首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Restoration of habitat for endangered species often involves translocation of seeds or individuals from source populations to an area targeted for revegetation. Long-term persistence of a species is dependent on the maintenance of sufficient genetic variation within and among populations. Thus, knowledge and maintenance of genetic variability within rare or endangered species is essential for developing effective conservation and restoration strategies. Genetic monitoring of both natural and restored populations can provide an assessment of restoration protocol success in establishing populations that maintain levels of genetic diversity similar to those in natural populations. California’s vernal pools are home to many endangered plants, thus conservation and restoration are large components of their management. Lasthenia conjugens (Asteraceae) is a federally endangered self-incompatible vernal pool annual with gravity- dispersed seeds. Using the molecular technique of intersimple sequence repeats (ISSRs), this study assessed levels and patterns of genetic variability present within natural and restored populations of L. conjugens. At Travis Air Force Base near Fairfield, California, a vernal pool restoration project is underway. Genetic success of the ecologically based seeding protocol was examined through genetic monitoring of natural and restored populations over a three-year period. Genetic diversity remained constant across the three sampled generations. Diversity was also widely distributed across all populations. We conclude that the protocol used to establish restored populations was successful in capturing similar levels and patterns of genetic diversity to those seen within natural pools. This study also demonstrates how genetic markers can be used to inform conservation and restoration decisions.  相似文献   

2.
Conservation genetics of freshwater fish   总被引:7,自引:0,他引:7  
Genetic markers have helped to resolve many difficult taxonomic problems and map patterns of diversity within and among remnant populations of threatened and endangered species. Knowledge of historical patterns of gene flow can help to manage dispersal among anthropogenically fragmented populations. Genetic considerations are used in the design of captive breeding programmes that avoid inbreeding depression and artificial selection that may impact on Darwinian fitness. Case studies from endangered populations of topminnows from North American deserts are used to illustrate a variety of methods used in conservation genetic studies. Several merits of studying putatively neutral, molecular markers v. adaptive phenotypic traits are discussed.  相似文献   

3.
The Socorro isopod, Thermosphaeroma thermophilum, became the focus of a novel conservation strategy when apparent extirpation of the species from the wild prompted construction of the Socorro Isopod Propagation Facility (SIPF) near the native spring in Socorro, New Mexico, USA. We subjected captive populations to 4 habitat treatments over 2 consecutive 50-month experimental trials. Native populations of T. thermophilum remained significantly more abundant than captive subpopulations during the 100-month study. Population trends among artificial habitats differed slightly between the trials, but the magnitude of this difference was independent of linear flow within either pool series, suggesting that captive isopods responded to habitat quality. Isopod age structure was most heterogeneous in pools with plants suggesting that vertical structural diversity is necessary to maintain long-term viability of T. thermophilum in captivity. Observations of `breeding huddles' in the SIPF pools implied that controlled propagation may affect the social basis of the species' mating system. This could be a behavioral response to selection on body size that may reduce predation risks from larger male cannibals, or to increase fitness of both sexes under spatially altered sex ratios of artificial environments. Our results accentuate the need for continued research on species-specific management practices for geographically restricted invertebrate taxa such as the endangered Socorro isopod.  相似文献   

4.
Cypripedium japonicum Thunb. (Orchidaceae), once a common perennial herb, is now designated as endangered throughout most of its distribution due to habitat destruction and fragmentation, and the impacts of horticultural collection. We investigated the genetic characteristics of this species for conservation purposes, using microsatellite markers to examine the genetic diversity and structure of 15 native and 5 ex situ populations in Japan. The results imply that although allelic variation is low in Japanese C. japonicum, sexual reproduction by seed, as well as clonal propagation, may occur in some populations. Both native and ex situ populations were found to be genetically differentiated, indicating that some populations may have experienced recent population declines, genetic fragmentation, or bottlenecks. The degree of genetic drift from the putative ancestral population, inferred through STRUCTURE analysis, was more pronounced in northern populations than in southern populations. Some of the ex situ conserved populations exhibited a low degree of differentiation from ancestral native populations. Our results imply that conservation of C. japonicum in Japan is best supported by maintaining individual populations and their unique genetic characteristics.  相似文献   

5.
Invasive exotic plants often grow fast, reproduce rapidly and display considerable phenotypic plasticity in their invasive range, which may be essential characteristics for successful invasion. However, it remains unclear whether these characteristics are already present in native populations (pre-adaptation hypothesis) or evolve after introduction (genetic shift hypothesis).To test these hypotheses we compared means and phenotypic plasticity of vegetative and reproductive traits between populations of Impatiens glandulifera collected from either the invasive (Norway) or native range (India). Seeds were sown and the resulting plants were exposed to different experimental environments in a glasshouse. We also tested whether trait means and reaction norms harbored genetic variation, as this may promote fitness in the novel environment.We did not find evidence that invasive populations of I. glandulifera grew more vigorously or produced more seeds than native populations. Phenotypic plasticity did not differ between the native and invasive range, except for the number of nodes which was more plastic in the invasive range. Genetic variation in the slope of reaction norms was absent, suggesting that the lack of change in phenotypic plasticity between native and invasive populations resulted from low genetic variation in phenotypic plasticity initially harbored by this species. Post-introduction evolution of traits thus probably did not boost the invasiveness of I. glandulifera. Instead, the species seems to be pre-adapted for invasion.We suggest that differences in habitat between the native and invasive range, more specifically the higher nutrient availability observed in the new environment, are the main factor driving the invasion of this species. Indeed, plants in the more nutrient-rich invasive range had greater seed mass, likely conferring a competitive advantage, while seed mass also responded strongly to nutrients in the glasshouse. Interactions between habitat productivity and herbivore defense may explain the lack of more vigorous growth in the new range.  相似文献   

6.
Successful restoration of ephemeral wetlands worldwide is particularly challenging, given the often‐precise relationship between hydrological features and plant community dynamics. Using a long‐term experiment in vernal pool restoration, we compare hydrological and vegetative characteristics of constructed pools with those of adjacent, naturally occurring reference pools. Although constructed and reference pools were similar in maximum water depth and duration of inundation at the beginning of our experiment in 2000, constructed pools were shallower and inundated for shorter periods by 2009. Native vernal pool species were able to establish populations in many constructed pools, and seeding sped their establishment. Comparing seeded plots in constructed pools with unseeded plots in reference pools, we found no significant difference in the cover of seeded species, native species, or exotic species in most years. In recent years, however, native species have declined in both constructed and reference pools. Finally, the cover of native vernal pool species was positively and non‐linearly associated with both water depth and seeding treatment. We conclude that the establishment of appropriate hydrological conditions was necessary, but not sufficient to promote successful performance of vernal pool species in constructed pools. Constructed pools with hydrologic conditions similar to those of reference pools were more likely to support populations of native vernal pool plant species, but only seeded pools were similar to reference pools in abundance of native cover. Most importantly, hydrological conditions in experimental pools have worsened since their construction, which may hamper persistence of native species in this restoration effort.  相似文献   

7.
This study revealed between‐lake genetic structuring between Coregonus lavaretus collected from the only two native populations of this species in Scotland, U.K. (Lochs Eck and Lomond) evidenced by the existence of private alleles (12 in Lomond and four in Eck) and significant genetic differentiation (FST = 0·056) across 10 microsatellite markers. Juvenile C. lavaretus originating from eggs collected from the two lakes and reared in a common‐garden experiment showed clear phenotypic differences in trophic morphology (i.e. head and body shape) between these populations indicating that these characteristics were, at least partly, inherited. Microsatellite analysis of adults collected from different geographic regions within Loch Lomond revealed detectable and statistically significant but relatively weak genetic structuring (FST = 0·001–0·024) and evidence of private alleles related to the basin structure of the lake. Within‐lake genetic divergence patterns suggest three possibilities for this observed pattern: (1) differential selection pressures causing divergence into separate gene pools, (2) a collapse of two formerly divergent gene pools and (3) a stable state maintained by balancing selection forces resulting from spatial variation in selection and lake heterogeneity. Small estimates of effective population sizes for the populations in both lakes suggest that the capacity of both populations to adapt to future environmental change may be limited.  相似文献   

8.
In endangered species, it is critical to analyse the level at which populations interact (i.e. dispersal) as well as the levels of inbreeding and local adaptation to set up conservation policies. These parameters were investigated in the endangered species Parnassia palustris living in contrasted habitats. We analysed population structure in 14 populations of northern France for isozymes, cpDNA markers and phenotypic traits related to fitness. Within population genetic diversity and inbreeding coefficients were not correlated to population size. Populations seem not to have undergone severe recent bottleneck. Conversely to pollen migration, seed migration seems limited at a regional scale, which could prevent colonization of new sites even if suitable habitats appear. Finally, the habitat type affects neither within-population genetic diversity nor genetic and phenotypic differentiation among populations. Thus, even if unnoticed local adaptation to habitats exists, it does not influence gene flow between populations.  相似文献   

9.
An important goal of native plant restorations was to reconstitute populations that are genetically similar to native ones, thereby increasing the probably of successful establishment and persistence. We examined the extent to which this goal has been accomplished in Great Lakes restorations of Ammophila breviligulata Fern., a beachgrass species that is widely used for habitat restoration and is considered threatened in the study areas. In parallel studies on Lake Michigan and Lake Superior, we used polymorphic Intersimple Sequence Repeat markers to assess genetic similarity between well‐established and new native populations, restored populations, and restoration propagules obtained from two commercial suppliers. Native populations were generally more diverse than expected for a clonal species, whereas the commercially cultivated releases were monotypic. One of the commercial releases used in Minnesota was exclusively found in restored populations and did not occur in any other native population at this site. The propagules used in the newly planted restoration in Illinois were derived from a release that commercial suppliers maintain was derived from a native Michigan population, as opposed to a selected release. Diversity in this restoration was equivalent to that native Illinois’ populations; however, many of the genotypes were not of local origin. Overall, study underscores the importance of obtaining baseline genetic surveys of remnant native populations and restoration propagules before restoration efforts are initiated, especially when the populations are threatened or endangered.  相似文献   

10.
Californian vernal pools, a patchy, island-like habitat, are endangered as a result of habitat destruction. Conservation of the remaining vernal pool habitat is essential for the persistence of several endangered species. We present the first study examining DNA-level genetic diversity within and among populations of a vernal pool plant species. We investigated genetic variation across eight populations of the US federally endangered vernal pool endemic Lasthenia conjugens (Asteraceae) using intersimple sequence repeat (ISSR) markers. Genetic diversity within the species was high (Nei's gene diversity estimate was 0.37), with moderate differentiation among populations (Bayesian F ST analog of 0.124). Using an amova analysis, we found that the majority of the genetic variation (84%) was distributed within populations. There is a significant relationship between geographical distance and pairwise genetic differentiation as measured by the Bayesian estimate θB. The alternative hypotheses of historic geological processes within the Central Valley and contemporary gene flow are discussed as explanations of the data. Because of the vulnerability of the populations, we calculated a probability of loss for rare alleles (fragments) in the populations. Calculations show that sampling only one of the eight populations for ex-situ conservation or restoration will capture approximately 54% of the sampled rare fragments. We believe that one of the sampled populations has become extinct since it was sampled. When removing this population from the above-mentioned calculations, sampling one population will capture only 41.3% of the sampled rare fragments. We recommend sampling strategies for future conservation and restoration efforts of L. conjugens.  相似文献   

11.
Critically endangered species are usually restricted to small and isolated populations. High inbreeding without gene flow among populations further aggravates their threatened condition and reduces the likelihood of their long-term survival. Chinese alligator (Alligator sinensis) is one of the most endangered crocodiles in the world and has experienced a continuous decline over the past c. 1 million years. In order to identify the genetic status of the remaining populations and aid conservation efforts, we assembled the first high-quality chromosome-level genome of Chinese alligator and explored the genomic characteristics of three extant breeding populations. Our analyses revealed the existence of at least three genetically distinct populations, comprising two breeding populations in China (Changxing and Xuancheng) and one breeding population in an American wildlife refuge. The American population does not belong to the last two populations of its native range (Xuancheng and Changxing), thus representing genetic diversity extinct in the wild and provides future opportunities for genetic rescue. Moreover, the effective population size of these three populations has been continuously declining over the past 20 ka. Consistent with this decline, the species shows extremely low genetic diversity, a large proportion of long runs of homozygous fragments, and mutational load across the genome. Finally, to provide genomic insights for future breeding management and conservation, we assessed the feasibility of mixing extant populations based on the likelihood of introducing new deleterious alleles and signatures of local adaptation. Overall, this study provides a valuable genomic resource and important genomic insights into the ecology, evolution, and conservation of critically endangered alligators.  相似文献   

12.
In order to preserve endangered plant populations and recover their evolutionary potential and ecological behavior, some restoration measures generally involve the reinforcement of the population size in existing natural populations or the reintroduction of new populations. Genetic monitoring of both natural and restored populations can provide an assessment of restoration protocol success in establishing populations that maintain levels of genetic diversity similar to those in natural populations. The highly threatened Spanish species Silene hifacensis (Caryophyllaceae) has only three natural reduced mainland populations in the Iberian Peninsula, following decline and extinction that occurred during the late 20th century. Preterit restoration strategies were essentially based on the implantation of new populations and reinforcement of certain existing populations using transplants mostly cultivated in greenhouses. In the present contribution, levels and patterns of genetic variability within natural and restored populations of Silene hifacensis were assessed using the molecular technique AFLP. Our results pointed out significant genetic diversity differences across the three existing natural populations though their population fragmentation and progressive loss of individuals have not had an impact on the global genetic diversity of this species. For restored populations, their levels of genetic diversity were similar and even higher than in natural populations. As a result, the past restoration protocols were successful in capturing similar and even higher levels of genetic diversity than those observed within natural pools. However, inbreeding processes have been detected for two restored populations. Finally, the main source of plant material for the long-time restored transplants appears to be the natural population of Cova de les Cendres. This study demonstrates, once again, how genetic markers are useful tools to be taken in consideration for endangered plant species conservation plans.  相似文献   

13.
Although ecological differences between native and introduced ranges have been considered to drive rapid expansion of invasive species, recent studies suggest that rapid evolutionary responses of invasive species to local environments may also be common. Such expansion across heterogeneous environments by adaptation to local habitats requires genetic variation. In this study, we investigated the source and role of standing variation in successful invasion of heterogeneous abiotic environments in a self-incompatible species, Lotus corniculatus. We compared phenotypic and genetic variation among cultivars, natives, and introduced genotypes, and found substantial genetic variation within both native and introduced populations. Introduced populations possessed genotypes derived from both cultivars and native populations, and had lower population differentiation, indicating multiple sources of introduction and population admixture among the sources in the introduced range. Both cultivars and introduced populations had similarly outperforming phenotypes on average, with increased biomass and earlier flowering compared with native populations, but those phenotypes were within the range of the variation in phenotypes of the native populations. In addition, clinal variation within introduced populations was detected along a climatic gradient. Multiple introductions from different sources, including cultivars, may have contributed to pre-adaptive standing variation in the current introduced populations. We conclude that both introduction of cultivar genotypes and natural selection in local environments contributed to current patterns of genetic and phenotypic variation observed in the introduced populations.  相似文献   

14.
The definition of conservation units is crucial for the sustainable management of endangered species, though particularly challenging when recent and past anthropogenic and natural gene flow might have played a role. The conservation of the European grayling, Thymallus thymallus, is particularly complex in its southern distribution area, where the Adriatic evolutionary lineage is endangered by a long history of anthropogenic disturbance, intensive stocking and potentially widespread genetic introgression. We provide mtDNA sequence and microsatellite data of 683 grayling from 30 sites of Adriatic as well as Danubian and Atlantic origin. We apply Bayesian clustering and Approximate Bayesian Computation (ABC) to detect microgeographic population structure and to infer the demographic history of the Adriatic populations, to define appropriate conservation units. Varying frequencies of indigenous genetic signatures of the Adriatic grayling were revealed, spanning from marginal genetic introgression to the collapse of native gene pools. Genetic introgression involved multiple exotic source populations of Danubian and Atlantic origin, thus evidencing the negative impact of few decades of stocking. Within the Adige River system, a contact zone of western Adriatic and eastern Danubian populations was detected, with ABC analyses suggesting a historical anthropogenic origin of eastern Adige populations, most likely founded by medieval translocations. Substantial river‐specific population substructure within the Adriatic grayling Evolutionary Significant Unit points to the definition of different conservation units. We finally propose a catalog of management measures, including the legal prohibition of stocking exotic grayling and the use of molecular markers in supportive‐ and captive‐breeding programs.  相似文献   

15.
已建群的入侵植物物种在其本地生长范围内比单一种群具有更多样化的基因库。这种遗传和表型变异可以使入侵植物与群落的其他成员相互作用,从而进行自然选择,并形成快速适应机制。对于入侵的开花植物,与传粉者的相互作用可能使其适应异质性的传粉者群落。入侵地内传粉昆虫群落的变化与本地范围内的变化相似,这表明适应性可能反映了在本地范围内看到的模式。在本论文中,我们研究了在华盛顿州的国会国家森林公园内的一种入侵豆科灌木金雀儿(Cytisus scoparius)花的大小沿海拔梯度的变化。我们在每个样地中测量了10株植物花的宽度和传粉花的比例。我们对沿海拔梯度分布样地的金雀儿在单株水平下的物候变化进行三次测定。研究发现,尽管没有呈现出明显的高海拔具有高选择性的规律,但对于花的大小呈现正选择效应。从授粉昆虫的造访率和种子产量两方面,可以看出自然选择的模式。我们还发现,造成种子产量变化的最大因素不是海拔高度或花的大小,而是管理措施。  相似文献   

16.
Conservation practitioners widely agree that optimal conservation strategies will maximize the amount of genetic variation preserved in target taxa, but there is ongoing debate about how that variation should be distributed through restoration and mitigation activities. Here, we evaluate the impacts of ~10 years of mitigation on the population genetic structure of Limnanthes vinculans, a state- and federally-listed endangered plant species restricted to ephemeral vernal pool wetlands in the Santa Rosa Plain of California. Using microsatellite loci to estimate patterns of neutral molecular variation, we found that created pools support similar levels of variation in L. vinculans as natural pools. Habitat creation and seed translocation have not disrupted the largest-scale patterns of population structure across the species range, but a concentration of mitigation activity towards the range center has reduced the extent of isolation-by-distance operating in this region and shifted the location of at least one genetic boundary. Patterns of genetic variation among populations in remnant vernal pools reveal that gene flow has historically occurred beyond the scale of individual pools at the center of the species range, while small genetic populations have differentiated around the range margins. On average, L. vinculans in created pools exhibit less cover and more restricted local distributions than those in remnant pools, but these patterns were driven by two particularly productive natural sites rather than consistent differences between natural and created sites. We conclude that mitigation activities have changed the historical patterns of gene flow within the species range to a moderate degree, that these changes will likely impact remnant pools through gene flow, and that current created sites provide less heterogeneous habitat for L. vinculans than do natural pools. Studies that track individual plants will be needed to determine if the changes in gene flow due to mitigation will have positive or negative impacts on the demographic and microevolutionary trajectories of L. vinculans. More generally, this study provides a retrospective analysis of the outcome of managing an endangered plant species through intensive mitigation, and yields several insights to inform future conservation strategies.  相似文献   

17.
Undomesticated (wild) banteng are endangered in their native habitats in Southeast Asia. A potential conservation resource for the species is a large, wild population in Garig Gunak Barlu National Park in northern Australia, descended from 20 individuals that were released from a failed British outpost in 1849. Because of the founding bottleneck, we determined the level of genetic diversity in four subpopulations in the national park using 12 microsatellite loci, and compared this to the genetic diversity of domesticated Asian Bali cattle, wild banteng and other cattle species. We also compared the loss of genetic diversity using plausible genetic data coupled to a stochastic Leslie matrix model constructed from existing demographic data. The 53 Australian banteng sampled had average microsatellite heterozygosity (HE) of 28% compared to 67% for outbred Bos taurus and domesticated Bos javanicus populations. The Australian banteng inbreeding coefficient (F) of 0.58 is high compared to other endangered artiodactyl populations. The 95% confidence bounds for measured heterozygosity overlapped with those predicted from our stochastic Leslie matrix population model. Collectively, these results show that Australian banteng have suffered a loss of genetic diversity and are highly inbred because of the initial population bottleneck and subsequent small population sizes. We conclude that the Australian population is an important hedge against the complete loss of wild banteng, and it can augment threatened populations of banteng in their native range. This study indicates the genetic value of small populations of endangered artiodactyls established ex situ.  相似文献   

18.
Plant invasions often involve rapid evolutionary change. Founder effects, hybridization, and adaptation to novel environments cause genetic differentiation between native and introduced populations and may contribute to the success of invaders. An influential idea in this context has been the Evolution of Increased Competitive Ability (EICA) hypothesis. It proposes that after enemy release plants rapidly evolve to be less defended but more competitive, thereby increasing plant vigour in introduced populations. To detect evolutionary change in invaders, comparative studies of native versus introduced populations are needed. Here, we review the current empirical evidence from: (1) comparisons of phenotypic variation in natural populations; (2) comparisons of molecular variation with neutral genetic markers; (3) comparisons of quantitative genetic variation in a common environment; and (4) comparisons of phenotypic plasticity across different environments. Field data suggest that increased vigour and reduced herbivory are common in introduced plant populations. In molecular studies, the genetic diversity of introduced populations was not consistently different from that of native populations. Multiple introductions of invasive plants appear to be the rule rather than the exception. In tests of the EICA hypothesis in a common environment, several found increased growth or decreased resistance in introduced populations. However, few provided a full test of the EICA hypothesis by addressing growth and defence in the same species. Overall, there is reasonable empirical evidence to suggest that genetic differentiation through rapid evolutionary change is important in plant invasions. We discuss conceptual and methodological issues associated with cross-continental comparisons and make recommendations for future research. When testing for EICA, greater emphasis should be put on competitive ability and plant tolerance. Moreover, it is important to address evolutionary change in characteristics other than defence and growth that could play a role in plant invasions.  相似文献   

19.
The long history of the deliberate or accidental and human‐mediated dispersal of flowering plants has led to the introduction of foreign genotypes of many species into areas of Europe hitherto occupied by potentially distinct native populations. Studies of the genetic and evolutionary consequences of such changes are handicapped by the difficulty of identifying the surviving native populations of many species in the absence of clear morphological differences. We investigated the relationship between putative native and introduced populations of the herbaceous perennial Meconopsis cambrica (Papaveraceae), as the isolated native populations of this species can be identified by historical and ecological evidence. In Britain, the species is scarce and declining as a native, but has become increasingly frequent in recent decades as a garden escape. Native populations from Spain and France were compared with native and introduced British populations using internal transcribed spacer and cpDNA sequences and amplified fragment length polymorphisms (AFLPs). Ten of the twelve British populations could be unambiguously assigned to native or introduced groups using cpDNA and AFLPs. The introduced plants appear to originate from the central and eastern Pyrenees rather than from native British sites. Two populations (including one previously considered native) cannot be classified unambiguously. There is unequivocal evidence for unidirectional gene flow from native plants into two of the introduced populations and possible evidence for hybridization in three other sites (two native). The absence of biological barriers to hybridization suggests that the native and introduced gene pools of M. cambrica in Britain might eventually merge.  相似文献   

20.
Invasive populations often grow more vigorously than conspecific populations in the native range. This has frequently been attributed to evolutionary changes resulting either from founder effects, or from natural selection owing to enemy release. Another mechanism contributing to evolutionary change has largely been neglected in the past: Many invasive plant species do actually descend from cultivated plants and were therefore subject to breeding, including hybridization and artificial selection. In a common garden experiment, we compared invasive Central European populations of the ornamental shrub, Mahonia, with native populations of its putative parental species, Mahonia aquifolium and M. repens, from North America. We hypothesized that plants of invasive populations show increased growth and retained high levels of heritable variation in phenotypic traits. Indeed, invasive Mahonia plants grew larger in terms of stem length, number of leaves and above-ground biomass than either of the two native species, which did not differ significantly from each other. Since there are no hints on release of invasive Mahonia populations from natural enemies, it is likely that hybridization and subsequent selection by breeders have lead to an evolutionary increase of plant vigour in the introduced range. Further on, heritable variation was not consistently reduced in invasive populations compared with populations of the two native species. We suggest that interspecific hybridization among the Mahonia species has counteracted the harmful effects of genetic bottlenecks often associated with species introductions. Based on this case study, we conclude that, more attention has to be paid on the role of plant breeding when assessing the mechanisms behind successful plant invasions in future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号