43 (Cx43). Protein-protein interactions and modifications of the carboxyl-terminus of Cx43 are key determinants of gap junction function, size, distribution and organization during normal development and in disease processes. Here, we review data on the role of proteins interacting with the Cx43 carboxyl-terminus in the regulation of cardiac gap junction organization, with particular emphasis on Zonula Occludens-1. The rapid progress in this area suggests that in coming years we are likely to develop a fuller understanding of the molecular mechanisms causing pathologic remodeling of gap junctions. With these advances come the promise of novel approach to the treatment of arrhythmia and the prevention of sudden cardiac death. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号