首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The four dengue virus (DENV) serotypes cause dengue fever and dengue hemorrhagic fever/dengue shock syndrome. Although severe disease has been associated with heterotypic secondary DENV infection, most secondary DENV infections are asymptomatic or result in classic DF. The role of cross-reactive immunity in mediating cross-protection against secondary heterotypic DENV infection is not well understood. DENV infection of IFN-α/β and IFN-γ receptor-deficient (AG129) mice reproduces key features of human disease. We previously demonstrated a role in cross-protection for pre-existing cross-reactive Abs, maintained by long-lived plasma cells. In this study, we use a sequential infection model, infecting AG129 mice with DENV-1, followed by DENV-2 6-8 wk later. We find that increased DENV-specific avidity during acute secondary heterotypic infection is mediated by cross-reactive memory B cells, as evidenced by increased numbers of DENV-1-specific cells by ELISPOT and higher avidity against DENV-1 of supernatants from polyclonally stimulated splenocytes isolated from mice experiencing secondary DENV-2 infection. However, increased DENV-specific avidity is not associated with increased DENV-specific neutralization, which appears to be mediated by naive B cells. Adoptive transfer of DENV-1-immune B and T cells into naive mice prior to secondary DENV-2 infection delayed mortality. Mice depleted of T cells developed signs of disease, but recovered after secondary DENV infection. Overall, we found that protective cross-reactive Abs are secreted by both long-lived plasma cells and memory B cells and that both cross-reactive B cells and T cells provide protection against a secondary heterotypic DENV infection. Understanding the protective immunity that develops naturally against DENV infection may help design future vaccines.  相似文献   

2.
Dengue viruses (DENV) are mosquito-borne flaviviruses of global importance. DENV exist as four serotypes, DENV1-DENV4. Following a primary infection, individuals produce DENV-specific antibodies that bind only to the serotype of infection and other antibodies that cross-react with two or more serotypes. People exposed to a secondary DENV infection with another serotype are at greater risk of developing more severe forms of dengue disease. The increased risk of severe dengue in people experiencing repeat DENV infections appear to be due, at least in part, to the ability of pre-existing serotype cross-reactive antibodies to form virus-antibody complexes that can productively infect Fcγ receptor-bearing target cells. While the theory of antibody-dependent enhancement (ADE) is supported by several human and small animal model studies, the specific viral antigens and epitopes recognized by enhancing human antibodies after natural infections have not been fully defined. We used antibody-depletion techniques to remove DENV-specific antibody sub-populations from primary DENV-immune human sera. The effects of removing specific antibody populations on ADE were tested both in vitro using K562 cells and in vivo using the AG129 mouse model. Removal of serotype cross-reactive antibodies ablated enhancement of heterotypic virus infection in vitro and antibody-enhanced mortality in vivo. Further depletion studies using recombinant viral antigens showed that although the removal of DENV E-specific antibodies using recombinant E (rE) protein resulted in a partial reduction in DENV enhancement, there was a significant residual enhancement remaining. Competition ADE studies using prM-specific Fab fragments in human immune sera showed that both rE-specific and prM-specific antibodies in primary DENV-immune sera significantly contribute to enhancement of heterotypic DENV infection in vitro. Identification of the targets of DENV-enhancing antibodies should contribute to the development of safe, non-enhancing vaccines against dengue.  相似文献   

3.
The global spread of the four dengue virus serotypes (DENV-1 to -4) has made this virus a major and growing public health concern. Generally, pre-existing neutralizing antibodies derived from primary infection play a significant role in protecting against subsequent infection with the same serotype. By contrast, these pre-existing antibodies are believed to mediate a non-protective response to subsequent heterotypic DENV infections, leading to the onset of dengue illness. In this study, we prepared hybridomas producing human monoclonal antibodies (HuMAbs) against DENV using peripheral blood mononuclear cells (PBMCs) from patients in the acute phase (around 1 week after the onset of illness) or the convalescent phase (around 2weeks after the onset of illness) of secondary infection. Interestingly, a larger number of hybridoma clones was obtained from patients in the acute phase than from those in the convalescent phase. Most HuMAbs from acute-phase infections were cross-reactive with all four DENV serotypes and showed significant neutralization activity to all four DENV serotypes. Thus, secondary DENV infection plays a significant role in stimulating memory cells to transiently increase the number of antibody-secreting plasma cells in patients in the early phase after the secondary infection. These HuMAbs will enable us to better understand the protective and pathogenic effects of DENV infection, which could vary greatly among secondarily-infected individuals.  相似文献   

4.
After dengue virus (DENV) infection, antibody-dependent enhancement (ADE) is easy to occur when the neutralizing antibody (NAb) gradually decreases to a sub-neutralizing concentration. In this cohort surveillance, we utilized sera samples collected from dengue fever patients at different convalescent phases in Jinghong City, to investigate the dynamic change rule of DENV-specific antibodies, and to analyze the risk of ADE caused by secondary infection with heterologous serotypes DENVs. For baseline serosurvey, 191 four-year and 99 six-year sera samples during convalescence were collected in 2017 and 2019, respectively. The positive rate of DENV-specific immunoglobulin G was 98.4% in 2017, which significantly decreased to 82.8% in 2019. The geometric mean titer (GMT) of NAb decreased from 1:155.35 to 1:46.66. Among 290 overall samples, 73 paired consecutive samples were used for follow-up serosurvey. In four-year sera, the GMTs of NAb against DENV-3 and cross-reactive antibodies against DENV-1, DENV-2 and DENV-4 were 1:167.70, 1:13.80, 1:18.54 and 1:45.26, respectively, which decreased to 1:53.18, 1:10.30, 1:14.60 and 1:8.17 in six-year sera. In age-stratified analysis, due to the increasing number of ADE positive samples from 2017 to 2019 in 31–40 and 51–60 years groups, the risk of ADE in DENV-4 infection was positively associated with the extension of convalescent phase, and the odd ratio was higher than other groups. With the recovery period lengthened, the risk of secondary infection with DENV-1 and DENV-2 was reduced. Our results offer essential experimental data for risk prediction of severe dengue in hyper-endemic dengue areas, and provide crucial scientific insight for the development of effective dengue vaccines.  相似文献   

5.
Humans who experience a primary dengue virus (DENV) infection develop antibodies that preferentially neutralize the homologous serotype responsible for infection. Affected individuals also generate cross-reactive antibodies against heterologous DENV serotypes, which are non-neutralizing. Dengue cross-reactive, non-neutralizing antibodies can enhance infection of Fc receptor bearing cells and, potentially, exacerbate disease. The actual binding sites of human antibody on the DENV particle are not well defined. We characterized the specificity and neutralization potency of polyclonal serum antibodies and memory B-cell derived monoclonal antibodies (hMAbs) from 2 individuals exposed to primary DENV infections. Most DENV-specific hMAbs were serotype cross-reactive and weakly neutralizing. Moreover, many hMAbs bound to the viral pre-membrane protein and other sites on the virus that were not preserved when the viral envelope protein was produced as a soluble, recombinant antigen (rE protein). Nonetheless, by modifying the screening procedure to detect rare antibodies that bound to rE, we were able to isolate and map human antibodies that strongly neutralized the homologous serotype of DENV. Our MAbs results indicate that, in these two individuals exposed to primary DENV infections, a small fraction of the total antibody response was responsible for virus neutralization.  相似文献   

6.
Although heterotypic secondary infection with dengue virus (DENV) is associated with severe disease, the majority of secondary infections are mild or asymptomatic. The mechanisms of antibody-mediated protection are poorly understood. In 2010, 108 DENV3-positive cases were enrolled in a pediatric hospital-based study in Managua, Nicaragua, with 61 primary and 47 secondary infections. We analyzed DENV-specific neutralization titers (NT50), IgM and IgG avidity, and antibody titer in serum samples collected during acute and convalescent phases and 3, 6, and 18 months post-infection. NT50 titers peaked at convalescence and decreased thereafter. IgG avidity to DENV3 significantly increased between convalescent and 3-month time-points in primary DENV infections and between the acute and convalescent phase in secondary DENV infections. While avidity to DENV2, a likely previous infecting serotype, was initially higher than avidity to DENV3 in secondary DENV infections, the opposite relation was observed 3–18 months post-infection. We found significant correlations between IgM avidity and NT50 in acute primary cases and between IgG avidity and NT50 in secondary DENV infections. In summary, our findings indicate that IgM antibodies likely play a role in early control of DENV infections. IgG serum avidity to DENV, analyzed for the first time in longitudinal samples, switches from targeting mainly cross-reactive serotype(s) to the current infecting serotype over time. Finally, serum avidity correlates with neutralization capacity.  相似文献   

7.

Background

Disease caused by the dengue virus (DENV) is a significant cause of morbidity throughout the world. Although prior research has focused on the association of specific DENV serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) with the development of severe outcomes such as dengue hemorrhagic fever and dengue shock syndrome, relatively little work has correlated other clinical manifestations with a particular DENV serotype. The goal of this study was to estimate and compare the prevalence of non-hemorrhagic clinical manifestations of DENV infection by serotype.

Methodology and Principal Findings

Between the years 2005–2010, individuals with febrile disease from Peru, Bolivia, Ecuador, and Paraguay were enrolled in an outpatient passive surveillance study. Detailed information regarding clinical signs and symptoms, as well as demographic information, was collected. DENV infection was confirmed in patient sera with polyclonal antibodies in a culture-based immunofluorescence assay, and the infecting serotype was determined by serotype-specific monoclonal antibodies. Differences in the prevalence of individual and organ-system manifestations were compared across DENV serotypes. One thousand seven hundred and sixteen individuals were identified as being infected with DENV-1 (39.8%), DENV-2 (4.3%), DENV-3 (41.5%), or DENV-4 (14.4%). When all four DENV serotypes were compared with each other, individuals infected with DENV-3 had a higher prevalence of musculoskeletal and gastrointestinal manifestations, and individuals infected with DENV-4 had a higher prevalence of respiratory and cutaneous manifestations.

Conclusions/Significance

Specific clinical manifestations, as well as groups of clinical manifestations, are often overrepresented by an individual DENV serotype.  相似文献   

8.
Although prior studies have characterized the neutralizing activities of monoclonal antibodies (MAbs) against dengue virus (DENV) serotypes 1, 2, and 3 (DENV-1, DENV-2, and DENV-3), few reports have assessed the activity of MAbs against DENV-4. Here, we evaluated the inhibitory activity of 81 new mouse anti-DENV-4 MAbs. We observed strain- and genotype-dependent differences in neutralization of DENV-4 by MAbs mapping to epitopes on domain II (DII) and DIII of the envelope (E) protein. Several anti-DENV-4 MAbs inefficiently inhibited at least one strain and/or genotype, suggesting that the exposure or sequence of neutralizing epitopes varies within isolates of this serotype. Remarkably, flavivirus cross-reactive MAbs, which bound to the highly conserved fusion loop in DII and inhibited infection of DENV-1, DENV-2, and DENV-3, more weakly neutralized five different DENV-4 strains encompassing the genetic diversity of the serotype after preincubation at 37°C. However, increasing the time of preincubation at 37°C or raising the temperature to 40°C enhanced the potency of DII fusion loop-specific MAbs and some DIII-specific MAbs against DENV-4 strains. Prophylaxis studies in two new DENV-4 mouse models showed that neutralization titers of MAbs after preincubation at 37°C correlated with activity in vivo. Our studies establish the complexity of MAb recognition against DENV-4 and suggest that differences in epitope exposure relative to other DENV serotypes affect antibody neutralization and protective activity.  相似文献   

9.
Dengue viruses (DENV) are enveloped single-stranded positive-sense RNA viruses transmitted by Aedes spp. mosquitoes. There are four genetically distinct serotypes designated DENV-1 through DENV-4, each further subdivided into distinct genotypes. The dengue scientific community has long contended that infection with one serotype confers lifelong protection against subsequent infection with the same serotype, irrespective of virus genotype. However this hypothesis is under increased scrutiny and the role of DENV genotypic variation in protection from repeated infection is less certain. As dengue vaccine trials move increasingly into field-testing, there is an urgent need to develop tools to better define the role of genotypic variation in DENV infection and immunity. To better understand genotypic variation in DENV-3 neutralization and protection, we designed and constructed a panel of isogenic, recombinant DENV-3 infectious clones, each expressing an envelope glycoprotein from a different DENV-3 genotype; Philippines 1982 (genotype I), Thailand 1995 (genotype II), Sri Lanka 1989 and Cuba 2002 (genotype III) and Puerto Rico 1977 (genotype IV). We used the panel to explore how natural envelope variation influences DENV-polyclonal serum interactions. When the recombinant viruses were tested in neutralization assays using immune sera from primary DENV infections, neutralization titers varied by as much as ~19-fold, depending on the expressed envelope glycoprotein. The observed variability in neutralization titers suggests that relatively few residue changes in the E glycoprotein may have significant effects on DENV specific humoral immunity and influence antibody mediated protection or disease enhancement in the setting of both natural infection and vaccination. These genotypic differences are also likely to be important in temporal and spatial microevolution of DENV-3 in the background of heterotypic neutralization. The recombinant and synthetic tools described here are valuable for testing hypotheses on genetic determinants of DENV-3 immunopathogenesis.  相似文献   

10.
Passive immunization with monoclonal antibodies from humans or nonhuman primates represents an attractive alternative to vaccines for prevention of illness caused by dengue viruses (DENV) and other flaviviruses, including the West Nile virus. In a previous study, repertoire cloning to recover Fab fragments from bone marrow mRNA of chimpanzees infected with all four DENV serotypes (dengue virus serotype 1 [DENV-1] to DENV-4) was described. In that study, a humanized immunoglobulin G1 (IgG1) antibody that efficiently neutralized DENV-4 was recovered and characterized. In this study, the phage library constructed from the chimpanzees was used to recover Fab antibodies against the other three DENV serotypes. Serotype-specific neutralizing Fabs were not identified. Instead, we recovered DENV-neutralizing Fabs that specifically precipitated the envelope protein and were cross-reactive with all four DENV serotypes. Three of the Fabs competed with each other for binding to DENV-1 and DENV-2, although each of these Fabs contained a distinct complementarity determining region 3 (CDR3)-H sequence. Fabs that shared an identical or nearly identical CDR3-H sequences cross-neutralized DENV-1 and DENV-2 at a similar high 50% plaque reduction neutralization test (PRNT(50)) titer, ranging from 0.26 to 1.33 microg/ml, and neutralized DENV-3 and DENV-4 but at a titer 10- to 20-fold lower. One of these Fabs, 1A5, also neutralized the West Nile virus most efficiently among other flaviviruses tested. Fab 1A5 was converted to a full-length antibody in combination with human sequences for production in mammalian CHO cells. Humanized IgG1 1A5 proved to be as efficient as Fab 1A5 for cross-neutralization of DENV-1 and DENV-2 at a titer of 0.48 and 0.95 microg/ml, respectively. IgG1 1A5 also neutralized DENV-3, DENV-4, and the West Nile virus at a PRNT(50) titer of approximately 3.2 to 4.2 microg/ml. This humanized antibody represents an attractive candidate for further development of immunoprophylaxis against DENV and perhaps other flavivirus-associated diseases.  相似文献   

11.

Background

Nearly half of the world’s population is at risk for dengue, yet no licensed vaccine or anti-viral drug is currently available. Dengue is caused by any of four dengue virus serotypes (DENV-1 through DENV-4), and infection by a DENV serotype is assumed to provide life-long protection against re-infection by that serotype. We investigated the validity of this fundamental assumption during a large dengue epidemic caused by DENV-2 in Iquitos, Peru, in 2010–2011, 15 years after the first outbreak of DENV-2 in the region.

Methodology/Principal Findings

We estimated the age-dependent prevalence of serotype-specific DENV antibodies from longitudinal cohort studies conducted between 1993 and 2010. During the 2010–2011 epidemic, active dengue cases were identified through active community- and clinic-based febrile surveillance studies, and acute inapparent DENV infections were identified through contact tracing studies. Based on the age-specific prevalence of DENV-2 neutralizing antibodies, the age distribution of DENV-2 cases was markedly older than expected. Homologous protection was estimated at 35.1% (95% confidence interval: 0%–65.2%). At the individual level, pre-existing DENV-2 antibodies were associated with an incomplete reduction in the frequency of symptoms. Among dengue cases, 43% (26/66) exhibited elevated DENV-2 neutralizing antibody titers for years prior to infection, compared with 76% (13/17) of inapparent infections (age-adjusted odds ratio: 4.2; 95% confidence interval: 1.1–17.7).

Conclusions/Significance

Our data indicate that protection from homologous DENV re-infection may be incomplete in some circumstances, which provides context for the limited vaccine efficacy against DENV-2 in recent trials. Further studies are warranted to confirm this phenomenon and to evaluate the potential role of incomplete homologous protection in DENV transmission dynamics.  相似文献   

12.

Background

Dengue virus is transmitted by mosquitoes and has four serotypes. Cross-protection to other serotypes lasting for a few months is observed following infection with one serotype. There is evidence that low-affinity T and/or B cells from primary infections contribute to the severe syndromes often associated with secondary dengue infections. such pronounced immune-mediated enhancement suggests a dengue-specific pattern of immune cell activation. This study investigates the acute and early convalescent B cell response leading to the generation of cross-reactive and neutralizing antibodies following dengue infection.

Methodology/Principal Findings

We assayed blood samples taken from dengue patients with primary or secondary infection during acute disease and convalescence and compared them to samples from patients presenting with non-dengue related fever. Dengue induced massive early plasmablast formation, which correlated with the appearance of polyclonal, cross-reactive IgG for both primary and secondary infection. Surprisingly, the contribution of IgG to the neutralizing titer 4–7 days after fever onset was more than 50% even after primary infection.

Conclusions/Significance

Poly-reactive and virus serotype cross-reactive IgG are an important component of the innate response in humans during both primary and secondary dengue infection, and “innate specificities” seem to constitute part of the adaptive response in dengue. While of potential importance for protection during secondary infection, cross-reactive B cells will also compete with highly neutralizing B cells and possibly interfere with their development.  相似文献   

13.
Dengue has become endemic in Pakistan with annual recurrence. A sudden increase in the dengue cases was reported from Rawalpindi in 2016, while an outbreak occurred for the first time in Peshawar in 2017. Therefore, a multi-center study was carried out to determine the circulating dengue virus (DENV) serotypes and Chikungunya virus (CHIKV) co-infection in Lahore, Rawalpindi, and Peshawar cities in 2016–18. A hospital-based cross-sectional study was carried out in Lahore and Rawalpindi in 2016–18, while a community-based study was carried out in Peshawar in 2017. The study participants were tested for dengue NS1 antigen using an immunochromatographic device while anti-dengue IgM/IgG antibodies were detected by indirect ELISA. All NS1 positive samples were used for DENV serotyping using multiplex real-time PCR assay. Additionally, dengue samples were tested for CHIKV co-infection using IgM/IgG ELISA. A total of 6291 samples were collected among which 8.11% were NS1 positive while 2.5% were PCR positive. DENV-2 was the most common serotype (75.5%) detected, followed by DENV-1 in 16.1%, DENV-3 in 3.9% and DENV-4 in 0.7% while DENV-1 and DENV-4 concurrent infections were detected in 3.9% samples. DENV-1 was the predominant serotype (62.5%) detected from Lahore and Rawalpindi, while DENV-2 was the only serotype detected from Peshawar. Comorbidities resulted in a significant increase (p-value<0.001) in the duration of hospital stay of the patients. Type 2 diabetes mellitus substantially (p-value = 0.004) contributed to the severity of the disease. Among a total of 590 dengue positive samples, 11.8% were also positive for CHIKV co-infection. Co-circulation of multiple DENV serotypes and CHIKV infection in Pakistan is a worrisome situation demanding the urgent attention of the public health experts to strengthen vector surveillance.  相似文献   

14.
The evolution of dengue virus (DENV) is characterized by phylogenetic trees that have a strong temporal structure punctuated by dramatic changes in clade frequency. To determine the cause of these large-scale phylogenetic patterns, we examined the evolutionary history of DENV serotype 1 (DENV-1) and DENV-3 in Thailand, where gene sequence and epidemiological data are relatively abundant over a 30-year period. We found evidence for the turnover of viral clades in both serotypes, most notably in DENV-1, where a major clade replacement event took place in genotype I during the mid-1990s. Further, when this clade replacement event was placed in the context of changes in serotype prevalence in Thailand, a striking pattern emerged; an increase in DENV-1 clade diversity was associated with an increase in the abundance of this serotype and a concomitant decrease in DENV-4 prevalence, while clade replacement was associated with a decline in DENV-1 prevalence and a rise of DENV-4. We postulate that intraserotypic genetic diversification proceeds at times of relative serotype abundance and that replacement events can result from differential susceptibility to cross-reactive immune responses.  相似文献   

15.
Neutralization of flaviviruses in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Previous studies demonstrated that monoclonal antibodies (MAbs) against an epitope on the lateral ridge of domain III (DIII) of the West Nile virus (WNV) E protein strongly protect against infection in animals. Based on X-ray crystallography and sequence analysis, an analogous type-specific neutralizing epitope for individual serotypes of the related flavivirus dengue virus (DENV) was hypothesized. Using yeast surface display of DIII variants, we defined contact residues of a panel of type-specific, subcomplex-specific, and cross-reactive MAbs that recognize DIII of DENV type 2 (DENV-2) and have different neutralizing potentials. Type-specific MAbs with neutralizing activity against DENV-2 localized to a sequence-unique epitope on the lateral ridge of DIII, centered at the FG loop near residues E383 and P384, analogous in position to that observed with WNV-specific strongly neutralizing MAbs. Subcomplex-specific MAbs that bound some but not all DENV serotypes and neutralized DENV-2 infection recognized an adjacent epitope centered on the connecting A strand of DIII at residues K305, K307, and K310. In contrast, several MAbs that had poor neutralizing activity against DENV-2 and cross-reacted with all DENV serotypes and other flaviviruses recognized an epitope with residues in the AB loop of DIII, a conserved region that is predicted to have limited accessibility on the mature virion. Overall, our experiments define adjacent and structurally distinct epitopes on DIII of DENV-2 which elicit type-specific, subcomplex-specific, and cross-reactive antibodies with different neutralizing potentials.  相似文献   

16.
Dengue infection is associated to vigorous inflammatory response, to a high frequency of activated B cells, and to increased levels of circulating cross-reactive antibodies. We investigated whether direct infection of B cells would promote activation by culturing primary human B lymphocytes from healthy donors with DENV in vitro. B cells were susceptible, but poorly permissive to infection. Even though, primary B cells cultured with DENV induced substantial IgM secretion, which is a hallmark of polyclonal B cell activation. Notably, DENV induced the activation of B cells obtained from either DENV immune or DENV naïve donors, suggesting that it was not dependent on DENV-specific secondary/memory response. B cell stimulation was dependent on activation of MAPK and CD81. B cells cultured with DENV also secreted IL-6 and presented increased expression of CD86 and HLA-DR, which might contribute to B lymphocyte co-stimulatory function. Indeed, PBMCs, but not isolated B cells, secreted high amounts of IgG upon DENV culture, suggesting that interaction with other cell types in vivo might promote Ig isotype switching and IgG secretion from different B cell clones. These findings suggest that activation signaling pathways triggered by DENV interaction with non-specific receptors on B cells might contribute to the exacerbated response observed in dengue patients.  相似文献   

17.
18.
Dengue fever of tropics is a mosquito transmitted devastating disease caused by dengue virus (DENV). There is no effective vaccine available, so far, against any of its four serotypes (DENV-1, DENV-2, DENV-3, and DENV-4). There is a need for the development of preventive and therapeutic vaccines against DENV to decrease the prevalence of dengue fever, especially in Pakistan. In this research, linear and conformational B-cell epitopes of envelope glycoprotein of DENV-2 and DENV-3 (the most prevalent serotypes in Pakistan) were predicted. We used Kolaskar and Tongaonkar method for linear epitope prediction, Emini’s method for surface accessibility prediction and Karplus and Schulz’s algorithm for flexibility determination. To propose three dimensional epitopes, the E proteins for both serotypes were homology modeled by using Phyre2 V 2.0 server, and ElliPro was used for the prediction of surface epitopes on their globular structure. Total 21 and 19 linear epitopes were predicted for DENV-2 and DENV-3 Pakistani isolates respectively. Whereas, 5 and 4 discontinuous epitopes were proposed for DENV-2 and DENV-3 Pakistani isolates respectively. Moreover, the values of surface accessibility, flexibility and solvent-accessibility can be helpful in analyzing vaccines against DENV-2 and DENV-3. In conclusion, the proposed continuous and discontinuous antigenic peptides can be valuable candidates for diagnostic and therapeutics of DENV.  相似文献   

19.
Dengue viral infections show unique infection patterns arising from its four serotypes, (DENV-1,2,3,4). Its effects range from simple fever in primary infections to potentially fatal secondary infections. We analytically and numerically analyse virus dynamics and humoral response in a host during primary and secondary dengue infection for long periods using micro-epidemic models. The models presented here incorporate time delays, antibody dependent enhancement, a dynamic switch and a correlation factor between different DENV serotypes. We find that the viral load goes down to undetectable levels within 7–14 days as is observed for dengue infection, in both cases. For primary infection, the stability analysis of steady states shows interesting dependence on the time delay involved in the production of antibodies from plasma cells. We demonstrate the existence of a critical value for the immune response parameter, beyond which the infection gets completely cured. For secondary infections with a different serotype, the homologous antibody production is enhanced due to the influence of heterologous antibodies. The antibody production is also controlled by the correlation factor, which is a measure of similarities between the different DENV serotypes involved. Our results agree with clinically observed humoral responses for primary and secondary infections.  相似文献   

20.
The risk of antibody-dependent enhancement (ADE) of dengue virus (DENV) infection is a major obstacle for the development of dengue vaccine candidates. Here, we described a novel approach for assessment of ADE by measuring DENV nonstructural protein 1 (NS1) production in culture supernatants with Fcγ receptor-expressing K562 cells in ELISA format (ELISA-ADE). Enhancing activities quantified by measurement of kinetics of NS1 production were in a good agreement with the results of the virus titration assay. In conjunction with the previously established enzyme-linked immunospot-based micro-neutralization test (ELISPOT-MNT) in 96-well format, the observable dose–response profiles of enhancing and neutralizing activities against all four DENV serotypes were produced with two flaviviral envelope cross-reactive monoclonal antibodies and four primary DENV-1-infected human sera. The simple high-throughput ELISA-ADE assay offers advantages for quantitative measurement of infection enhancement that can potentially be applied to large-scale seroepidemiological studies of DENV infection and vaccination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号