首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An amperometric biosensor was developed for the interference-free determination of l-glutamate with a bienzyme-based Clark electrode. This sensor is based on the specific dehydrogenation by l-glutamate dehydrogenase (GLDH, EC 1.4.1.3) in combination with salicylate hydroxylase (SHL, EC 1.14.13.1). The enzymes were entrapped by a poly(carbamoyl) sulfonate (PCS) hydrogel on a Teflon membrane. The principle of the determination scheme is as follows: the specific detecting enzyme, GLDH, catalyses the specific dehydrogenation of l-glutamate consuming NAD+. The product, NADH, initiates the irreversible decarboxylation and the hydroxylation of salicylate by SHL in the presence of oxygen. This results in a detectable signal due to the SHL-enzymatic consumptions of dissolved oxygen in the measurement of l-glutamate. The sensor has a fast steady-state measuring time of 20 s with a quick response (1 s) and a short recovery (1 min). It shows a linear detection range between 10 μM and 1.5 mM l-glutamate with a detection limit of 3.0 μM. A Teflon membrane, which is used to fabricate the sensor, makes the determination to avoid interferences from other amino acids and electroactive substances.  相似文献   

2.
Acryloyl guar gum (AGG) and its hydrogel materials were synthesized for use as carriers and slow release devices of two pro-drugs, l-tyrosine and 3,4-dihydroxy phenylalanine (l-DOPA). To evaluate their structure-properties relationship, these were characterized by scanning electron micrography (SEM), FTIR spectroscopy and swelling studies. The hydrogel materials responded to the change of pH of the swelling medium, and exhibited reversible transitions in 0.9% saline solution. These were loaded with two pro-drugs, and their cumulative release behavior was studied at pH 2.2 and pH 7.4. The hydrogel materials exhibited structure-property relationship in the release of these pro-drugs. The % cumulative release of l-tyrosine was the maximum from the AGG-g-poly(methacrylic acid), while the maximum release of l-DOPA was observed from AGG-g-poly(AAc) in both the media. On the other hand, the AGG-g-poly(2-hydroxyethyl methacrylate) and AGG-g-poly(2-hydroxypropyl methacrylate) retained 42.33% and 49.05% of the drug even after 12 h.  相似文献   

3.
The dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) is a critical bacterial enzyme for the construction of the bacterial cell wall. A screen biased toward compounds containing zinc-binding groups (ZBG’s) including thiols, carboxylic acids, boronic acids, phosphonates and hydroxamates has delivered a number of micromolar inhibitors of DapE from Haemophilus influenzae, including the low micromolar inhibitor l-captopril (IC50 = 3.3 μM, Ki = 1.8 μM). In vitro antimicrobial activity was demonstrated for l-captopril against Escherichia coli.  相似文献   

4.
A synthetic gene encoding a Streptomyces l-proline-3-hydroxylase was constructed and used to produce the hydroxylase protein in recombinant Escherichia coli. A fermentation process for growth of this recombinant E. coli for enzyme production was scaled-up to 250 L. A biotransformation process was developed using cell suspensions of the recombinant E. coli and subsequently scaled-up to 10 L for conversion of l-proline to cis-3-hydroxy-l-proline. A reaction yield of 85 M% and d.e. of 99.9% was obtained for cis-3-hydroxy-l-proline.  相似文献   

5.
l-Arabinose isomerase from Geobacillus stearothermophilus (GSAI; EC 5.3.1.4) has been genetically evolved to increase the reaction rate toward d-galactose, which is not a natural substrate. To change the optimal pH of GSAI for d-galactose isomerization (pH optimum at 8.5), we investigated the single point mutations influencing the activity based on the sequences of the previously evolved enzymes. Among the seven point mutations found in the evolved enzymes, mutations at Val408 and Asn475 were determined to be highly influential mutation points for d-galactose isomerization activity. A random mutation was introduced into sites Val408 and Asn475 (X408V and X475N), and candidates were screened based on non-optimal pH conditions. Among the mutations of X408V and X475N, mutations of Q408V and R408V were selected. The optimal pH of the both mutations Q408V and R408V was shifted to pH 7.5. At the shifted optimal pH, the d-galactose isomerization activities of Q408V and R408V were 60 and 30% higher than that of the wild type at pH 8.5, respectively.  相似文献   

6.
d-Hydantoinase and d-carbamoylase genes from Agrobacterium radiobacter TH572 were cloned by polymerase chain reaction (PCR). The plasmid pUCCH3 with a polycistronic structure that is controlled by the native hydantoinase promoter was constructed to co-express the two genes and transformed into Escherichia coli strain JM105. To obtain the highest level of expression of the d-carbamoylase and avoid intermediate accumulation, the d-carbamoylase gene was cloned closer to the promoter and the RBS region in the upstream of it was optimized. This resulted in high active expression of soluble d-hydantoinase and d-carbamoylase that is obtained without any inducer. Thus, by the constitutive recombinant JM105/pUCCH3, d-p-hydroxyphenylglycine (d-HPG) was obtained directly with 95.2% production yield and 96.3% conversion yield.  相似文献   

7.
An aerobic bacterium was isolated from activated sludge in a medium containing l-glutamate-N,N-diacetate (l-GLDA) as sole carbon and energy source. The isolate was identified as a Rhizobium radiobacter species. Besides l-GLDA, the strain utilized nitrilotriacetate (NTA) and proposed intermediates in l-GLDA metabolism such as glyoxylate and l-glutamate. l-GLDA-grown cells oxidized l-GLDA, l-glutamate but not iminodiacetate (IDA), and trans-ketoglutaconate, indicating removal of a carboxymethyl group as an initial degradation reaction. The removal of the first carboxymethyl group of l-GLDA is catalyzed by an NADH-dependent mono-oxygenase. The oxidative deamination of l-glutamate by a dehydrogenase resulting in the formation of oxoglutarate was also detected in cell-free extracts of R. radiobacter sp. A pathway for the metabolism of l-GLDA R. radiobacter sp. is proposed: First, l-GLDA leads to l-glutamate-N-monoacetate (l-GLMA) which in turn leads to l-glutamate. Then, l-glutamate leads to oxoglutarate, an intermediate of the TCA cycle.  相似文献   

8.
By use of PCR, the genes encoding d-carbamoylase from A. radiobacter TH572 were cloned in plasmid pET30a and transformed into Escherichia coli BL21 (DE3) to overexpress d-carbamoylase. However, almost all of the protein remained trapped in inclusion bodies. To improve the expression of the properly folded active enzyme, a constitutive plasmid of pGEMT-DCB was constructed using the native hydantoinase promoter (PHase) whose optimal length was confirmed to 209 bp. Furthermore, the RBS region in the downstream of PHase was optimized to increase the expression level, so the plasmid pGEMT-R-DCB was constructed and transformed into E. coli strain Top10F′. The enzyme activity of Top10F′/pGEMT-R-DCB grown at 37 °C was found to be 0.603 U/mg (dry cell weight, DCW) and increase 58-fold over cells of BL21 (DE3) harboring the plasmid pET-DCB grown at 28 °C.  相似文献   

9.
The transport of l-leucine, l-phenylalanine and l-alanine by the perfused lactating rat mammary gland has been examined using a rapid, paired-tracer dilution technique. The clearances of all three amino acids by the mammary gland consisted of a rising phase followed by a rapid fall-off, respectively, reflecting influx and efflux of the radiotracers. The peak clearance of l-leucine was inhibited by BCH (65%) and d-leucine (58%) but not by l-proline. The inhibition of l-leucine clearance by BCH and d-leucine was not additive. l-leucine inhibited the peak clearance of radiolabelled l-leucine by 78%. BCH also inhibited the peak clearance of l-phenylalanine (66%) and l-alanine (33%) by the perfused mammary gland. Lactating rat mammary tissue was found to express both LAT1 and LAT2 mRNA. The results suggest that system L is situated in the basolateral aspect of the lactating rat mammary epithelium and thus probably plays a central role in neutral amino acid uptake from blood. The finding that l-alanine uptake by the gland was inhibited by BCH suggests that LAT2 may make a significant contribution to neutral amino acid uptake by the mammary epithelium.  相似文献   

10.
Magnetic beads were prepared via suspension polymerization of glycidyl methacrylate (GMA) and methyl methacrylate (MMA) in the presence of ferric ions. Following polymerization, thermal co-precipitation of the Fe(III) ions in the beads with Fe(II) ions under alkaline condition resulted in encapsulation of Fe3O4 nano-crystals within the polymer matrix. The magnetic beads were activated with glutaraldehyde, and tyrosinase enzyme was covalently immobilized on the support via reaction of amino groups under mild conditions. The immobilized enzyme was used for the synthesis of l-Dopa (1-3,4-dihydroxy phenylalanine) which is a precursor of dopamine. The immobilized enzyme was characterized by temperature, pH, operational and storage stability experiments. Kinetic parameters, maximum velocity of the enzyme (Vmax) and Michaelis–Menten constant (Km) values were determined as 1.05 U/mg protein and 1.0 mM for 50–75 μm and 2.00 U/mg protein and 4.0 mM for 75–150 μm beads fractions, respectively. Efficiency factor and catalytic efficiency were found to be 1.39 and 0.91 for 75–150 μm beads and 0.73 and 0.75 for 50–75 μm beads fractions, respectively. The catalytic efficiency of the soluble tyrosinase was 0.37. The amounts of immobilized protein were on the 50–75 μm and 75–150 μm fractions were 2.7 and 2.8 mg protein/g magnetic beads, respectively.  相似文献   

11.
Postnatal development changes in mechanisms of synaptosomal amino acid transport have been studied in rat cerebral cortex. Specific uptake of radiolabeled l-serine was examined and compared with that of radiolabeled GABA using synaptosomes-enriched fractions freshly prepared from cerebral cortex at different postnatal days from the birth to young adulthood. The preparations were incubated with 10 nM of [3H]l-serine and 10 nM of [3H]-GABA in either the presence or absence of NaCl, KCl or choline chloride, at 2 and 30 °C, for different periods up to 30 min. The uptake of [3H]l-serine was temperature dependent in synaptosomal fractions prepared from cerebral cortex of rats in postnatal days 5, 7, 13 and 21, but stronger dependence was observed in adult brain, irrespective of the presence of Na+, K+ or choline ions. At all postnatal ages studied, [3H]-GABA uptake showed a high activity in the presence of Na+ ions and at 30 °C. The values of Km were 90–489 μM in l-serine uptake. However, in the uptake of GABA the values of Km were 80–150 μM. The highest values of Vmax were obtained at 5 and 21 postnatal days for both transport systems. These results indicate that the uptake of l-serine and GABA are regulated differentially during postnatal development.  相似文献   

12.
The aim of the present study was to evaluate the protective effect of l-glutamine (l-Gln) against cryopreservation injuries on boar sperm. In Experiment 1, l-Gln from 20 to 80 mM was evaluated as a supplement for a standard freezing extender (egg yolk – EY – 20%, and glycerol 3%). No significant improvement (P > 0.05) was obtained for any post-thaw sperm parameter assessed (objective sperm motility – CASA system – and flow cytometric analysis of plasma and acrosomal membrane integrity −SYBR14/PI/PE-PNA− and plasma membrane stability −M540/YoPro1−). In Experiment 2, l-Gln was evaluated as a partial glycerol substitute in the freezing extender. Significant (P < 0.05) enhancement of post-thaw sperm motion parameters was achieved in sperm frozen in the presence of 2% glycerol and 80 mM l-Gln compared to control (3% glycerol). In Experiment 3, l-Gln was evaluated as an EY substitute in the freezing extender, and no functional sperm were recovered after thawing sperm frozen in the presence of l-Gln and the absence of EY. In conclusion, l-Gln has the ability to cryoprotect boar sperm when it is used as a partial glycerol substitute in the freezing extender.  相似文献   

13.
1. Retroperitoneal white adipose tissue (RpWAT) antioxidative defense was investigated in untreated, l-arginine-treated and Nω-nitro-l-arginine methyl ester (l-NAME)-treated rats kept at 4±1 °C (1, 3, 7, 12, 21 and 45 days) and compared to control rats at 22±1 °C.
2. Cold-acclimation-induced RpWAT weight decrease was accompanied by a decline in glutathione level and increased activity of manganese superoxide dismutase (MnSOD), glutathione S-transferase (GST), catalase, glutathione peroxidase and glutathione reductase at different time-points.
3. l-arginine accelerated RpWAT weight decrease, the increase in MnSOD and GST activities and the prolonged increase of catalase, MnSOD and GST activities. l-NAME delayed cold-induced catalase activity increase and tissue weight decrease. Prolonged l-NAME-treatment had a similar effect on RpWAT as l-arginine.
4. Results suggest the involvement of l-arginine/NO pathway in RpWAT oxidative metabolic augmentation induced by cold-acclimation.
Keywords: White adipose tissue; Antioxidative defense; l-arginine; Nitric oxide; l-NAME; Cold  相似文献   

14.
Both carbohydrate monomers l-gulose and l-galactose are rarely found in nature, but are of great importance in pharmacy R&D and manufacturing. A method for the production of l-gulose and l-galactose is described that utilizes recombinant Escherichia coli harboring a unique mannitol dehydrogenase. The recombinant E. coli system was optimized by genetic manipulation and directed evolution of the recombinant protein to improve conversion. The resulting production process requires a single step, represents the first readily scalable system for the production of these sugars, is environmentally friendly, and utilizes inexpensive reagents, while producing l-galactose at 4.6 g L−1 d−1 and l-gulose at 0.90 g L−1 d−1.  相似文献   

15.
Postmenopausal bone loss is a major public health concern. Although drug therapies are available, women are interested in alternative/adjunct therapies to slow down the bone loss associated with ovarian hormone deficiency. The purpose of this study was to determine whether dietary supplementation of l-carnitine can influence bone density and slow the rate of bone turnover in an aging ovariectomized rat model. Eighteen-month-old Fisher-344 female rats were ovariectomized and assigned to two groups: (1) a control group in which rats were fed ad libitum a carnitine-free (−CN) diet (AIN-93M) and (2) another fed the same diet but supplemented with l-carnitine (+CN). At the end of 8 weeks of feeding, animals were sacrificed and bone specimens were collected for measuring bone mineral content (BMC) and density (BMD) using dual energy X-ray absorptiometry. Femoral microarchitectural properties were assessed by microcomputed tomography. Femoral mRNA levels of selected bone matrix proteins were determined by northern blot analysis. Data showed that tibial BMD was significantly higher in the rat fed the +CN diet than those fed the −CN (control) diet. Dietary carnitine significantly decreased the mRNA level of tartrate-resistant acid phosphatase (TRAP), an indicator of bone resorption by 72.8%, and decreased the mRNA abundance of alkaline phosphatase (ALP) and collagen type-1 (COL), measures of bone formation by 63.6% and 61.2%, respectively. The findings suggest that carnitine supplementation slows bone loss and improves bone microstructural properties by decreasing bone turnover.  相似文献   

16.
A novel biosensor for homocysteine determination has been developed. The biosensor was fabricated with l-homocysteine desulfhydrase immobilized on the ammonium selective electrode by means of eggshell membrane. The measurement principle is based on determination of ammonia due to the enzymatic reaction in the medium by ammonium selective electrode. The effects of enzyme loading, glutaraldehyde concentration, pH, buffer concentration, temperature, dithiotreitol (DTT) concentration and ionic strength adjustment buffer (ISA) on the biosensor response were investigated in detail. The linear detection range and limit of detection (LOD) for homocysteine were found to be 0.15–1.8 mM and 55 μM, respectively. Finally, the homocysteine biosensor has been applied to plasma samples for determination of total homocysteine contents.  相似文献   

17.
In order to ascertain whether and how mitochondria can produce hydrogen peroxide (H2O2) as a result of l-lactate addition, we monitored H2O2 generation in rat liver mitochondria and in submitochondrial fractions free of peroxisomal and cytosolic contamination. We found that H2O2 is produced independently on the respiratory chain with 1:1 stoichiometry with pyruvate, due to a putative flavine-dependent l-lactate oxidase restricted to the intermembrane space. The l-lactate oxidase reaction shows a hyperbolic dependence on l-lactate concentration and is inhibited by NAD+ in a competitive manner, being the enzyme different from the l-lactate dehydrogenase isoenzymes as shown by their pH profiles.  相似文献   

18.
Modified d-glucose and d-mannose analogs are potentially clinically useful metabolic inhibitors. Biological evaluation of 2-deoxy-2-halo analogs has been impaired by limited availability and lack of efficient methods for their preparation. We have developed practical synthetic approaches to 2-deoxy-2-fluoro-, 2-chloro-2-deoxy-, 2-bromo-2-deoxy-, and 2-deoxy-2-iodo derivatives of d-glucose and d-mannose that exploit electrophilic addition reactions to a commercially available 3,4,6-tri-O-acetyl-d-glucal.  相似文献   

19.
A series of O-alkyl derivatives of cyclodextrin: heksakis[2,3,6-tri-O-(2′-methoxyethyl)]-α-cyclodextrin; heksakis(2,3-di-O-methyl)-α-cyclodextrin; heptakis(2,3-di-O-methyl)-β-cyclodextrin; heksakis[2,3-di-O-methyl-6-O-(2′-methoxyethyl)]-α-cyclodextrin; heptakis[2,3-di-O-methyl-6-O-(2′-methoxyethyl)]-β-cyclodextrin; heksakis[2,3-di-O-(2′-methoxyethyl)]-α-cyclodextrin and heptakis[2,3-di-O-(2′-methoxyethyl)]-β-cyclodextrin have been synthesized. Purity and composition of the obtained substances were examined. The cyclodextrin derivatives listed above as well as (2-hydroxypropyl)-α-cyclodextrin and (2-hydroxypropyl)-β-cyclodextrin, the two commercially available ones, have been investigated as the additives in the course of enzymatic decomposition of l-tryptophan by l-tryptophan indole-lyase. It has been found that each of cyclodextrin derivatives causes the inhibition of enzymatic process, both competitive and non-competitive. The competitive inhibition is connected with the formation of inclusion complexes between cyclodextrins and l-tryptophan, related to the geometry of these complexes. The mechanism of the non-competitive inhibition is not so evident; it could be related to the formation of the cyclodextrin complexes on the surface of the enzyme, leading to the change in the flexibility of the enzyme molecule.  相似文献   

20.
An enzymatic method for obtaining d-xylulose 5-phosphate has been developed, based on the irreversible reaction catalyzed by transketolase: hydroxypyruvate + d-glyceraldehyde-3-phosphate → d-xylulose 5-phosphate. The preparations of sodium d-xylulose 5-phosphate, obtained using this approach, were 88% pure and contained no aldehyde admixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号