首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
DNA triple helices offer exciting new perspectives toward oligonucleotide-directed inhibition of gene expression. Purine and GT triplexes appear to be the most promising motifs for stable binding under physiological conditions compared to the pyrimidine motif, which forms at relatively low pH. There are, however, very little data available for comparison of the relative stabilities of the different classes of triplexes under identical conditions. We, therefore, designed a model system which allowed us to set up a competition between the oligonucleotides of the purine and pyrimidine motifs targeting the same Watson-Crick duplex. Several conclusions may be drawn: (i) a weak hypochromism at 260 nm is associated with purine triplex formation; (ii) delta H degree of GA, GT and TC triplex formation (at pH 7.0) was calculated as -0.1, -2.5 and -6.1 kcal/mol per base triplet, respectively. This unexpectedly low delta H degree for the purine triple helix formation implies that its delta G degree is nearly temperature-independent and it explains why these triplexes may still be observed at high temperatures. In contrast, the pyrimidine triplex is strongly favoured at lower temperatures; (iii) as a consequence, in a system where two third-strands compete for triplex formation, displacement of the GA or GT strand by a pyrimidine strand may be observed at neutral pH upon lowering the temperature. This original purine-to-pyrimidine triplex conversion shows a significant hypochromism at 260 nm and a hyperchromism at 295 nm which is similar to the duplex-to-triplex conversion in the pyrimidine motif. Further evidence for this triplex-to-triplex conversion is provided by mung bean-nuclease foot-printing assay.  相似文献   

2.
The Drosophila melanogaster (AAGAGAG)(n) satellite repeat represents up to 1.5% of the entire fly genome and may adopt non-B DNA structures such as pyrimidine triple helices. UV melting and electrophoretic mobility shift assay experiments were used to monitor the stability of intermolecular triple helices as a function of size, pH, and backbone or base modification. Three to four repeats of the heptanucleotide motif were sufficient to allow the formation of a stable complex, especially when modified TFOs were used. Unexpectedly, low concentrations (40-100 microM) of Cu(2+) were found to favor strongly pyrimidine triplex formation under near-physiological conditions. In contrast, a much higher magnesium concentration was required to stabilize these triplexes significantly, suggesting that copper may be an essential stabilizing factor for pyrimidine triplexes.  相似文献   

3.
Exclusion of RNA strands from a purine motif triple helix.   总被引:5,自引:5,他引:0       下载免费PDF全文
Research concerning oligonucleotide-directed triple helix formation has mainly focused on the binding of DNA oligonucleotides to duplex DNA. The participation of RNA strands in triple helices is also of interest. For the pyrimidine motif (pyrimidine.purine.pyrimidine triplets), systematic substitution of RNA for DNA in one, two, or all three triplex strands has previously been reported. For the purine motif (purine.purine.pyrimidine triplets), studies have shown only that RNA cannot bind to duplex DNA. To extend this result, we created a DNA triple helix in the purine motif and systematically replaced one, two, or all three strands with RNA. In dramatic contrast to the general accommodation of RNA strands in the pyrimidine triple helix motif, a stable triplex forms in the purine motif only when all three of the substituent strands are DNA. The lack of triplex formation among any of the other seven possible strand combinations involving RNA suggests that: (i) duplex structures containing RNA cannot be targeted by DNA oligonucleotides in the purine motif; (ii) RNA strands cannot be employed to recognize duplex DNA in the purine motif; and (iii) RNA tertiary structures are likely to contain only isolated base triplets in the purine motif.  相似文献   

4.
DNA triple helices offer exciting perspectives toward oligonucleotide-directed control of gene expression. Oligonucleotide analogues are routinely used with modifications in either the backbone or the bases to form more stable triple-helical structures or to prevent their degradation in cells. In this article, different chemical modifications are tested in a model system, which sets up a competition between the purine and pyrimidine motifs. For most modifications, the DeltaH degrees of purine triplex formation is close to zero, implying a nearly temperature-independent affinity constant. In contrast, the pyrimidine triplex is strongly favored at lower temperatures. The stabilization induced by modifications previously known to be favorable to the pyrimidine motif was quantified. Interestingly, modifications favorable to the GT motif (propynyl-U and dU replacing T) were also discovered. In a system where two third strands compete for triplex formation, replacement of the GA or GT strand by a pyrimidine strand may be observed at neutral pH upon lowering the temperature. This purine-to-pyrimidine triplex conversion depends on the chemical nature of the triplex-forming strands and the stability of the corresponding triplexes.  相似文献   

5.
The canonical double-helix form of DNA is thought to predominate both in dilute solution and in living cells. Sequence-dependent fluctuations in local DNA shape occur within the double helix. Besides these relatively modest variations in shape, more extreme and remarkable structures have been detected in which some bases become unpaired. Examples include unusual three-stranded structures such as H-DNA. Certain RNA and DNA strands can also fold onto themselves to form intrastrand triplexes. Although they have been extensively studied in vitro, it remains unknown whether nucleic acid triplexes play natural roles in cells.If natural nucleic acid triplexes were identified in cells, much could be learned by examining the formation, stabilization, and function of such structures. With these goals in mind, we adapted a pattern-recognition program to search genetic databases for a type of potential triplex structure whose presence in genomes has not been previously investigated. We term these sequences Potential Intrastrand Triplex (PIT) elements. The formation of an intrastrand triplex requires three consecutive sequence domains with appropriate symmetry along a single nucleic acid strand. It is remarkable that we discovered multiple copies of sequence elements with the potential to form one particular class of intrastrand triplexes in the fully sequenced genomes of several bacteria. We then focused on the characterization of the 25 copies of a particular approximately 37 nt PIT sequence detected in Escherichia coli. Through biochemical studies, we demonstrate that an isolated DNA strand from this family of E. coli PIT elements forms a stable intrastrand triplex at physiological temperature and pH in the presence of physiological concentrations of Mg(2+).  相似文献   

6.
A Debin  C Malvy    F Svinarchuk 《Nucleic acids research》1997,25(10):1965-1974
In a previous work we showed that a short triple helix-forming oligonucleotide (TFO) targeted to the murine c-pim-1 proto-oncogene promoter gives a very stable triple helix under physiological conditions in vitro . Moreover, this triplex was stable inside cells when preformed in vitro . However, we failed to detect triplex formation for this sequence inside cells in DMS footprinting studies. In the present work, in order to determine whether our previous in vivo results are limited to this particular short triplex or can be generalized to other purine.(purine/pyrimidine) triplexes, we have tested three other DNA targets already described in the literature. All these purine.(purine/pyrimidine) triplexes are specific and stable at high temperature in vitro . In vivo studies have shown that the preformed triplexes are stable inside cells for at least 3 days. This clearly demonstrates that intracellular conditions are favourable for the existence of purine. (purine/pyrimidine) triplexes. The triplexes can also be formed in nuclei. However, for all the sequences tested, we were unable to detect any triple helix formation in vivo in intact cells by DMS footprinting. Our results show that neither (i) chromatinization of the DNA target, (ii) intracellular K+concentration nor (iii) cytoplasmic versus nuclear separation of the TFO and DNA target are responsible for the intracellular arrest of triplex formation. We suggest the existence of a cellular mechanism, based on a compartmentalization of TFOs and/or TFO trapping, which separates oligonucleotides from the DNA target. Further work is needed to find oligonucleotide derivatives and means for their delivery to overcome the problem of triplex formation inside cells.  相似文献   

7.
A set of 21 oligodeoxynucleotides were designed to fold into intramolecular triple helices of the pyrimidine motif under appropriate conditions. UV melting experiments on the triplexes which only differ in the number and distribution of third strand cytosines reveal the influence of sequence and pH on triplex stability and can be summarized as follows: (1) increasing the cytosine content in the third strand results in a higher thermal stability of the triplex at acidic pH but lowers the triplex to duplex melting temperature at neutral pH; (2) cytosines at terminal positions destabilize the triple helical structure as compared to non-terminal positions; (3) contiguous cytosines lead to a pH dependent destabilization of the triplex, the destabilizing effect being more pronounced at higher pH. Analysis of these effects in terms of the various interactions within a triple helical complex indicate that the sequence-dependent stabilities are largely determined by the extent of protonation for individual third strand cytosines.  相似文献   

8.
Abstract

A set of 21 oligodeoxynucleotides were designed to fold into intramolecular triple helices of the pyrimidine motif under appropriate conditions. UV melting experiments on the triplexes which only differ in the number and distribution of third strand cytosines reveal the influence of sequence and pH on triplex stability and can be summarized as follows: (1) increasing the cytosine content in the third strand results in a higher thermal stability of the triplex at acidic pH but lowers the triplex to duplex melting temperature at neutral pH; (2) cytosines at terminal positions destabilize the triple helical structure as compared to non-terminal positions; (3) contiguous cytosines lead to a pH dependent destabilization of the triplex, the destabilizing effect being more pronounced at higher pH. Analysis of these effects in terms of the various interactions within a triple helical complex indicate that the sequence-dependent stabilities are largely determined by the extent of protonation for individual third strand cytosines.  相似文献   

9.
10.
Modulation of endogenous gene function, through sequence-specific recognition of double helical DNA via oligonucleotide-directed triplex formation, is a promising approach. Compared to the formation of pyrimidine motif triplexes, which require relatively low pH, purine motif appears to be the most gifted for their stability under physiological conditions. Our previous work has demonstrated formation of magnesium-ion dependent highly stable intermolecular triplexes using a purine third strand of varied lengths, at the purine?pyrimidine (Pu?Py) targets of SIV/HIV-2 (vpx) genes (Svinarchuk, F., Monnot, M., Merle, A., Malvy, C., and Fermandjian, S. (1995) Nucleic Acids Res. 23, 3831-3836). Herein, we show that a designed intramolecular version of the 11-bp core sequence of the said targets, which also constitutes an integral, short, and symmetrical segment (G(2)AG(5)AG(2))?(C(2)TC(5)TC(2)) of human c-jun protooncogene forms a stable triplex, even in the absence of magnesium. The sequence d-C(2)TC(5)TC(2)T(5)G(2)AG(5)AG(2)T(5)G(2)AG(5)AG(2) (I-Pu) folds back twice onto itself to form an intramolecular triple helix via a double hairpin formation. The design ensures that the orientation of the intact third strand is antiparallel with respect to the oligopurine strand of the duplex. The triple helix formation has been revealed by non-denaturating gel assays, UV-thermal denaturation, and circular dichroism (CD) spectroscopy. The monophasic melting curve, recorded in the presence of sodium, represented the dissociation of intramolecular triplex to single strand in one step; however, the addition of magnesium bestowed thermal stability to the triplex. Formation of intramolecular triple helix at neutral pH in sodium, with or without magnesium cations, was also confirmed by gel electrophoresis. The triplex, mediated by sodium alone, destabilizes in the presence of 5'-C(2)TC(5)TC(2)-3', an oligonucleotide complementary to the 3'-oligopurine segments of I-Pu, whereas in the presence of magnesium the triplex remained impervious. CD spectra showed the signatures of triplex structure with A-like DNA conformation. We suggest that the possible formation of pH and magnesium-independent purine-motif triplexes at genomic Pu?Py sequences may be pertinent to gene regulation.  相似文献   

11.
Abstract

We studied the influence of different 2′-OMe-RNA and DNA strand combinations on single strand targeted foldback triplex formation in the Py.Pu:Py motif using ultraviolet (UV) and circular dichroism (CD) spectroscopy, and molecular modeling. The study of eight combinations of triplexes (D D:D, R* D:D, D D:R*, R* D:R*, D R:D, R* R:D, DR:R*, and R*-R:R*; where the first, middle, and last letters stand for the Hoogsteen Pyrimidine, Watson-Crick [WC] purine and WC pyrimidine strands, respectively, and D, R and R* stand for DNA, RNA and 2′-OMe-RNA strands, respectively) indicate more stable foldback triplex formation with a DNA purine strand than with an RNA purine strand. Of the four possible WC duplexes with RNA/DNA combinations, the duplex with a DNA purine strand and a 2′-O-Me-RNA pyrimidine strand forms the most thermally stable triplex, although its thermal stability is the lowest of all four duplexes. Irrespective of the duplex combination, a 2′-OMe-RNA Hoogsteen pyrimidine strand forms a stable foldback triplex over a DNA Hoogsteen pyrimidine strand confirming the earlier reports with conventional and circular triplexes. The CD studies suggest a B-type conformation for an all DNA homo-foldback triplex (D.D.D), while hetero-foldback triplex spectra suggest intermediate conformation to both Atype and B-type structures. A novel molecular modeling study has been carried out to understand the stereochemical feasibility of all the combinations of foldback triplexes using a geometric approach. The new approach allows use of different combinations of chain geometries depending on the nature of the chain (RNA vs. DNA).  相似文献   

12.
G M Hashem  J D Wen  Q Do    D M Gray 《Nucleic acids research》1999,27(16):3371-3379
The pyr*pur.pyr type of nucleic acid triplex has a purine strand that is Hoogsteen-paired with a parallel pyrimidine strand (pyr*pur pair) and that is Watson-Crick-paired with an antiparallel pyrimidine strand (pur.pyr pair). In most cases, the Watson-Crick pair is more stable than the Hoogsteen pair, although stable formation of DNA Hoogsteen-paired duplexes has been reported. Using oligomer triplexes of repeating d(AG)12 and d(CT)12 or r(CU)12 sequences that were 24 nt long, we found that hybrid RNA*DNA as well as DNA*DNA Hoogsteen-paired strands of triplexes can be more stable than the Watson-Crick-paired strands at low pH. The structures and relative stabilities of these duplexes and triplexes were evaluated by circular dichroism (CD) spectroscopy and UV absorption melting studies of triplexes as a function of pH. The CD contributions of Hoogsteen-paired RNA*DNA and DNA*DNA duplexes were found to dominate the CD spectra of the corresponding pyr*pur.pyr triplexes.  相似文献   

13.
Triplex-forming oligonucleotides (TFOs) are good candidates to be used as site-specific DNA-binding agents. Two obstacles encountered with TFOs are susceptibility to nuclease activity and a requirement for magnesium for triplex formation. Morpholino oligonucleotides were shown in one study to form triplexes in the absence of magnesium. In the current study, we have compared phosphodiester and morpholino oligonucleotides targeting a homopurine–homopyrimidine region in the human HER2/neu promoter. Using gel mobility shift analysis, our data demonstrate that triplex formation by phosphodiester oligonucleotides at the HER-2/neu promoter target is possible with pyrimidine-parallel, purine-antiparallel and mixed sequence (GT)-antiparallel motifs. Only the pyrimidine-parallel motif morpholino TFO was capable of efficient triple helix formation, which required low pH. Triplex formation with the morpholino TFO was efficient in low or no magnesium. The pyrimidine motif TFOs with either a phosphodiester or morpholino backbone were able to form triple helices in the presence of potassium ions, but required low pH. We have rationalized the experimental observations with detailed molecular modeling studies. These data demonstrate the potential for the development of TFOs based on the morpholino backbone modification and demonstrate that the pyrimidine motif is the preferred motif for triple helix formation by morpholino oligonucleotides.  相似文献   

14.
Leitner D  Schröder W  Weisz K 《Biochemistry》2000,39(19):5886-5892
To investigate cytosine protonation and its influence on the sequence-dependent thermal stability of DNA triplexes in detail, we have employed homo- and heteronuclear NMR experiments on specifically (15)N-labeled oligodeoxynucleotides that were designed to fold into intramolecular triple helices of the pyrimidine motif under appropriate conditions. These experiments reveal that cytosines in central positions of the triplex are significantly protonated even at neutral pH. However, semiprotonation points for individual cytosine bases as determined from pH-dependent measurements show considerable differences depending on their position. Thus, protonation is disfavored for adjacent cytosines or for cytosines at the triplex termini, resulting in a smaller contribution to the overall free energy of the triple helical system. In contrast, protonation of the base upon substitution of 5-methylcytosine for cytosine in the triplex third strand is only affected to a minor extent, and triplex stabilization by the methyl substituent is shown to primarily arise from stacking energies and/or hydrophobic effects.  相似文献   

15.
16.
Triple helix-forming oligonucleotides may be useful as gene-targeting reagents in vivo, for applications such as gene knockout. One important property of these complexes is their often remarkable stability, as demonstrated in solution and in cells following transfection. Although encouraging, these measurements do not necessarily report triplex stability in cellular compartments that support DNA functions such as replication and mutagenesis. We have devised a shuttle vector plasmid assay that reports the stability of triplexes on DNA that undergoes replication and mutagenesis. The assay is based on plasmids with novel variant supF tRNA genes containing embedded sequences for triplex formation and psoralen cross-linking. Triple helix-forming oligonucleotides were linked to psoralen and used to form triplexes on the plasmids. At various times after introduction into cells, the psoralen was activated by exposure to long wave ultraviolet light (UVA). After time for replication and mutagenesis, progeny plasmids were recovered and the frequency of plasmids with mutations in the supF gene determined. Site-specific mutagenesis by psoralen cross-links was dependent on precise placement of the psoralen by the triple helix-forming oligonucleotide at the time of UVA treatment. The results indicated that both pyrimidine and purine motif triplexes were much less stable on replicated DNA than on DNA in vitro or in total transfected DNA. Incubation of cells with amidoanthraquinone-based triplex stabilizing compounds enhanced the stability of the pyrimidine triplex.  相似文献   

17.
We analyzed the effect of 2'-O,4'-C-methylene bridged nucleic acid (2',4'-BNA) modification of triplex-forming oligonucleotide (TFO) on pyrimidine motif triplex formation at neutral pH, a condition where pyrimidine motif triplexes are unstable. The binding constant of the pyrimidine motif triplex formation at pH 6.8 with 2',4'-BNA modified TFO was about 20 times larger than that observed with unmodified TFO. The observed increase in the binding constant at neutral pH by the 2',4'-BNA modification resulted from the considerable decrease in the dissociation rate constant.  相似文献   

18.
Differential scanning calorimetric (DSC), circular dichroism (CD) and molecular mechanics studies have been performed on two triple helices of DNA. The target duplex consists of 16 base pairs in alternate sequence of the type 5′-(purine)m(pyrimidine)m-3′. In both the triplexes, the third oligopyrimidine strand crosses the major groove at the purine–pyrimidine junction, with a simultaneous binding of the adjacent purine tracts on alternate strands of the Watson–Crick duplex. The switch is ensured by a non-nucleotide linker, the 1,2,3 propanetriol residue, that joins two 3′–3′ phosphodiester ends. The third strands differ from each other for a nucleotide in the junction region. The resulting triple helices were termed 14-mer-PXP and 15-mer-PXP (where P=phosphate and X=1,2,3-propanetriol residue) according to the number of nucleotides that compose the third strand. DSC data show two independent processes: the first corresponding to the dissociation of the third strand from the target duplex, the second to the dissociation of the double helix in two single strands. The two triple helices show the same stability at pH 6.6. At pH 6.0, the 15-mer-PXP triplex is thermodynamically more stable than the 14-mer-PXP triplex. Thermodynamic data are discussed in relation to structural models. The results are useful when considering the design of oligonucleotides that can bind in an antigene approach to the DNA for therapeutic purposes.  相似文献   

19.
We analyzed the effect of 2′-O,4′-C-methylene bridged nucleic acid (2′,4′-BNA) modification of triplex-forming oligonucleotide (TFO) on pyrimidine motif triplex formation at neutral pH, a condition where pyrimidine motif triplexes are unstable. The binding constant of the pyrimidine motif triplex formation at pH 6.8 with 2′,4′-BNA modified TFO was about 20 times larger than that observed with unmodified TFO. The observed increase in the binding constant at neutral pH by the 2′,4′-BNA modification resulted from the considerable decrease in the dissociation rate constant.  相似文献   

20.
Single-strand DNA triple-helix formation   总被引:4,自引:0,他引:4  
R H?ner  P B Dervan 《Biochemistry》1990,29(42):9761-9765
Chemical modification studies provide evidence that single-stranded oligodeoxyribonucleotides can form stable intrastrand triple helices. Two oligonucleotides of opposite polarity were synthesized, each composed of a homopurine-homopyrimidine hairpin stem linked to a pyrimidine sequence which is capable of folding back on the hairpin stem and forming specific Hoogsteen hydrogen bonds. Using potassium permanganate as a chemical modification reagent, we have found that two oligodeoxyribonucleotides of sequence composition type 5'-(purine)8(N)4(pyrimidine)8(N)6(pyrimidine)8-3' and 5'-(pyrimidine)8N6(pyrimidine)8N4(purine)8-3' undergo dramatic structural changes consistent with intrastrand DNA triple-helix formation induced by lowering the pH or raising the Mg2+ concentration. The intrastrand DNA triple helix is sensitive to base mismatches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号