首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
More than 90 mutants resistant to the adenine analogue 4-amino-pyrazolo[3,4-d]pyrimidine (4-APP), were isolated from a wild-type strain of yeast Pichia guilliermondii. Some of the App rmutants accumulated noticeable amounts of products absorbing at 260 nm in the culture medium, probably nucleotides and their derivatives. In comparison to the parent strain, the mutant App r-27 synthesized greater amounts of xanthine and uracil suggesting the presence of defects in the regulation of de novo biosynthesis of purines and pyrimidines. The regulatory mutations rib80 and rib81 are known to cause riboflavin (RF) overproduction and derepression of synthesis of corresponding enzymes in P. guilliermondii. The mutant App r-27 was crossed to the rib81 strain. The yield of RF biosynthesis in some meiotic segregants was significantly higher than that in segregants from the diploid rib81/RIB81. Apparently,rib81 and app r mutations were combined in a single genome on the favorable genetic background. An increase in RF production was also found in strains with app r mutations induced directly in the genome of the RF oversynthesizing strain rib80 rib81. These results indicate that introduction of app r mutations into the genome of P. guilliermondii can intensify their RF overproduction.  相似文献   

2.
The synthesis and physiological activity of some novel 4-substituted triazolo[4,5-d]pyrimidines and 4-substituted pyrazolo[3,4-d]pyrimidines are described. Most of the compounds possessed high anticytokinin activity towards purine (benzyladenine) and phenylurea (4-PU-30) type cytokinins. 1-Benzyl-4-ethoxycarbonylpiperazinyl-1H-1,2,3-triazolo[4,5-d]pyrimidine almost completely removed cytokinin stimulated effects—betacyanin synthesis in Amaranthus caudatus cotyledons; growth of radish cotyledons and retention of chlorophyll in leaf explants. Some chemical structurephysiological activity relationships have been established.  相似文献   

3.
The Pichia guilliermondii GSH1 and GSH2 genes encoding Saccharomyces cerevisiae homologues of glutathione (GSH) biosynthesis enzymes, γ-glutamylcysteine synthetase and glutathione synthetase, respectively, were cloned and deleted. Constructed P. guilliermondii Δgsh1 and Δgsh2 mutants were GSH auxotrophs, displayed significantly decreased cellular GSH+GSSG levels and sensitivity to tert-butyl hydroperoxide, hydrogen peroxide, and cadmium ions. In GSH-deficient synthetic medium, growths of Δgsh1 and Δgsh2 mutants were limited to 3–4 and 5–6 cell divisions, respectively. Under these conditions Δgsh1 and Δgsh2 mutants possessed 365 and 148 times elevated riboflavin production, 10.7 and 2.3 times increased cellular iron content, as well as 6.8 and 1.4 fold increased ferrireductase activity, respectively, compared to the wild-type strain. Glutathione addition to the growth medium completely restored the growth of both mutants and decreased riboflavin production, cellular iron content, and ferrireductase activity to the level of the parental strain. Cysteine also partially restored the growth of the Δgsh2 mutants, while methionine or dithiothreitol could not restore the growth neither of the Δgsh1, nor of the Δgsh2 mutants. Besides, it was shown that in GSH presence riboflavin production by both Δgsh1 and Δgsh2 mutants, similarly to that of the wild-type strain, depended on iron concentration in the growth medium. Furthermore, in GSH-deficient synthetic medium P. guilliermondii Δgsh2 mutant cells, despite iron overload, behaved like iron-deprived wild-type cells. Thus, in P. guilliermondii yeast, glutathione is required for proper regulation of both riboflavin and iron metabolism.  相似文献   

4.
The interaction of purified riboflavin kinase (EC 2.7.1.26) from Pichia guilliermondii with 44 structural vitamin B2 analogues is studied. The presence of D-ribityl lateral chain in an analogue structure is found to be necessary for the substrate activity. The substitution of CH3 groups in the 7 and 8 positions of isoalloxazine ring in the riboflavin molecule for CF3, Cl, H, NH2 and N(CH3)2 resulted in the decrease of the analogue affinity to riboflavin kinase as compared with the natural substrate, vitamin B2. The most efficient enzyme inhibitors of analogues without substrate properties turned to be trifluoromethylisoalloxazines, containing 2'-hydroxyethyl group at N10. The elongation of D-ribityl lateral chain, the elimination of change of CH3-groups in the 7 and 8 positions for CF3- Cl-, COOH-substitutors resulted in the decrease of the inhibitory effect of flavines. Modifications in the structure of isoalloxazine ring, etherification of OH-groups in the lateral D-ribityl chain, and the introduction of volume substitutors (N-piperidyl, D-ribitylamine, hydroxyethylamine) prevented the interaction of the analogue with riboflavin kinase. Flavin nucleotides (FMN and FAD) did not affect the rate of vitamin B2 phosphorylation.  相似文献   

5.
In this study, in order to isolate inulinase overproducers from the marine yeast Pichia guilliermondii, its cells were treated by using UV light and LiCl. The mutant M-30 with enhanced inulinase production was obtained and was found to be stable after cultivation for 20 generations. Response surface methodology (RSM) was used to optimize the medium compositions and cultivation conditions for inulinase production by the mutant M-30 in liquid fermentation. Inulin, yeast extract, NaCl, temperature, pH for maximum inulinase production by the mutant M-30 were found to be 20.0 g/l, 5.0 g/l, 20.0 g/l, 28 °C and 6.5, respectively. Under the optimized conditions, 127.7 U/ml of inulinase activity was reached in the liquid culture of the mutant M-30 whereas the predicted maximum inulinase activity of 129.8 U/ml was derived from RSM regression. Under the same conditions, its parent strain only produced 48.1 U/ml of inulinase activity. This is the highest inulinase activity produced by the yeast strains reported so far. We also found that inulin could be actively converted into monosaccharides by the crude inulinase.  相似文献   

6.
Riboflavin kinase (E.C.2.7.1.26) was isolated from the cells of the yeast Pichia guilliermondii. The enzyme was 680-fold purified uzing ammonium sulphate fractionation, chromatography on DEAE-Sephadex A-50 and CM-Sephadex C-50 and gel-filtration through Sephadex G-75. Purified enzyme preparation was free from phosphatases and FAD-synthetase. The pH optimum was 8,7, the temperature optimum-45 degrees C. The enzyme was activated by Zn2+, Mg2+ and Co2+ ions. Km for riboflavin was 1,0x10(-5) M, for ATP -- 6,7X10(-6) M. Riboflavin kinase catalyzed the phosphorylation of riboflavin analogues with the substitution of methyl groups at positions 7 and 8. UTP, GTP, ADP and CTP, besides ATP, were phosphate donors. AMP inhibited the enzyme activity. Molecular weight of the enzyme was 28000, as estimated by gel-filtration through Sephadex G-150. Purified riboflavin kinase was stable under storage.  相似文献   

7.
8.
A large number of nitrogen heterocycles structurally related to caffeine and theophylline have been tested for activity as adenosine antagonists. Preliminary screening, utilizing displacement of [3H]N6-phenylisopropyladenosine (PIA) binding to rat brain membranes, identified several pyrazolo[3,4-d]pyrimidines with potential antagonist activity. These were then tested for their ability to antagonize adenosine-stimulated adenylate cyclase of guinea-pig slices and to block adenosine receptors which mediate presynaptic inhibition of transmitter release from cholinergic nerves in guinea-pig ileum. Of several compounds found to have antagonist activity, one of these, 4,6-bis-alpha- carbamoylethylthio -1-phenylpyrazolo[3,4-d]pyrimidine ( DJB -KK) was approximately an order of magnitude more potent than theophylline in both tests. GTP greatly reduces the potency of purine agonists, but not antagonists, as inhibitors of [3H] PIA binding; the potency of the pyrazolo[3,4-d]pyrimidine compounds was not altered by GTP. The compounds have no significant activity against [3H]adenosine uptake or on the binding of ligands to muscarinic cholinergic, beta-adrenergic, GABA or L-glutamate receptors.  相似文献   

9.
New yeasts in the Pichia guilliermondii clade were isolated from the digestive tract of basidiocarp-feeding members of seven families of Coleoptera. A molecular phylogeny and unique traits placed eight isolates in Candida fermentati and three undescribed taxa in the genus Candida. The new species and type strains are C. smithsonii (type strain NRRL Y-27642T), C. athensensis (type strain NRRL Y-27644T), and C. elateridarum (type strain NRRL Y-27647T). Based on comparison of small-and large-subunit rDNA sequences, C. smithsonii and C. athensensis form a statistically well-supported subclade with P. guilliermondii, C. xestobii, and C. fermentati; C. elateridarum is basal to this subclade.  相似文献   

10.
GTP-cyclohydrolase was isolated from the Fe-deficient cells of Pichia guilliermondii and purified 440-fold by treatment of extracts with streptomycin sulfate as well as by protein fractionation with (NH4)2SO4 at 25-45% saturation, gel filtration through Sephadex G-200 and DEAE-cellulose chromatography. The curves for the dependence of specific activity of GTP-cyclohydrolase on substrate and cofactor concentrations are non-hyperbolic; the values of [S]0.5 for GTP and Mg2+ are 2.2 X 10(-5) and 2 X 10(-4) M, respectively. The enzyme activity is inhibited by pyrophosphate ([I]0.5 = 5.8 X 10(-4) M), orthophosphate ([I]0.5 = 4.5 X 10(-3) M), heavy metal ions and chelating agents. The temperature optimum for the enzyme activity lies at 42-45 degrees C. The enzyme is labile at 4 degrees C but can well be stored at -15 degrees C. The pyrimidine product of the cyclohydrolase reaction, 2.5-diamino-6-oxy-4-ribosyl-aminopyrimidine-5'-phosphate, as well as pyrophosphate were purified from the reaction medium and identified.  相似文献   

11.
Isoxazolo[3,4-d] pyridazinones ([3,4-d]s) are selective positive modulators of the metabotropic glutamate receptors (mGluRs) subtypes 2 and 4, with no functional cross reactivity at mGluR1a, mGLuR5 or mGluR8. Modest binding for two of the [3,4-d]s is observed at the allosteric fenobam mGluR5 site, but not sufficient to translate into a functional effect. The structure activity relationship (SAR) for mGluR2 and mGluR4 are distinct: the compounds which select for mGluR2 all contain fluorine on the N-6 aryl group. Furthermore, the [3,4-d]s in this study showed no significant binding at inhibitory GABAA, nor excitatory NMDA receptors, and previously we had disclosed that they lack significant activity at the System Xc-Antiporter. A homology model based on Conn’s mGluR1 crystal structure was examined, and suggested explanations for a preference for allosteric over orthosteric binding, subtype selectivity, and suggested avenues for optimization of efficacy as a reasonable working hypothesis.  相似文献   

12.
The coupling of 4-aminopyrazolo [3, 4-d]pyrimidine with the appropriate thio sugar gave a 3:1 ratio of alpha,beta blocked 4-amino-1-(2-deoxy-4-thio-D-erythropentofuranosyl)-1H pyrazolo[3,4-d]pyrimidine nucleosides. The mixture was deblocked, both the anomers were separated, and the beta-anomer was readily deaminated by adenosine deaminase. The nucleosides have been characterized, and their anomeric configurations have been determined by proton NMR. All three nucleosides were evaluated against a panel of human tumor cell lines for cytotoxicity in vitro. The details of a convenient and high yielding synthesis of these nucleosides are described.  相似文献   

13.
The multiple parallel synthesis of a series of N,S-bis-alkylated thiopyrazolo[3,4-d]pyrimidines, based on sequential S- then N-alkylation, is reported. These compounds showed significant anti-mycobacterial activity (MICs down to 2mug/ml) and their potential as significant drug-like leads is substantiated through cytotoxicity evaluation and in silico profiling.  相似文献   

14.
The effect of oxidative stress on riboflavin (vitamin B2) biosynthesis and iron accumulation in flavinogenic yeast P. guilliermondii was investigated. Treatment of P. guilliermondii cells with superoxidgenerating agent methylviologen leads to elevated production of malondialdyhyd (MDA) which reflects the overall cellular oxidation state. Increased iron content in the cells and enhanced productivity of flavinogenesis under these conditions has been shown too. Significant increasing of MDA and riboflavin production by yeast cells under iron deficiency was observed. Riboflavin overproducing P. guilliermondii mutant strains rib80, rib81 and hit, possess high iron transport and synthesize increased quantity of MDA. The role of riboflavin overproduction and activation of iron assimilation in the P. guilliermondii antioxidant defence is discussed.  相似文献   

15.
The synthesis of some acyclic alpha-(pyrazolo[3,4-d]pyrimidin-4-ylthio)alkylamide nucleosides is described.  相似文献   

16.
Xanthine oxidase (XO) is responsible for the pathological condition called gout. Inhibition of XO activity by various pyrazolo[3,4-d]thiazolo[3,2-a]pyrimidine-4-one derivatives was assessed and compared with the standard inhibitor allopurinol. Out of 10 synthesized compounds, two compounds, viz. 3-amino-6-(2-hydroxyphenyl)-1H-pyrazolo[3,4-d]thiazolo[3,2-a]pyrimidin-4-one (3b) and 3-amino-6-(4-chloro-2-hydroxy-5-methylphenyl)-1H-pyrazolo[3,4-d]thiazolo[3,2-a]pyrimidin-4-one (3g) were found to have promising XO inhibitory activity of the same order as allopurinol. Both compounds and allopurinol inhibited competitively with comparable Ki (3b: 3.56?µg, 3g: 2.337?µg, allopurinol: 1.816?µg) and IC50 (3b: 4.228?µg, 3g: 3.1?µg, allopurinol: 2.9?µg) values. The enzyme–ligand interaction was studied by molecular docking using Autodock in BioMed Cache V. 6.1 software. The results revealed a significant dock score for 3b (?84.976?kcal/mol) and 3g (?90.921?kcal/mol) compared with allopurinol (?55.01?kcal/mol). The physiochemical properties and toxicity of the compounds were determined in silico using online computational tools. Overall, in vitro and in silico study revealed 3-amino-6-(4-chloro-2-hydroxy-5-methylphenyl)-1H-pyrazolo[3,4-d]thiazolo[3,2–a]pyrimidin-4-one (3g) as a potential lead compound for the design and development of XO inhibitors.  相似文献   

17.
Development for a class of potent 3,4-dihydropyrido(3,2-d)pyrimidone inhibitors of p38a MAP kinase is described. Modification of N-1 aryl and C-6 arylsulfide in 3,4-dihydropyrido(3,2-d)pyrimidone analogues for the interaction with the hydrophobic pockets in p38 active site is also discussed.  相似文献   

18.
3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase, E.C. 1.1.1.34), the major rate-limiting enzyme of the sterol biosynthetic pathway, was studied in ileal epithelial cells isolated in a villus-to-crypt gradient according to Weiser (Weiser, M. M. 1973. J. Biol. Chem, 248:2536-2541). Alkaline phosphatase (E.C. 3.1.3.1) served as a marker for the mature villus cells. Protease effects on activity determinations were negligible. The intracellular location of HMG-CoA reductase could not be precisely determined. The activity of ileal reductase was predominantly associated with the less differentiated lower villus and crypt cells, while the reverse gradient occurred with alkaline phosphatase. This distribution of enzymes persisted in both fed and fasted rats injected with control saline-phosphate, although fasting decreased total reductase units in the ileum by 86% in 72 hr. Treatment with cholestyramine and with 4-aminopyrazolo[3,4-d]pyrimidine (APP) enhanced reductase activity in ileal cells. The percent stimulation in both cases was higher in the upper villus cells than in the crypt cells, leading to abolition of the gradient in enzyme activity. However, APP treatment caused a 98% loss in total alkaline phosphatase units and a 55% loss in total epithelial cell protein in 72 hr. Thus, there was no increase in total reductase units. These data show that APP affects ileal cell metabolism directly. Furthermore, it appears that the regulation of sterol synthesis in the intestinal mucosa, via HMG-CoA reductase, involves a complex interplay of the effects exerted by the level of alimentation, the enterohepatic circulation of bile, and the levels of plasma lipoproteins.  相似文献   

19.
20.
Abstract–Monogenicrib83mutation blocked riboflavin oversynthesis in the yeast Pichia guilliermondiiand lowered iron acquisition by cells, their ferric reductase activity, and the growth rate in iron-deficient media. Mutants with the combined mutations of rib83with rib80and rib81(the last two mutations impair the negative control of riboflavin synthesis and thus cause its oversynthesis) were unable to depress the enzymes of flavinogenesis (GTP cyclohydrolase and riboflavin synthase) or overproduce riboflavin in both iron-deficient and iron-sufficient media. This suggests that rib83mutation is epistatic with respect to rib80and rib81mutations. The RIB83gene may positively control both riboflavin synthesis and iron acquisition in the yeast P. guilliermondii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号