首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Our previous studies have shown that glutathione is an essential metabolite in the yeast Saccharomyces cerevisiae because a mutant deleted for GSH1, encoding the first enzyme in gamma-l-glutamyl-l-cysteinylglycine (GSH) biosynthesis, cannot grow in its absence. In contrast, strains deleted for GSH2, encoding the second step in GSH synthesis, grow poorly as the dipeptide intermediate, gamma-glutamylcysteine, can partially substitute for GSH. In this present study, we identify two high copy suppressors that rescue the poor growth of the gsh2 mutant in the absence of GSH. The first contains GSH1, indicating that gamma-glutamylcysteine can functionally replace GSH if it is present in sufficiently high quantities. The second contains CDC34, encoding a ubiquitin conjugating enzyme, indicating a link between the ubiquitin and GSH stress protective systems. We show that CDC34 rescues the growth of the gsh2 mutant by inducing the Met4-dependent expression of GSH1 and elevating the cellular levels of gamma-glutamylcysteine. Furthermore, this mechanism normally operates to regulate GSH biosynthesis in the cell, as GSH1 promoter activity is induced in a Met4-dependent manner in a gsh1 mutant which is devoid of GSH, and the addition of exogenous GSH represses GSH1 expression. Analysis of a cis2 mutant, which cannot breakdown GSH, confirmed that GSH and not a metabolic product, serves as the regulatory molecule. However, this is not a general mechanism affecting all Met4-regulated genes, as MET16 expression is unaffected in a gsh1 mutant, and GSH acts as a poor repressor of MET16 expression compared with methionine. In summary, GSH biosynthesis is regulated in parallel with sulphate assimilation by activity of the Met4 protein, but GSH1-specific mechanisms exist that respond to GSH availability.  相似文献   

2.
The GSH2 gene, encoding Hansenula polymorpha gamma-glutamylcysteine synthetase, was cloned by functional complementation of a glutathione (GSH)-deficient gsh2 mutant of H. polymorpha. The gene was isolated as a 4.3-kb XbaI fragment that was capable of restoring GSH synthesis, heavy-metal resistance and cell proliferation when introduced into gsh2 mutant cells. It possesses 53% identical and 69% similar amino acids compared with the Candida albicans homologue (Gcs1p). In comparison to the Saccharomyces cerevisiae homologue (Gsh1p), it possesses 47% identical and 61% similar amino acids. The GSH2 sequence appears in the GenBank database under accession No. AF435121.  相似文献   

3.
The cloning of 7.2- and 9.6-kbp fragments of the methylotrophic yeast Hansenula polymorpha DNA restored the wild-type phenotype Gsh+ in the glutathione-dependent gsh1 and gsh2 mutants of this yeast defective in glutathione (GSH) synthesis because of a failure of the gamma-glutamylcysteine synthetase reaction. The 9.6-kbp DNA fragment was found to contain a 4.3-kbp subfragment, which complemented the Gsh- phenotype of the gsh2 mutant. The Gsh+ transformants of the gsh1 and gsh2 mutants, which bear plasmids pG1 and pG24 with the 7.2- and 4.3-kbp DNA fragments, respectively, had a completely restored wild-type phenotype with the ability to synthesize GSH and to grow in GSH-deficient synthetic media on various carbon sources, including methanol, and with acquired tolerance to cadmium ions. In addition, the 4.3-kbp DNA fragment borne by plasmid pG24 eliminated pleiotropic changes in the gsh2 mutants associated with methylotrophic growth in a semisynthetic (GSH-supplemented) medium (poor growth and alterations in the activity of the GSH-catabolizing enzyme gamma-glutamyltransferase and the methanol-oxidizing enzyme alcohol oxidase).  相似文献   

4.
The Pichia guilliermondii GSH1 and GSH2 genes encoding Saccharomyces cerevisiae homologues of glutathione (GSH) biosynthesis enzymes, γ-glutamylcysteine synthetase and glutathione synthetase, respectively, were cloned and deleted. Constructed P. guilliermondii Δgsh1 and Δgsh2 mutants were GSH auxotrophs, displayed significantly decreased cellular GSH+GSSG levels and sensitivity to tert-butyl hydroperoxide, hydrogen peroxide, and cadmium ions. In GSH-deficient synthetic medium, growths of Δgsh1 and Δgsh2 mutants were limited to 3–4 and 5–6 cell divisions, respectively. Under these conditions Δgsh1 and Δgsh2 mutants possessed 365 and 148 times elevated riboflavin production, 10.7 and 2.3 times increased cellular iron content, as well as 6.8 and 1.4 fold increased ferrireductase activity, respectively, compared to the wild-type strain. Glutathione addition to the growth medium completely restored the growth of both mutants and decreased riboflavin production, cellular iron content, and ferrireductase activity to the level of the parental strain. Cysteine also partially restored the growth of the Δgsh2 mutants, while methionine or dithiothreitol could not restore the growth neither of the Δgsh1, nor of the Δgsh2 mutants. Besides, it was shown that in GSH presence riboflavin production by both Δgsh1 and Δgsh2 mutants, similarly to that of the wild-type strain, depended on iron concentration in the growth medium. Furthermore, in GSH-deficient synthetic medium P. guilliermondii Δgsh2 mutant cells, despite iron overload, behaved like iron-deprived wild-type cells. Thus, in P. guilliermondii yeast, glutathione is required for proper regulation of both riboflavin and iron metabolism.  相似文献   

5.
Rhizobia form a symbiotic relationship with plants of the legume family to produce nitrogen-fixing root nodules under nitrogen-limiting conditions. We have examined the importance of glutathione (GSH) during free-living growth and symbiosis of Sinorhizobium meliloti. An S. meliloti mutant strain (SmgshA) which is unable to synthesize GSH due to a gene disruption in gshA, encoding the enzyme for the first step in the biosynthesis of GSH, was unable to grow under nonstress conditions, precluding any nodulation. In contrast, an S. meliloti strain (SmgshB) with gshB, encoding the enzyme involved in the second step in GSH synthesis, deleted was able to grow, indicating that gamma-glutamylcysteine, the dipeptide intermediate, can partially substitute for GSH. However, the SmgshB strain showed a delayed-nodulation phenotype coupled to a 75% reduction in the nitrogen fixation capacity. This phenotype was linked to abnormal nodule development. Both the SmgshA and SmgshB mutant strains exhibited higher catalase activity than the wild-type S. meliloti strain, suggesting that both mutant strains are under oxidative stress. Taken together, these results show that GSH plays a critical role in the growth of S. meliloti and during its interaction with the plant partner.  相似文献   

6.
报道一种适用于产朊假丝酵母Candida utilis的基因敲除系统,利用该敲除系统获得gsh1基因敲除杂合突变株。根据不同种属酵母菌γ-谷氨酰半胱氨酸合成酶(γ-GCS)蛋白质的保守序列,克隆C.utilis SZU 07-01的gsh1基因;以商品化质粒pPICZalpha A为基础,构建gsh1基因的敲除载体pPICZalpha A-kan 3,其中,kan基因的启动子TEF被替换为来自于C.utilis SZU 07-01的GAP启动子(pGAP:kan)。质粒电转化C.utilis,获得gsh1基因敲除杂合突变株C.utilis GSH-6。结合发酵培养得到的数据进行分析,突变株的γ-GCS酶活比出发菌株降低17.5%,GSH合成量降低61%,细胞干重降低18.5%。所构建敲除组件pGAP:kan的成功应用为从分子水平研究C.utilis中谷胱甘肽(GSH)的生理功能提供了一种新借鉴。  相似文献   

7.
The Hansenula polymorpha GSH1/MET1 gene was cloned by complementation of glutathione-dependent growth of H. polymorpha gsh1 mutant isolated previously as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) resistant and cadmium ion sensitive clone. The H. polymorpha GSH1 gene was capable of restoring cadmium ion resistance, MNNG sensitivity, normal glutathione level and cell proliferation on minimal media without addition of cysteine or glutathione, when introduced into the gsh1 mutant cells. It was shown that the H. polymorpha GSH1 gene has homology to the Saccharomyces cerevisiae MET1 gene encoding S-adenosyl-L-methionine uroporphyrinogen III transmethylase, responsible for the biosynthesis of sulfite reductase cofactor, sirohaem. The H. polymorpha GSH1/MET1 gene deletion cassette (Hpgsh1/met1::ScLEU2) was constructed and corresponding null mutants were isolated. Crossing data of the point gsh1 and null gsh1/met1 mutants demonstrated that both alleles were located to the same gene. The null gsh1/met1 mutant showed total growth restoration on minimal media supplemented with cysteine or glutathione as a sole sulfur source, but not with inorganic (sulfate, sulfite) or organic (methionine, S-adenosylmethionine) sources of sulfur. Moreover, both the point gsh1 and null gsh1/met1 mutants displayed increased sensitivity to the toxic carbon substrate methanol, formaldehyde, organic peroxide and cadmium ions.  相似文献   

8.
A grande gsh1 disruptant mutant of Saccharomyces cerevisiae was generated by crossing a petite disruptant to a wild-type grande strain. This strain was relatively stable, but generated petites at an elevated frequency, illustrating the ancillary role of glutathione (GSH) in the maintenance of the genetic integrity of the mitochondrial genome. The availability of the grande gsh1 deletant enabled an evaluation of the role of GSH in the cellular response to hydrogen peroxide independent of the effects of a petite mutation. The mutant strain was more sensitive to hydrogen peroxide than the wild-type strain but was still capable of producing an adaptive stress response to this compound. GSH was found to be essential for growth and sporulation of the yeast, but the intracellular level needed to support growth was at least two orders of magnitude less than that normally present in wild-type cells. This surprising result indicates that there is an essential role for GSH but only very low amounts are needed for growth. This result was also found in anaerobic conditions, thus this essential function does not involve protection from oxidative stress. Suppressors of the gsh1 deletion mutation were isolated by ethylmethanesulfonate mutagenesis. These were the result of a single recessive mutation (sgr1, suppressor for glutathione requirement) that relieved the requirement for GSH for growth on minimal medium but did not affect the sensitivity to H(2)O(2) stress. Interestingly, the gsh1 sgr1 mutant generated petites at a lower rate than the gsh1 mutant. Thus, it is suggested that the essential role of GSH is involved in the maintenance of the mitochondrial genome.  相似文献   

9.
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expressed in Saccharomyces cerevisiae was reversibly oxidized by hydrogen peroxide and reduced by cellular reductants. Reduction of hPTEN was delayed in each of S. cerevisiae gsh1Δ and gsh2Δ mutants. Expression of γ-glutamylcysteine synthetase Gsh1 in the gsh1Δ mutant rescued regeneration rate of hPTEN. Oxidized hPTEN was reduced by glutathione in a concentration- and time-dependent manner. Glutathionylated PTEN was detected. Incubation of 293T cells with BSO and knockdown expression of GCLc in HeLa cells by siRNA resulted in the delay of reduction of oxidized PTEN. Also, in HeLa cells transfected with GCLc siRNA, stimulation with epidermal growth factor resulted in the increase of oxidized PTEN and phosphorylation of Akt. These results suggest that the reduction of oxidized hPTEN is mediated by glutathione.  相似文献   

10.
11.
Glutathione (GSH) has been implicated in maintaining the cell cycle within plant meristems and protecting proteins during seed dehydration. To assess the role of GSH during development of Arabidopsis (Arabidopsis thaliana [L.] Heynh.) embryos, we characterized T-DNA insertion mutants of GSH1, encoding the first enzyme of GSH biosynthesis, gamma-glutamyl-cysteine synthetase. These gsh1 mutants confer a recessive embryo-lethal phenotype, in contrast to the previously described GSH1 mutant, root meristemless 1(rml1), which is able to germinate, but is deficient in postembryonic root development. Homozygous mutant embryos show normal morphogenesis until the seed maturation stage. The only visible phenotype in comparison to wild type was progressive bleaching of the mutant embryos from the torpedo stage onward. Confocal imaging of GSH in isolated mutant and wild-type embryos after fluorescent labeling with monochlorobimane detected residual amounts of GSH in rml1 embryos. In contrast, gsh1 T-DNA insertion mutant embryos could not be labeled with monochlorobimane from the torpedo stage onward, indicating the absence of GSH. By using high-performance liquid chromatography, however, GSH was detected in extracts of mutant ovules and imaging of intact ovules revealed a high concentration of GSH in the funiculus, within the phloem unloading zone, and in the outer integument. The observation of high GSH in the funiculus is consistent with a high GSH1-promoterbeta-glucuronidase reporter activity in this tissue. Development of mutant embryos could be partially rescued by exogenous GSH in vitro. These data show that at least a small amount of GSH synthesized autonomously within the developing embryo is essential for embryo development and proper seed maturation.  相似文献   

12.
Glutathione (GSH) biosynthesis-deficient gsh1 and gsh2 null mutants of Arabidopsis thaliana have late embryonic-lethal and early seedling-lethal phenotypes, respectively, when segregating from a phenotypically wild-type parent plant, indicating that GSH is required for seed maturation and during germination. In this study, we show that gsh2 embryos generated in a partially GSH-deficient parent plant, homozygous for either the cad2 mutation in the GSH1 gene or homozygous for mutations in CLT1, CLT2 and CLT3 encoding plastid thiol transporters, abort early in embryogenesis. In contrast, individuals homozygous for the same combinations of mutations but segregating from heterozygous, phenotypically wild-type parents exhibit the parental gsh2 seedling-lethal phenotype. Similarly, homozygous gsh1 embryos generated in a gsh1/cad2 partially GSH-deficient parent plant abort early in development. These observations indicate that the development of gsh1 and gsh2 embryos to a late stage is dependent on the level of GSH in the maternal plant.  相似文献   

13.
We have examined the role of the two closely related homeobox genes Gsh1 and Gsh2, in the development of the striatum and the olfactory bulb. These two genes are expressed in a partially overlapping pattern by ventricular zone progenitors of the ventral telencephalon. Gsh2 is expressed in both of the ganglionic eminences while Gsh1 is largely confined to the medial ganglionic eminence. Previous studies have shown that Gsh2(-/-) embryos suffer from an early misspecification of precursors in the lateral ganglionic eminence (LGE) leading to disruptions in striatal and olfactory bulb development. This molecular misspecification is present only in early precursor cells while at later stages the molecular identity of these cells appears to be normalized. Concomitant with this normalization, Gsh1 expression is notably expanded in the Gsh2(-/-) LGE. While no obvious defects in striatal or olfactory bulb development were detected in Gsh1(-/-) embryos, Gsh1/2 double homozygous mutants displayed more severe disruptions than were observed in the Gsh2 mutant alone. Accordingly, the molecular identity of LGE precursors in the double mutant is considerably more perturbed than in Gsh2 single mutants. These findings, therefore, demonstrate an important role for Gsh1 in the development of the striatum and olfactory bulb of Gsh2 mutant mice. In addition, our data indicate a role for Gsh genes in controlling the size of the LGE precursor pools, since decreasing copies of Gsh2 and Gsh1 alleles results in a notable decrease in precursor cell number, particularly in the subventricular zone.  相似文献   

14.
Glutathione (GSH) homeostasis in plants is essential for cellular redox control and efficient responses to abiotic and biotic stress. Compartmentation of the GSH biosynthetic pathway is a unique feature of plants. The first enzyme, γ-glutamate cysteine ligase (GSH1), responsible for synthesis of γ-glutamylcysteine (γ-EC), is, in Arabidopsis, exclusively located in the plastids, whereas the second enzyme, glutathione synthetase (GSH2), is located in both plastids and cytosol. In Arabidopsis, gsh2 insertion mutants have a seedling lethal phenotype in contrast to the embryo lethal phenotype of gsh1 null mutants. This difference in phenotype may be due to partial replacement of GSH functions by γ-EC, which in gsh2 mutants hyperaccumulates to levels 5000-fold that in the wild type and 200-fold wild-type levels of GSH. In situ labelling of thiols with bimane and confocal imaging in combination with HPLC analysis showed high concentrations of γ-EC in the cytosol. Feedback inhibition of Brassica juncea plastidic GSH1 by γ-EC in vitro strongly suggests export of γ-EC as functional explanation for hyperaccumulation. Complementation of gsh2 mutants with the cytosol-specific GSH2 gave rise to phenotypically wild-type transgenic plants. These results support the conclusion that cytosolic synthesis of GSH is sufficient for plant growth. The transgenic lines further show that, consistent with the exclusive plastidic localization of GSH1, γ-EC is exported from the plastids to supply the cytosol with the immediate precursor for GSH biosynthesis, and that there can be efficient re-import of GSH into the plastids to allow effective control of GSH biosynthesis through feedback inhibition of GSH1.  相似文献   

15.
To identify potentially novel and essential components of plant membrane trafficking mechanisms we performed a GFP-based forward genetic screen for seedling-lethal biosynthetic membrane trafficking mutants in Arabidopsis thaliana. Amongst these mutants, four recessive alleles of GSH2, which encodes glutathione synthase (GSH2), were recovered. Each allele was characterized by loss of the typical polygonal endoplasmic reticulum (ER) network and the accumulation of swollen ER-derived bodies which accumulated a soluble secretory marker. Since GSH2 is responsible for converting γ-glutamylcysteine (γ-EC) to glutathione (GSH) in the glutathione biosynthesis pathway, gsh2 mutants exhibited γ-EC hyperaccumulation and GSH deficiency. Redox-sensitive GFP revealed that gsh2 seedlings maintained redox poise in the cytoplasm but were more sensitive to oxidative challenge. Genetic and pharmacological evidence indicated that γ-EC accumulation rather than GSH deficiency was responsible for the perturbation of ER morphology. Use of soluble and membrane-bound ER markers suggested that the swollen ER bodies were derived from ER fusiform bodies. Despite the gross perturbation of ER morphology, gsh2 seedlings did not suffer from constitutive oxidative ER stress or lack of an unfolded protein response, and homozygotes for the weakest allele could be propagated. The link between glutathione biosynthesis and ER morphology and function is discussed.  相似文献   

16.
Among the factors that affect cell resistance against dehydration, oxidation is considered to be of great importance. In this work, we verified that both control and glutathione deficient mutant strains were much more oxidized after dehydration. Moreover, cells lacking glutathione showed a twofold higher increase in oxidation and lipid peroxidation than the control strain. While glucose 6-phosphate dehydrogenase and glutathione reductase activities did not change in response to dehydration in the control strain, the mutant strain gsh1 (glutathione deficient) showed a reduction of 50% in both activities, which could explain the high levels of oxidation shown by gsh1 cells. In conformity with these results, the mutant lacking GSH1 showed a high sensitivity to dehydration. Furthermore, the addition of glutathione to gsh1 cells restored survival rates to the levels of the control strain. We conclude that glutathione plays a significant role in the maintenance of intracellular redox balance during dehydration.  相似文献   

17.
In a screen for temperature-sensitive (37 degrees C) mutants of Saccharomyces cerevisiae that are defective in the proper localization of the Golgi transmembrane protein Emp47p, we uncovered a constitutive loss-of-function mutation in CYS3/STR1, the gene coding for cystathionine-gamma-lyase. We showed by immunofluorescence, sucrose-gradient analysis and quantitative Western analysis that the mutant mislocalized Emp47p to the vacuole at high temperature, while Golgi structures were apparently normal and biosynthetic routing of the vacuolar carboxypeptidase Y (CPY) and the plasma membrane GPI-anchored protein Gas1p were unaffected. The effect of high temperature on Emp47p localization, as well as the temperature sensitivity of the mutant strain on rich medium, appear to be caused by oxidative stress and are correlated with severe reductions in the intracellular levels of low-molecular-weight thiols. In accordance with this conclusion, cys3-2 mutant cells were more sensitive to the oxidizing agent 1-chloro-2,4-dinitrobenzene, which also aggravated the mislocalization of Emp47p observed at high temperature. Furthermore, all the phenotypes of the mutant were completely complemented by exogenous supply of the main low-molecular-weight thiol, glutathione (GSH) and, importantly, the thiol beta-mercaptoethanol reversed the temperature sensitivity of the mutant. A comparison of our mutant with a mutant defective in GSH synthesis showed that gsh1Delta cells were similar to wild-type cells under the stress conditions tested, with the exception of one novel oxidative stress-related phenotype that is observed in both cys3-2 and gsh1Delta mutant cells - a defect in CDP-DAG metabolism upon shift to the non-permissive temperature. As most of the stress-related phenotypes of cys3-2 mutant cells are more severe than those seen in gsh1Delta cells, we conclude that cysteine as such is required and sufficient to confer some degree of protection from oxidative stress in yeast cells.  相似文献   

18.
19.
We have examined the role of the homeobox gene Gsh2 in retinoid production and signaling within the ventral telencephalon of mouse embryos. Gsh2 mutants exhibit altered ventral telencephalic development, including a smaller striatum with fewer DARPP-32 neurons than wild types. We show that the expression of the retinoic acid (RA) synthesis enzyme, retinaldehyde dehydrogenase 3 (Raldh3, also known as Aldh1a3), is reduced in the lateral ganglionic eminence (LGE) of Gsh2 mutants. Moreover, using a retinoid reporter cell assay, we found that retinoid production in the Gsh2 mutants is markedly reduced. The striatal defects in Gsh2 mutants are thought to result from ectopic expression of Pax6 in the LGE. Previously, we had shown that removal of Pax6 from the Gsh2 mutant background improves the molecular identity of the LGE in these double mutants; however, Raldh3 expression is not improved. The Pax6;Gsh2 double mutants possess a larger striatum than the Gsh2 mutants, but the disproportionate reduction in DARPP-32 neurons is not improved. These findings suggest that reduced retinoid production in the Gsh2 mutant contributes to the striatal differentiation defects. As RA promotes the expression of DARPP-32 in differentiating LGE cells in vitro, we examined whether exogenous RA can improve striatal neuron differentiation in the Gsh2 mutants. Indeed, RA supplementation of Gsh2 mutants, during the period of striatal neurogenesis, results in a significant increase in DARPP-32 expression. Thus, in addition to the previously described role for Gsh2 to maintain correct molecular identity in the LGE, our results demonstrate a novel requirement of this gene for retinoid production within the ventral telencephalon.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号