首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The callose synthase (CalS) activity of membrane preparations from cultured Nicotiana alata Link & Otto pollen tubes is increased several-fold by treatment with trypsin in the presence of digitonin, possibly due to activation of an inactive (zymogen) form of the enzyme. Active and inactive forms of CalS are also present in stylar-grown tubes. Callose deposition was first detected immediately after germination of pollen grains in liquid medium, at the rim of the germination aperture. During tube growth the 3-linked glucan backbone of callose was deposited at an increasing rate, reaching a maximum of 65 mg h−1 in tubes grown from 1 g pollen. Callose synthase activity was first detected immediately after germination, and then also increased substantially during tube growth. Trypsin caused activation of CalS throughout a 30-h time course of tube growth, but the degree of activation was higher for younger pollen tubes. Over a 10-fold range of callose deposition rates, the assayed CalS activity was sufficient to account for the rate of callose deposition without trypsin activation, implying that the form of CalS active in isolated membranes is responsible for callose deposition in intact pollen tubes. Sucrose-density-gradient centrifugation separated a lighter, intracellular membrane fraction containing only inactive CalS from a heavier, plasma-membrane fraction containing both active and inactive CalS, with younger pollen tubes containing relatively more of the inactive intracellular enzyme. The increasing rate of callose deposition during pollen-tube growth may thus be caused by the transport of inactive forms of CalS from intracellular membranes to the plasma membrane, followed by the regulated activation of these inactive forms in this final location. Received: 1 December 1998 / Accepted: 21 January 1999  相似文献   

2.
The callose synthase (UDP-glucose: 1,3-β-d-glucan 3-β-d-glucosyl transferase; EC 2.4.1.34) enzyme (CalS) from pollen tubes of Nicotiana alata Link et Otto is responsible for developmentally regulated deposition of the cell wall polysaccharide callose. Membrane preparations from N. alata pollen tubes grown in liquid culture were fractionated by density-gradient centrifugation. The CalS activity sedimented to the denser regions of the gradient, approximately 1.18 g · ml−1, away from markers for Golgi, endoplasmic reticulum and mitochondria, and into fractions enriched in ATPase activity and in membranes staining with phosphotungstic acid at low pH. This suggests that pollen-tube CalS is localised in the plasma membrane. Callose synthase activity from membranes enriched by downward centrifugation was solubilised with digitonin, which gave a 3- to 4-fold increase in enzyme activity, and the solubilised activity was then enriched a further 10-fold by product entrapment. The complete procedure gave final CalS specific activities up to 1000-fold higher than those of pollen-tube homogenates. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that several polypeptides co-fractionated with CalS activity through purification, with a polypeptide of 190 kDa being enriched in product-entrapment pellets. Received: 24 September 1997 / Accepted: 12 November 1997  相似文献   

3.
The protein NaGSL1 (Nicotiana alata glucan synthase-like 1) is implicated in the synthesis of callose, the 1,3-beta-glucan that is the major polysaccharide in the walls of N. alata (flowering tobacco) pollen tubes. Here we examine the production, intracellular location and post-translational processing of NaGSL1, and relate each of these to the control of pollen-tube callose synthase (CalS). The 220 kDa NaGSL1 polypeptide is produced after pollen-tube germination and accumulates during pollen-tube growth, as does CalS. A combination of membrane fractionation and immunoelectron microscopy revealed that NaGSL1 was present predominantly in the endoplasmic reticulum and Golgi membranes in younger pollen tubes when CalS was mostly in an inactive (latent) form. In later stages of pollen-tube growth, when CalS was present in both latent and active forms, a greater proportion of NaGSL1 was in intracellular vesicles and the plasma membrane, the latter location being consistent with direct deposition of callose into the wall. N. alata CalS is activated in vitro by the proteolytic enzyme trypsin and the detergent CHAPS, but in neither case was activation associated with a detectable change in the molecular mass of the NaGSL1 polypeptide. NaGSL1 may thus either be activated by the removal of a few amino acids or by the removal of another protein that inhibits NaGSL1. These findings are discussed in relation to the control of callose biosynthesis during pollen germination and pollen-tube growth.  相似文献   

4.
The effects of the lysine-reactive chemical modification reagents, uridine 5’ diphospho (UDP)-pyridoxal and formaldehyde (HCHO), on the activity of membrane-bound and solubilized UDP-Glc: (1,3)-β-D-glucan synthase (callose synthase) from red beet (Beta vulgaris L.) storage tissue were compared. Exposure to micromolar levels of UDP-pyridoxal, or millimolar levels of HCHO in the presence of NaCNBH3, resulted in complete enzyme inactivation. Conditions for inhibition of membrane-bound enzyme activity by the two reagents were markedly similar; divalent cations were required for inactivation, and complete protection of activity was obtained with EDTA or EGTA. The substrate, UDP-Glc, protected membrane-bound callose synthase against inactivation by UDP-pyridoxal or HCHO, but protected the solubilized enzyme only against inhibition by UDP-pyridoxal, suggesting that the lysine residue modified by both these reagents is at the enzyme active site, and that the site is more open or has a certain conformational flexibility in the solubilized enzyme. Potential UDP-Glc-binding polypeptides of callose synthase were identified by a two-step labeling procedure. First, nonessential lysine residues were blocked by irreversible modification reaction with HCHO or UDP-pyridoxal in the presence of UDP-Glc to protect lysines at UDP-Glc-binding sites. In the second step, proteins were recovered, reacted with [14C]-HCHO in the absence of UDP-Glc, and polypeptide labeling patterns analyzed by SDS-polyacrylamide gel electrophoresis and fluorography. This procedure reduced incorporation of label by 5- to 8-fold compared to a procedure omitting the preblocking step, and with enzyme partially purified by solubilization in CHAPS followed by product entrapment, labeling was limited to a small set of polypeptides. Taken together with the results of other studies, the data suggest that one or more polypeptides migrating in the 54–57 kDa region are good candidates for the UDP-Glc-binding components of callose synthase.  相似文献   

5.
Rapid enrichment of CHAPS-solubilized UDP-glucose:(1,3)-β-glucan (callose) synthase from storage tissue of red beet (Beta vulgaris L.) is obtained when the preparation is incubated with an enzyme assay mixture, then centrifuged and the enzyme released from the callose pellet with a buffer containing EDTA and CHAPS (20-fold purification relative to microsomes). When centrifuged at high speed (80,000g), the enzyme can also be pelleted in the absence of substrate (UDP-Glc) or synthesis of callose, due to nonspecific aggregation of proteins caused by excess cations and insufficient detergent in the assay buffer. True time-dependent and substrate-dependent product-entrapment of callose synthase is obtained by low-speed centrifugation (7,000-11,000g) of enzyme incubated in reaction mixtures containing low levels of cations (0.5 millimolar Mg2+, 1 millimolar Ca2+) and sufficient detergent (0.02% digitonin, 0.12% CHAPS), together with cellobiose, buffer, and UDP-Glc. Entrapment conditions, therefore, are a compromise between preventing nonspecific precipitation of proteins and permitting sufficient enzyme activity for callose synthesis. Further enrichment of the enzyme released from the callose pellet was not obtained by rate-zonal glycerol gradient centrifugation, although its sedimentation rate was greatly enhanced by inclusion of divalent cations in the gradient. Preparations were markedly cleaner when product-entrapment was conducted on enzyme solubilized from plasma membranes isolated by aqueous two-phase partitioning rather than by gradient centrifugation. Product-entrapped preparations consistently contained polypeptides or groups of closely-migrating polypeptides at molecular masses of 92, 83, 70, 57, 43, 35, 31/29, and 27 kilodaltons. This polypeptide profile is in accordance with the findings of other callose synthase enrichment studies using a variety of tissue sources, and is consistent with the existence of a multi-subunit enzyme complex.  相似文献   

6.
Callose is synthesized on the forming cell plate and several other locations in the plant. We cloned an Arabidopsis cDNA encoding a callose synthase (CalS1) catalytic subunit. The CalS1 gene comprises 42 exons with 41 introns and is transcribed into a 6.0-kb mRNA. The deduced peptide, with an approximate molecular mass of 226 kD, showed sequence homology with the yeast 1,3-beta-glucan synthases and is distinct from plant cellulose synthases. CalS1 contains 16 predicted transmembrane helices with the N-terminal region and a large central loop facing the cytoplasm. CalS1 interacts with two cell plate--associated proteins, phragmoplastin and a novel UDP-glucose transferase that copurifies with the CalS complex. That CalS1 is a cell plate--specific enzyme is demonstrated by the observations that the green fluorescent protein--CalS1 fusion protein was localized at the growing cell plate, that expression of CalS1 in transgenic tobacco cells enhanced callose synthesis on the forming cell plate, and that these cell lines exhibited higher levels of CalS activity. These data also suggest that plant CalS may form a complex with UDP-glucose transferase to facilitate the transfer of substrate for callose synthesis.  相似文献   

7.
The NaGSL1 gene has been proposed to encode the callose synthase (CalS) enzyme from Nicotiana alata pollen tubes based on its similarity to fungal 1,3-beta-glucan synthases and its high expression in pollen and pollen tubes. We have used a biochemical approach to link the NaGSL1 protein with CalS enzymic activity. The CalS enzyme from N. alata pollen tubes was enriched over 100-fold using membrane fractionation and product entrapment. A 220 kDa polypeptide, the correct molecular weight to be NaGSL1, was specifically detected by anti-GSL antibodies, was specifically enriched with CalS activity, and was the most abundant polypeptide in the CalS-enriched fraction. This polypeptide was positively identified as NaGSL1 using both MALDI-TOF MS and LC-ESI-MS/MS analysis of tryptic peptides. Other low-abundance polypeptides in the CalS-enriched fractions were identified by MALDI-TOF MS as deriving from a 103 kDa plasma membrane H+-ATPase and a 60 kDa beta-subunit of mitochondrial ATPase, both of which were deduced to be contaminants in the product-entrapped material. These analyses thus suggest that NaGSL1 is required for CalS activity, although other smaller (<30 kDa) or low-abundance proteins could also be involved.  相似文献   

8.
Read SM  Delmer DP 《Plant physiology》1987,85(4):1008-1015
UDP-pyridoxal competitively inhibits the Ca2+-, cellobiose-activated (1→3)-β-glucan synthase activity of unfractionated mung bean (Vigna radiata) membranes, with a Ki of 3.8 ± 0.7 micromolar, when added simultaneously with the substrate UDP-glucose in brief (3 minute) assays. Preincubation of membranes with UDP-pyridoxal and no UDP-glucose, however, causes progressive reduction of the Vmax of subsequently assayed enzyme and, after equilibrium is reached, 50% inhibition occurs with 0.84 ± 0.05 micromolar UDP-pyridoxal. This progressive inhibition is reversible provided that the UDP-pyridoxylated membranes are not treated with borohydride, indicating formation of a Schiff's base between the inhibitor and an enzyme amino group. Consistent with this, UDP-pyridoxine is not an inhibitor. The reaction of (1→3)-β-glucan synthase with UDP-pyridoxal is stimulated strongly by Ca2+ and, less effectively, by cellobiose or sucrose, and the enzyme is protected against UDP-pyridoxal by UDP-glucose or by other competitive inhibitors, implying that modification is occurring at the active site. Pyridoxal phosphate is a less potent and less specific inhibitor. Latent (1→3)-β-glucan synthase activity inside membrane vesicles can be unmasked and rendered sensitive to UDP-pyridoxal by the addition of digitonin. Treatment of membrane proteins with UDP-[3H]pyridoxal and borohydride labels a number of polypeptides but labeling of none of these specifically requires Ca2+ and sucrose; however, a polypeptide of molecular weight 42,000 is labeled by UDP-[3H]pyridoxal in the presence of Mg2+ and copurifies with (1→3)-β-glucan synthase activity.  相似文献   

9.
Membrane preparations from cultured pollen tubes of Nicotiana alata Link et Otto contain a Ca2+ -independent (1-3)-[beta]-D-glucan (callose) synthase activity that has a low affinity for UDP-glucose, even when activated by treatment with trypsin (H. Schlupmann, A. Basic, S.M. Read [1993] Planta 191: 470-481). Therefore, we investigated whether UDP-glucose was a likely substrate for callose synthesis in actively growing pollen tubes. Deposition of (1-3)-[beta]-glucan occurred at a constant rate, 1.4 to 1.7 nmol glucose min-1, in tubes from 1 mg of pollen from 3 h after germination; however, the rate of incorporation of radioactivity from exogenous [14C]-sucrose into wall polymers was not constant, but increased until at least 8 h after germination, probably due to decreasing use of internal reserves. UDP-glucose was a prominent ultraviolet-absorbing metabolite in pollen-tube extracts, with 1.6 nmol present in tubes from 1 mg of pollen, giving a calculated cytoplasmic concentration of approximately 3.5 mM. Radioactivity from [14C]-sucrose was rapidly incorporated into sugar monophosphates and UDP-glucose by the growing tubes, consistent with a turnover time for UDP-glucose of less than 1 min; the specific radioactivity of extracted UDP-[14C]glucose was equal to that calculated from the rate of incorporation of [14C]sucrose into wall glucans. Large amounts of less metabolically active neutral sugars were also present. The rate of synthesis of (1-3)-[beta]-glucan by nontrypsin-treated pollen-tube membrane preparations incubated with 3.5 mM UDP-glucose and a [beta]-glucoside activator was slightly greater than the rate of deposition of (1-3)-[beta]-glucan by intact pollen tubes. These data are used to assess the physiological significance of proteolytic activation of pollen-tube callose synthase.  相似文献   

10.
1. An NADH dehydrogenase, obtained from an extremely halophilic bacterium, was activated by various salts when enzyme activity was measured as the observed velocity, whereas the maximum velocity was unaffected by either the salt concentration or the nature of the salt. 2. Two ion effects were observed; a quantitative cation effect, reflected in changes in the apparent Michaelis constant for 2,6-dichlorophenolindophenol, and a qualitative anion effect, reflected in the apparent Michaelis and dissociation constants for NADH. 3. The data suggest that cations act by neutralizing electrostatic charges surrounding the 2,6-dichlorophenolindophenol-binding site, whereas the anions affect the conformation of the enzyme by altering the accessibility of the NADH-binding site to the bulk solvent. 4. Thus, the apparent activation of this enzyme, obtained from an extremely halophilic bacterium, is a reflection of measuring enzyme activity at non-saturating substrate concentrations.  相似文献   

11.
12.
The effect of 26 different membrane-perturbing agents on the activity and phase distribution of inositol phosphorylceramide synthase (IPC synthase) activity in crude Candida albicans membranes was investigated. The nonionic detergents Triton X-100, Nonidet P-40, Brij, Tween, and octylglucoside all inactivated the enzyme. However, at moderate concentrations, the activity of the Triton X-100- and octylglucoside-solubilized material could be partially restored by inclusion of 5 mM phosphatidylinositol (PI) in the solubilization buffer. The apparent molecular mass of IPC synthase activity solubilized in 2% Triton X-100 was between 1.5 x 10(6) and 20 x 10(6) Da, while under identical conditions, octylglucoside-solubilized activity remained associated with large presumably membrane-like structures. Increased detergent concentrations produced more drastic losses of enzymatic activity. The zwitterionic detergents Empigen BB, N-dodecyl-N,N-(dimethylammonio)butyrate (DDMAB), Zwittergent 3-10, and amidosulfobetaine (ASB)-16 all appeared capable of solubilizing IPC synthase. However, these agents also inactivated the enzyme essentially irreversibly. Solubilization with lysophospholipids again resulted in drastic losses of enzymatic activity that were not restored by the inclusion of PI. Lysophosphatidylinositol also appeared to compete, to some extent, with the donor substrate phosphatidylinositol. The sterol-containing agent digitonin completely inactivated IPC synthase. By contrast, sterol-based detergents such as 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate (CHAPSO), and taurodeoxycholate (tDOC) had little or no effect on the enzyme activity. The IPC synthase activity in C. albicans membranes remained largely intact and sedimentable at CHAPS concentrations (4%) where >90% of the phospholipids and 60% of the total proteins were extracted from the membranes. At 2.5% CHAPS, a concentration where approximately 50% of the protein and 80% of the phospholipids are solubilized, there was no detectable loss of enzyme activity, and it was found that the detergent-treated membranes had significantly improved properties compared to crude, untreated membranes as the source of IPC synthase activity. In contrast to assays utilizing intact membranes or Triton X-100 extracts, assays using CHAPS- or tDOC-washed membranes were found to be reproducible, completely dependent on added acceptor substrate (C(6)-7-nitro-2-1,3-benzoxadiazol-4-yl (NBD)-ceramide), and >95% dependent on added donor substrate (PI). Product formation was linear with respect to both enzyme concentration and time, and transfer efficiency was improved more than 20-fold as compared to assays using crude membranes. Determination of kinetic parameters for the two IPC synthase substrates using CHAPS-washed membranes resulted in K(m) values of 3.3 and 138.0 microM for C(6)-NBD-ceramide and PI, respectively. In addition, the donor substrate, PI, was found to be inhibitory at high concentrations with an apparent K(i) of 588.2 microM.  相似文献   

13.
Plasma membrane (PM) vesicles of defined sidedness were obtained from Beta vulgaris L. and subjected to limited proteolysis to investigate the topology and subunit composition of UDP-glucose: (1,3)-β-glucan (callose) synthase (CalS). Latency experiments demonstrated that protease-sensitive sites on the CalS complex are located primarily at the cytoplasmic face of the PM, with little or no CalS inactivation occurring as the result of proteolysis at the apoplastic face. In the PM-bound form, CalS activity was resistant to inactivation by Pronase E, however at least four polypeptides previously implicated as possible CalS components (92, 83, 57 and 43 kDa) were extensively hydrolyzed. Polypeptides of 31, 29 and 27 kDa resisted Pronase E hydrolysis and were also enriched in CalS fractions purified by glycerol gradient centrifugation and product entrapment. In contrast to PM-bound CalS, purified CalS was rapidly hydrolyzed by Pronase E, indicating that most Pronase E-sensitive sites are deeply embedded within the PM. This study provides direct biochemical evidence that hydrophobic integral membrane proteins oriented primarily towards the cytoplasmic face of the PM are important for callose biosynthesis in Beta . Furthermore, these results form the basis of a biochemically derived working model largely consistent with morphologically derived models proposed for intramembrane PM-bound, microfibril-synthesizing complexes in higher plants.  相似文献   

14.
Callose formation was observed in the pollens during flower development and pollen tube grown in the pistil ofA. thaliana. The accumulation of callose occurred in the tetrad in the flower bud and pollen tube. Therefore, the activity of β-glucan synthetase II (GS II), which is responsible for synthesizing the callose, was measured in the flowers on the same developmental stages. The enzyme activity was increased by about 10% while the level of callose contents was increased by about 70% in tetrads. Then, callose accumulation was increased during pollen tube growth by about 30% higher than the other stages and enzyme activity was detected, 30% more too. These results suggest that callose plays an important role in the growth of pollen and pollen tube by increasing GS II activity.  相似文献   

15.
The l,3-ß-glucan synthase (callose synthase, EC 2.4.1.34) was solubilized from cauliflower ( Brassica oleracea L.) plasma membranes with digitonin, and partially purified by ion exchange chromatography and gel filtration [fast protein liquid chromatography (FPLC)] using 3-[(cholamidopropyl)dimethylammonio]-1-propane-sulfonate (CHAPS) in the elution buffers. These initial steps were necessary to obtain specific precipitation of the enzyme during product entrapment, the final purification step. Five polypeptides of 32, 35, 57, 65 and 66 kDa were highly enriched in the final preparation and are thus likely components of the callose synthase complex. The purified enzyme was activated by Ca2+, spermine and cellobiose in the same way as the enzyme in situ, indicating that no essential subunits were missing. The polyglucan produced by the purified enzyme contained mainly 1,3-linked glucose.  相似文献   

16.
Callose (beta-1,3-glucan) is produced at different locations in response to biotic and abiotic cues. Arabidopsis contains 12 genes encoding callose synthase (CalS). We demonstrate that one of these genes, CalS5, encodes a callose synthase which is responsible for the synthesis of callose deposited at the primary cell wall of meiocytes, tetrads and microspores, and the expression of this gene is essential for exine formation in pollen wall. CalS5 encodes a transmembrane protein of 1923 amino acid residues with a molecular mass of 220 kDa. Knockout mutations of the CalS5 gene by T-DNA insertion resulted in a severe reduction in fertility. The reduced fertility in the cals5 mutants is attributed to the degeneration of microspores. However, megagametogenesis is not affected and the female gametes are completely fertile in cals5 mutants. The CalS5 gene is also expressed in other organs with the highest expression in meiocytes, tetrads, microspores and mature pollen. Callose deposition in the cals5 mutant was nearly completely lacking, suggesting that this gene is essential for the synthesis of callose in these tissues. As a result, the pollen exine wall was not formed properly, affecting the baculae and tectum structure and tryphine was deposited randomly as globular structures. These data suggest that callose synthesis has a vital function in building a properly sculpted exine, the integrity of which is essential for pollen viability.  相似文献   

17.
Plant callose synthase complexes   总被引:15,自引:0,他引:15  
Synthesis of callose (-1,3-glucan) in plants has been a topic of much debate over the past several decades. Callose synthase could not be purified to homogeneity and most partially purified cellulose synthase preparations yielded -1,3-glucan in vitro, leading to the interpretation that cellulose synthase might be able to synthesize callose. While a rapid progress has been made on the genes involved in cellulose synthesis in the past five years, identification of genes for callose synthases has proven difficult because cognate genes had not been identified in other organisms. An Arabidopsis gene encoding a putative cell plate-specific callose synthase catalytic subunit (CalS1) was recently cloned. CalS1 shares high sequence homology with the well-characterized yeast -1,3-glucan synthase and transgenic plant cells over-expressing CalS1 display higher callose synthase activity and accumulate more callose. The callose synthase complex exists in at least two distinct forms in different tissues and interacts with phragmoplastin, UDP-glucose transferase, Rop1 and, possibly, annexin. There are 12 CalS isozymes in Arabidopsis, and each may be tissue-specific and/or regulated under different physiological conditions responding to biotic and abiotic stresses.  相似文献   

18.
The activity of rat liver microsomal squalene epoxidase is inhibited effectively by digitonin. Concentrations of 0.8 to 1.2 mg/ml of digitonin cause total inhibition of microsomal (0.75 mg protein/ml) squalene epoxidase either in microsomes that were pretreated with digitonin and subsequently washed and subjected to epoxidase assay or when digitonin was added directly to the assay. The inhibition of squalene epoxidase by digitonin is concentration-dependent and takes place rapidly within 5 min of exposure of the microsomes to digitonin. Octylglucoside, dimethylsulfoxide, CHAPS, as well as cholesterol or total microsomal lipid extract were ineffective in restoring the digitonin-inhibited squalene epoxidase activity. Epoxidase activity in digitonin-treated microsomes was fully restored by Triton X-100. The reactivation by Triton X-100 displays a concentration optimum with maximal reactivation of the epoxidase (0.7 mg protein/ml) occurring at 0.2% Triton X-100. Microsomal 2,3-oxidosqualene-lanosterol cyclase is also inhibited by digitonin. Higher concentrations of digitonin are required to obtain full inhibition of the cyclase activity and only 40% inhibition of cyclase activity is observed at 1 mg/ml of digitonin. Solubilized (subunit size 55 to 66 kDa) and microsomal (subunit size 97 kDa) 3-hydroxy-3-methylglutaryl CoA reductase are totally unaffected by the same concentration of digitonin. Squalene synthetase, another microsomal enzyme in the biosynthetic pathway of cholesterol, is activated by digitonin. A 2.2-fold activation of squalene synthetase is observed at 0.8 mg/ml of digitonin. The results agree with a model in which squalene, and to a lesser degree 2,3-oxidosqualene, are segregated by digitonin into separate intramembranal pools.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Studying lipase in germinating sunflower seedlings, we looked for an activator of the lipolytic activity. In the presence of 1.25 mM ATP, the enzyme activity increased 2-fold. Lipid-body lipase solubilization was realized using two detergents: Tween 80 and CHAPS. Lipolytic activity was increased 10-fold in the presence of 2% (w/v) CHAPS, showing the probable 'complexity' of the enzyme. Looking for the possible lipolytic activity of the 10000 g pellet we detected the presence of the enzyme. The pellet extract was mixed, in a range of concentrations, with the oil-body fraction. The resulting lipolytic activity was 4-fold higher. These results give clues as to the subcellular distribution of lipase and its intracellular transport.  相似文献   

20.
It has been known for more than a century that sieve plates in the phloem in plants contain callose, a β-1,3-glucan. However, the genes responsible for callose deposition in this subcellular location have not been identified. In this paper we examine callose deposition patterns in T-DNA insertion mutants (cs7) of the Callose Synthase 7 (CalS7) gene. We demonstrated here that the CalS7 gene is expressed specifically in the phloem of vascular tissues. Callose deposition in the phloem, especially in the sieve elements, was greatly reduced in cs7 mutants. Ultrastructural analysis of developing sieve elements revealed that callose failed to accumulate in the plasmodesmata of incipient sieve plates at the early perforation stage of phloem development, resulting in the formation of sieve plates with fewer pores. In wild-type Arabidopsis plants, callose is present as a constituent polysaccharide in the phloem of the stem, and its accumulation can also be induced by wounding. Callose accumulation in both conditions was eliminated in mature sieve plates of cs7 mutants. These results demonstrate that CalS7 is a phloem-specific callose synthase gene, and is responsible for callose deposition in developing sieve elements during phloem formation and in mature phloem induced by wounding. The mutant plants exhibited moderate reduction in seedling height and produced aberrant pollen grains and short siliques with aborted embryos, suggesting that CalS7 also plays a role in plant growth and reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号