首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
3.
4.
5.
Phthalocyanines have long been used as primary donor molecules in synthetic light-powered devices due to their superior properties when compared to natural light activated molecules such as chlorophylls. Their use in biological contexts, however, has been severely restricted due to their high degree of self-association, and its attendant photoquenching, in aqueous environments. To this end we report the rational redesign of a de novo four helix bundle di-heme binding protein into a heme and Zinc(II) phthalocyanine (ZnPc) dyad in which the ZnPc is electronically and photonically isolated. The redesign required transformation of the homodimeric protein into a single chain four helix bundle and the addition of a negatively charge sulfonate ion to the ZnPc macrocycle. To explore the role of topology on ZnPc binding two constructs were made and the resulting differences in affinity can be explained by steric interference of the newly added connecting loop. Singular binding of ZnPc was verified by absorption, fluorescence, and magnetic circular dichroism spectroscopy. The engineering guidelines determined here, which enable the simple insertion of a monomeric ZnPc binding site into an artificial helical bundle, are a robust starting point for the creation of functional photoactive nanodevices.  相似文献   

6.
RNA and DNA binding zinc fingers in Xenopus TFIIIA.   总被引:4,自引:0,他引:4  
O Theunissen  F Rudt  U Guddat  H Mentzel  T Pieler 《Cell》1992,71(4):679-690
  相似文献   

7.
The GATA family of vertebrate DNA binding regulatory proteins are expressed in diverse tissues and at different times of development. However, the DNA binding regions of these proteins possess considerable homology and recognize a rather similar range of DNA sequence motifs. DNA binding is mediated through two domains, each containing a zinc finger. Previous results have led to the conclusion that although in some cases the N-terminal finger can contribute to specificity and strength of binding, it does not bind independently, whereas the C-terminal finger is both necessary and sufficient for binding. Here we show that although this is true for the N-terminal finger of GATA-1, those of GATA-2 and GATA-3 are capable of strong independent binding with a preference for the motif GATC. Binding requires the presence of two basic regions located on either side of the N-terminal finger. The absence of one of these near the GATA-1 N-terminal finger probably accounts for its inability to bind. The combination of a single finger and two basic regions is a new variant of a motif that has been previously found in the binding domains of other finger proteins. Our results suggest that the DNA binding properties of the N-terminal finger may help distinguish GATA-2 and GATA-3 from GATA-1 and the other GATA family members in their selective regulatory roles in vivo.  相似文献   

8.
There is considerable interest in molecules that bind to telomeric DNA sequences and G-quadruplexes with specificity. Such molecules would be useful to test hypotheses for telomere length regulation, and may have therapeutic potential. The versatility and modular nature of the zinc finger motif makes it an ideal candidate for engineering G-quadruplex-binding proteins. Phage display technology has previously been widely used to screen libraries of zinc fingers for binding to novel duplex DNA sequences. In this study, a three-finger library has been screened for clones that bind to an oligonucleotide containing the human telomeric repeat sequence folded in the G-quadruplex conformation. The selected clones show a strong amino acid consensus, suggesting analogous modes of binding. Binding was found to be both sequence dependent and structure specific. This is the first example of an engineered protein that binds to G-quadruplex DNA, and represents a new type of binding interaction for a zinc finger protein.  相似文献   

9.
A S Zasedatelev 《FEBS letters》1991,281(1-2):209-211
Isohelical geometry of sequence-specific DNA narrow groove binding ligands was analyzed in terms of H-bond donor/acceptor complementarity between the base pair atoms facing into the narrow groove and the corresponding H-bond donating atoms regularly disposed along the ligand molecule. Spatial correlations found in analytical form were applied to analysis of naturally occurring and hypothetical drug molecule structures. For the case of B-like isohelices the permitted values of the distance L0 between each two neighboring H-bond donating atoms of the ligand as well as the bending angle tau 0 of the line subsequently connecting these atoms were estimated as follows: L0 congruent to (5.0 +/- 0.4) A; tau 0 congruent to (26 +/- 2) degrees.  相似文献   

10.
Ubiquitin (Ub) functions in many different biological pathways, where it typically interacts with proteins that contain modular Ub recognition domains. One such recognition domain is the Npl4 zinc finger (NZF), a compact zinc-binding module found in many proteins that function in Ub-dependent processes. We now report the solution structure of the NZF domain from Npl4 in complex with Ub. The structure reveals that three key NZF residues (13TF14/M25) surrounding the zinc coordination site bind the hydrophobic 'Ile44' surface of Ub. Mutations in the 13TF14/M25 motif inhibit Ub binding, and naturally occurring NZF domains that lack the motif do not bind Ub. However, substitution of the 13TF14/M25 motif into the nonbinding NZF domain from RanBP2 creates Ub-binding activity, demonstrating the versatility of the NZF scaffold. Finally, NZF mutations that inhibit Ub binding by the NZF domain of Vps36/ESCRT-II also inhibit sorting of ubiquitylated proteins into the yeast vacuole. Thus, the NZF is a versatile protein recognition domain that is used to bind ubiquitylated proteins during vacuolar protein sorting, and probably many other biological processes.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
Development of an accurate protein–DNA recognition code that can predict DNA specificity from protein sequence is a central problem in biology. C2H2 zinc fingers constitute by far the largest family of DNA binding domains and their binding specificity has been studied intensively. However, despite decades of research, accurate prediction of DNA specificity remains elusive. A major obstacle is thought to be the inability of current methods to account for the influence of neighbouring domains. Here we show that this problem can be addressed using a structural approach: we build structural models for all C2H2-ZF–DNA complexes with known binding motifs and find six distinct binding modes. Each mode changes the orientation of specificity residues with respect to the DNA, thereby modulating base preference. Most importantly, the structural analysis shows that residues at the domain interface strongly and predictably influence the binding mode, and hence specificity. Accounting for predicted binding mode significantly improves prediction accuracy of predicted motifs. This new insight into the fundamental behaviour of C2H2-ZFs has implications for both improving the prediction of natural zinc finger-binding sites, and for prioritizing further experiments to complete the code. It also provides a new design feature for zinc finger engineering.  相似文献   

20.
Zinc is essential but toxic in excess. Bacterial metallothionein, SmtA from Synechococcus PCC 7942, sequesters and detoxifies four zinc ions per molecule and contains a zinc finger structurally similar to eukaryotic GATA. The dearth of other reported bacterial metallothioneins has been surprising. Here we describe related bacterial metallothioneins (BmtA) from Anabaena PCC 7120, Pseudomonas aeruginosa and Pseudomonas putida that bind multiple zinc ions with high stability towards protons. Thiol modification demonstrates that cysteine coordinates zinc in all of these proteins. Additionally, (111)Cd-NMR, and (111)Cd-edited (1)H-NMR, identified histidine ligands in Anabaena PCC 7120 BmtA, analogous to SmtA. A related Escherichia coli protein bound only a single zinc ion, via four cysteine residues, with low stability towards protons; (111)Cd-NMR and (111)Cd-edited (1)H-NMR confirmed exclusive cysteine-coordination, and these cysteine residues reacted rapidly with 5,5'-dithiobis-(2-nitrobenzoic acid). (1)H-NMR of proteins from P. aeruginosa, Anabaena PCC 7120 and E. coli generated fingerprints diagnostic for the GATA-like zinc finger fold of SmtA. These studies reveal first the existence of multiple bacterial metallothioneins, and second proteins with SmtA-like lone zinc fingers, devoid of a cluster,and designated GatA. We have identified 12 smtA-like genes in sequence databases including four of the gatA type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号