首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
气候变化导致长白山苔原由灌木苔原向灌草苔原演化,对土壤呼吸及碳循环造成了重要影响。为了明确植被变化对苔原土壤呼吸的影响,该研究选取了长白山苔原典型的群落,测定分析了不同草本植物盖度下的土壤呼吸的季节动态变化及差异。结果表明:(1)在生长季,3个群落下不同变化阶段样地的土壤呼吸速率均有明显的动态变化,均呈单峰型变化特征;草本植物盖度增加没有改变土壤呼吸的季节动态变化趋势。(2)草本植物盖度增加对土壤呼吸速率有显著影响,随着草本植物盖度的增加,土壤呼吸速率也逐渐增大。(3)不同植物群落下土壤呼吸不同,在草本植物盖度相同的条件下土壤呼吸速率依次为:牛皮杜鹃 小叶章群落>牛皮杜鹃 地榆群落>笃斯越桔 苔草群落。(4)不同群落草本植物盖度增加对土壤呼吸的增速效应不同,牛皮杜鹃 小叶章群落的土壤呼吸增速最快,笃斯越桔 苔草群落的次之,牛皮杜鹃 地榆群落最小;草本植物盖度的增加也使3个群落之间土壤呼吸的差值出现明显的变化。  相似文献   

3.
4.
Modern pollen samples from alpine vegetation on the Tibetan Plateau   总被引:6,自引:0,他引:6  
  • 1 A set of 316 modern surface pollen samples, sampling all the alpine vegetation types that occur on the Tibetan Plateau, has been compiled and analysed. Between 82 and 92% of the pollen present in these samples is derived from only 28 major taxa. These 28 taxa include examples of both tree (AP) and herb (NAP) pollen types.
  • 2 Most of the modern surface pollen samples accurately reflect the composition of the modern vegetation in the sampling region. However, airborne dust‐trap pollen samples do not provide a reliable assessment of the modern vegetation. Dust‐trap samples contain much higher percentages of tree pollen than non‐dust‐trap samples, and many of the taxa present are exotic. In the extremely windy environments of the Tibetan Plateau, contamination of dust‐trap samples by long‐distance transport of exotic pollen is a serious problem.
  • 3 The most characteristic vegetation types present on the Tibetan Plateau are alpine meadows, steppe and desert. Non‐arboreal pollen (NAP) therefore dominates the pollen samples in most regions. Percentages of arboreal pollen (AP) are high in samples from the southern and eastern Tibetan Plateau, where alpine forests are an important component of the vegetation. The relative importance of forest and non‐forest vegetation across the Plateau clearly follows climatic gradients: forests occur on the southern and eastern margins of the Plateau, supported by the penetration of moisture‐bearing airmasses associated with the Indian and Pacific summer monsoons; open, treeless vegetation is dominant in the interior and northern margins of the Plateau, far from these moisture sources.
  • 4 The different types of non‐forest vegetation are characterized by different modern pollen assemblages. Thus, alpine deserts are characterized by high percentages of Chenopodiaceae and Artemisia, with Ephedra and Nitraria. Alpine meadows are characterized by high percentages of Cyperaceae and Artemisia, with Ranunculaceae and Polygonaceae. Alpine steppe is characterized by high abundances of Artemisia, with Compositae, Cruciferae and Chenopodiaceae. Although Artemisia is a common component of all non‐forest vegetation types on the Tibetan Plateau, the presence of other taxa makes it possible to discriminate between the different vegetation types.
  • 5 The good agreement between modern vegetation and modern surface pollen samples across the Tibetan Plateau provides a measure of the reliability of using pollen data to reconstruct past vegetation patterns in non‐forested areas.
  相似文献   

5.
We conducted DNA metabarcoding (based on the nuclear ITS2 region) to characterize indoor pollen samples (possibly accompanied by other plant fragments) and to discover whether there are seasonal changes in their taxonomic diversity. It was shown that DNA metabarcoding has potential to allow a good discovery of taxonomic diversity. The number of spermatophyte families and genera varied greatly among sampling sites (pooled results per building) and times, between 9–40 and 10–66, respectively. Comparable Shannon's diversity indices equaled 0.33–2.76 and 0.94–3.16. The total number of spermatophyte genera found during the study was 187, of which 43.9, 39.6, 7.5 and 9.1% represented wild, garden/crop and indoor house plants, and non‐domestic fruit or other plant material, respectively. Comparable proportions of individual sequences equaled 77.4, 18.8, 2.7 and 1.1%, respectively. When comparing plant diversities and taxonomic composition among buildings or between seasons, no obvious pattern was detected, except for the second summer, when pollen coming from outdoors was highly dominant and the proportions of likely allergens, birch, grass, alder and mugwort pollen, were very high. The average pairwise values of SørensenChao indices that were used to compare similarities for taxon composition between samples among the samples from the two university buildings, two nurseries and farmhouse equaled 0.514, 0.109, 0.564, 0.865 and 0.867, respectively, while the mean similarity index for all samples was 0.524. Cleaning frequency may strongly contribute to the observed diversity. The discovery of considerable diversities, including pollen coming from outside, in both winter and summer shows that substantial amounts of pollen produced in summer enter buildings and stay there throughout the year.  相似文献   

6.
Grazed and mown vegetation types in western Norway were investigated with the aim of describing their modern pollen/vegetation relationships as an aid to the interpretation of fossil pollen diagrams. Pollen surface samples and vegetation data were obtained from 186 square metre plots within 39 different sites of 10×10 m. Scatter plots that show the relationship between pollen percentages and vegetation percentages are presented forTrifolium pratense-type,Trifolium rcpens-type,Lotus, Campanula-type,Succisa, Ranunculus acris-type,Cirsium-type, Asteraceae Cichorioideae,Achillea-type,Potentilla-type, Apiaceae,Rumex sect.Acetosa, Galium-type, Cyperaceae,Calluna, Plantago lanceolata and Poaceae. Pollen representation factors relative to Poaceae (Rrel) are calculated for 54 pollen taxa. Differences in the values from different geographical areas were found in the case of some taxa, due to either different genera or species being included in the pollen taxa and/or to the different representation of high pollen producers in the different regional vegetation types. Background pollen influences the estimates for taxa such asR. sect.Acetosa, P. lanceolata, Poaceae, Cyperaceae, andCalluna, and an extended R-value (ERV) model was used to investigate the magnitude of this pollen component. Groups of roughly similar pollen representation were identified and factors to convert pollen percentages to vegetation abundances are suggested.  相似文献   

7.
The purpose of this research was to investigate the feasibility of suction bioventing for treatment of contaminated tundra soil. Two laboratory-scale venting reactors were prepared with tundra from Arctic Alaska and operated, one for 32?d and the other for 52?d. For each rectangular reactor, suction was applied to a central well screened at mid-depth, while opposite ends of the reactor were screened to serve as air intake zones. The volume of liquid and gas recovered from the suction well was quantified daily. Numbers for heterotrophic organisms, pH, and dissolved organic carbon were quantified in the recovered liquid. The suction pump held a full vacuum (i.e., 101?kPa vac) for the duration of both experiments, indicating continuous obstruction of pneumatic and hydraulic conductivity. In both reactors, the soil in the proximity of the suction well separated from the bulk of the soil, precluding hydraulic communication. Furthermore, the soil nearest the well screen compacted, forming a barrier to appreciable pneumatic conductivity. At the end of operation, the soil was removed and sampled for moisture content, pH, and numbers of heterotrophic organisms at various locations. The results of this study showed that for suction bioventing to be successful in tundra, consolidation of the soil around the well screen must be prevented, as it will cause well isolation and limit both pneumatic and hydraulic conductivities.  相似文献   

8.
This study was done to determine the degree of metals and heavy metals in some bee pollen sample as biological indicator for environmental pollution. Sample were collected from industrial, urban and agricultural areas of Jordan in year 2017. Eight metals (As, Cd, Cu, Mg, Pb, Ni, Se, and Zn) continents analyzed by using Inductively Coupled Plasma Optical Emission Spectrum, (ICP-OES).Results were statistically interpreted by using ANOVA analysis. Metals content in bee pollen from Jordan and China were determined within the following ranges (minimum–maximum mg/kg); Cu (copper): 11.338–0.032, Zn (Zinc): 77.022–25.24, Ni (Nickel): 2.839 to <0.01, Se (Selenium): 3.03 to <0.04, Mg (Magnesium): 1575.19–641.388, Pb (Lead): 2.567 to <0.03, Cd (Cadmium): <0.005, As (Arsenic): <0.02. The results showed that there were no statistically significant differences among metals in the bee pollen. It has also found that bee pollen produced in Jordan may be a good source of some trace elements like Se and Mg and can be used as an environmental indicator and for quality control.  相似文献   

9.
 Microtubules in pollen tubes are evident within the vegetative and generative cell cytoplasm. This observation led to the formulation of several hypotheses regarding the role of microtubules in cytoplasmic movement and the migration of the vegetative nucleus/generative cell along the pollen tube. The study of microtubular motor proteins in pollen tubes followed the discovery and characterization of an immunoreactive homolog of mammalian kinesin in tobacco pollen tubes. Recent identification of dynein-related polypeptides in pollen tubes of Nicotiana tabacum and pollen of Ginkgo biloba is a significant step in the definition of the role of microtubule function within pollen and pollen tubes. Received: 31 May 1996 / Revision accepted: 26 July 1996  相似文献   

10.
Although grass pollen is widely regarded as the major outdoor aeroallergen source in Australia and New Zealand (NZ), no assemblage of airborne pollen data for the region has been previously compiled. Grass pollen count data collected at 14 urban sites in Australia and NZ over periods ranging from 1 to 17 years were acquired, assembled and compared, revealing considerable spatiotemporal variability. Although direct comparison between these data is problematic due to methodological differences between monitoring sites, the following patterns are apparent. Grass pollen seasons tended to have more than one peak from tropics to latitudes of 37°S and single peaks at sites south of this latitude. A longer grass pollen season was therefore found at sites below 37°S, driven by later seasonal end dates for grass growth and flowering. Daily pollen counts increased with latitude; subtropical regions had seasons of both high intensity and long duration. At higher latitude sites, the single springtime grass pollen peak is potentially due to a cooler growing season and a predominance of pollen from C3 grasses. The multiple peaks at lower latitude sites may be due to a warmer season and the predominance of pollen from C4 grasses. Prevalence and duration of seasonal allergies may reflect the differing pollen seasons across Australia and NZ. It must be emphasized that these findings are tentative due to limitations in the available data, reinforcing the need to implement standardized pollen-monitoring methods across Australasia. Furthermore, spatiotemporal differences in grass pollen counts indicate that local, current, standardized pollen monitoring would assist with the management of pollen allergen exposure for patients at risk of allergic rhinitis and asthma.  相似文献   

11.
The alpine and polar climatic limit for growth of woody plants is very much dependent on the mean temperatures of the warmest three or four summer months. Tundra plants with perennating buds close to the ground are sheltered by insulating snow cover. Many tundra plants can grow at temperatures 5–10°C below 0°C and also have low optimum temperatures. Total net production of tundra plants may be as high as 900 g/m2/yr as dry weight in moist and eutrophic low alpine shrub tundra and in antarctic moss mats. The variation in tundra plant production is often observed to be greater between different stands (communities) within one locality than between localities, because of very important variation in soil moisture and nutrients between the stands. On a global scale the biomass of vascular plants increases by an order of magnitude from the climatic severe polar desert to semidesert and again from there to moist shrub tundra. The cryptogam biomass increases only 2–10 fold from polar desert to low arctic shrub tundra. To a certain limit unfavourable climatic conditions are worse to above- than to belowground plant parts. Highest root biomass compared to top (up to 20 times higher) is observed in wet monocotyledonous polar and alpine communities. In polar desert root biomass is small again, as compared to tops and also in lower latitudes and altitudes of temperate regions.Presented at he Eighth International Congress of Biometeorology, 9–14 September 1979, Shefayim, Israel.  相似文献   

12.
Small pollen grains and fine particles of the organic matrix in samples of a coarse detritus mud and a blanket peal deposit were removed by sieving through 30μ polyester mesh after digestion with KOH and acetolysis during standard pollen pre-treatment. The technique enhanced the number of large pollen grains m the sample. There was also an increase in the range of taxa which produce huge grains. The method provided a means of estimating the ratio of any scarce large pollen grain to the total grain sum in samples prepared by standard methods of pre-treatment.  相似文献   

13.
The compilation of large and complex sets of modern pollen data has stimulated the use of new methods, including the use of multivariate statistical techniques, for summarizing and presenting these data. This paper compares several of these methods by applying them to Lichti-Federovich and Ritchie's (1968) 131 sediment samples of modern pollen from central Canada. Maps of the major pollen types are presented, and the data are analyzed by canonical variates analysis, principal components analysis, principal coordinates analysis, and minimum-variance cluster analysis.The maps show the geographical distribution of the principal pollen types and reveal that steep gradients in the percentages of eight of the nineteen pollen types used in this study separate the samples in the southwest from the remaining samples. Excluding the southwestern samples, the maps show the frequencies of the other pollen types to be aligned north to south with high values of sedge, birch, and heath pollen in the north, high values of pine in the south, and high values of spruce and alder in between. This same general structure is evident in the results of the four multivariate analyses. The samples are distributed in a closely similar manner along the first two axes derived from canonical varietes analysis, principal components analysis, and principal coordinates analysis. The first axis of each analysis separates the samples in the southwest from the rest of the samples, and the second axis shows these latter samples to be spread fairly evenly along a north—south gradient from the tundra samples to the mixed coniferous—deciduous forest samples. Minimum-variance cluster analysis also shows these divisions by clustering the samples into three major groups: the southwestern samples from the prairie, aspen parkland, and deciduous forest; the northern samples from the tundra and forest—tundra; and the intermediate samples from the mixed forest and closed coniferous forest regions. Further division by the clustering technique yields fourteen groups, and these show the pollen samples to cluster slightly differently from their classification based on their location within the vegetational units. For example, the samples of the forest—tundra and the open coniferous forest are grouped together, but the samples of the upland mixed forest are too heterogeneous in pollen composition to be placed in one group.These results indicate the power of these numerical methods that use prescribed mathematical steps to analyze all samples and major pollen types simultaneously and thereby reveal the basic structure in the data based on numerical criteria alone. These summaries aid an investigator in visualizing the important trends and divisions in a data set and in finding those samples needed for a particular comparison.  相似文献   

14.
15.
16.
17.
《农业工程》2020,40(4):283-295
The composition and relative abundance of airborne pollen in urban areas of south China are strongly influenced by geographical location, vegetation, climate, and sampling device. This paper summarizes the latest reports on air pollen for 12 major cities in southern China from 1986 to 2017. The most significant taxa across all sites are Pinaceae, Poaceae, Cupressaceae, and Platanus, making up over 50% of the total airborne pollen in urban environments throughout the years. Clear shifting has been observed from long pollen seasons in the tropics to shorter periods in the south middle and north subtropical regions. There is also a discernible shift in the initiation and length of the pollen season towards higher latitudes. Both reflect the strong influence of solar radiation incidence on pollen production during spring and summer months in the southern urban areas. In this study, the comparison between airborne pollen and meteorological data indicates that the airborne pollen concentration was positively related to temperature but negatively related to precipitation and relative humidity. This study reveals that the consistent wind speed over the year had a very little but positive effect on pollen and spore concentration. The active sampler (volumetric method) in Guangzhou and Zhanjiang collected more spore and pollen species than the passive sampler (gravity method) in other cities. Understanding the future potential impacts of climate change on the phenological cycles and range of allergenic species is a critical step in the advancement of aerobiology studies in south China.  相似文献   

18.
ABSTRACT We seeded experimental plots with number 4 lead pellets and sampled these plots for 10 years to assess the settlement rate of pellets in tundra wetland types commonly used by foraging waterfowl. After 10 years, about 10% of pellets remained within 6 cm of the surface, but >50% remained within 10 cm. We predict that spent lead pellets will eventually become unavailable to waterfowl; however, it will likely require >25 years for all pellets to exceed depths at which waterfowl species may forage.  相似文献   

19.
20.
The Arctic is experiencing rapid vegetation changes, such as shrub and tree line expansion, due to climate warming, as well as increased wetland variability due to hydrological changes associated with permafrost thawing. These changes are of global concern because changes in vegetation may increase tundra soil biogeochemical processes that would significantly enhance atmospheric CO2 concentrations. Predicting the latter will at least partly depend on knowing the structure, functional activities, and distributions of soil microbes among the vegetation types across Arctic landscapes. Here we investigated the bacterial and microeukaryotic community structures in soils from the four principal low Arctic tundra vegetation types: wet sedge, birch hummock, tall birch, and dry heath. Sequencing of rRNA gene fragments indicated that the wet sedge and tall birch communities differed significantly from each other and from those associated with the other two dominant vegetation types. Distinct microbial communities were associated with soil pH, ammonium concentration, carbon/nitrogen (C/N) ratio, and moisture content. In soils with similar moisture contents and pHs (excluding wet sedge), bacterial, fungal, and total eukaryotic communities were correlated with the ammonium concentration, dissolved organic nitrogen (DON) content, and C/N ratio. Operational taxonomic unit (OTU) richness, Faith''s phylogenetic diversity, and the Shannon species-level index (H′) were generally lower in the tall birch soil than in soil from the other vegetation types, with pH being strongly correlated with bacterial richness and Faith''s phylogenetic diversity. Together, these results suggest that Arctic soil feedback responses to climate change will be vegetation specific not just because of distinctive substrates and environmental characteristics but also, potentially, because of inherent differences in microbial community structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号