首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of mitochondria in Ca2+ handling has acquired renewed interest in recent years in the field of cell signaling. Detailed studies of Ca2+ dynamics in this organelle at the single cell level have been hampered by technical problems in the available Ca2+ probes. Some of the latest generation GFP-based Ca2+ probes (Camgaroos, Cameleons and Pericams) show great potential to address this issue. Our data show that the choice of targeting sequence influences not only the overall efficiency of subcellular localization of the probes, but also their functional characteristics within the matrix. In particular, we here show that the use of a tandemly duplicated mitochondrial targeting sequence is capable of improving the delivery efficacy of all tested probes into the organelle's matrix, in particular that of Cameleon, a GFP-based Ca2+ probe that is otherwise largely mistargeted to the cytosol. The devised strategy should be generally applicable to other proteins that are characterized by poor targeting. Last, but not least, we also demonstrate that if the targeting sequence is not removed from the imported protein, the fluorescent properties and the Ca2+ affinity of the probe can be grossly affected.  相似文献   

2.
Both Ca(2+) and reactive oxygen species (ROS) play critical signaling roles in plant responses to biotic and abiotic stress. However, the positioning of Ca(2+) and ROS (in particular H(2)O(2)) after a stress stimulus and their subcellular interactions are poorly understood. Moreover, although information can be encoded in different patterns of cellular Ca(2+) signals, little is known about the subcellular spatiotemporal patterns of ROS production or their significance for downstream responses. Here, we show that ROS production in response to hyperosmotic stress in embryonic cells of the alga Fucus serratus consists of two distinct components. The first ROS component coincides closely with the origin of a Ca(2+) wave in the peripheral cytosol at the growing cell apex, has an extracellular origin, and is necessary for the Ca(2+) wave. Patch-clamp experiments show that a nonselective cation channel is stimulated by H(2)O(2) and may underlie the initial cytosolic Ca(2+) increase. Thus, the spatiotemporal pattern of the Ca(2+) wave is determined by peripheral ROS production. The second, later ROS component localizes to the mitochondria and is a direct consequence of the Ca(2+) wave. The first component, but not the second, is required for short-term adaptation to hyperosmotic stress. Our results highlight the role of ROS in the patterning of a Ca(2+) signal in addition to its function in regulating cell wall strength in the Fucus embryo.  相似文献   

3.
Skeletal muscle contraction depends on the release of Ca(2+) from the sarcoplasmic reticulum (SR), but the dynamics of the SR free Ca(2+) concentration ([Ca(2+)](SR)), its modulation by physiological stimuli such as catecholamines, and the concomitant changes in cAMP handling have never been directly determined. We used two-photon microscopy imaging of GFP-based probes expressed in mouse skeletal muscles to monitor, for the first time in a live animal, the dynamics of [Ca(2+)](SR) and cAMP. Our data, which were obtained in highly physiological conditions, suggest that free [Ca(2+)](SR) decreases by approximately 50 microM during single twitches elicited through nerve stimulation. We also demonstrate that cAMP levels rise upon beta-adrenergic stimulation, leading to an increased efficacy of the Ca(2+) release/reuptake cycle during motor nerve stimulation.  相似文献   

4.
Demaurex N  Frieden M 《Cell calcium》2003,34(2):109-119
The free ER Ca(2+) concentration, [Ca(2+)](ER), is a key parameter that determines both the spatio-temporal pattern of Ca(2+) signals as well as the activity of ER-resident enzymes. Obtaining accurate, time-resolved measurements of the Ca(2+) activity within the ER is thus critical for our understanding of cell signaling. Such measurements, however, are particularly challenging given the highly dynamic nature of Ca(2+) signals, the complex architecture of the ER, and the difficulty of addressing probes specifically into the ER lumen. Prompted by these challenges, a number of ingenious approaches have been developed over the last years to measure ER Ca(2+) by optical means. The two main strategies used to date are Ca(2+)-sensitive synthetic dyes trapped into organelles and genetically encoded probes, based either on the photoprotein aequorin or on the green fluorescent protein (GFP). The GFP-based Ca(2+) indicators comprise the camgaroo and pericam probes based on a circularly permutated GFP, and the cameleon probes, which rely on the fluorescence resonance energy transfer (FRET) between two GFP mutants of different colors. Each approach offers unique advantages and suffers from specific drawbacks. In this review, we will discuss the advantages and pitfalls of using the genetically encoded "cameleon" Ca(2+) indicators for ER Ca(2+) measurements.  相似文献   

5.
6.
Demaurex N 《Cell calcium》2005,38(3-4):213-222
The recent improvement in the design and use of genetically encoded fluorescent Ca2+ indicators should foster major progress in three aspects of Ca2+ signaling. At the subcellular level, ratiometric probes with expanded dynamics are now available to measure accurately the local Ca2+ changes occurring within specific cell compartments. These tools will allow to determine precisely the role of organelles and of cellular microdomains in Ca2+ handling. At the cellular level, the permanent labeling offered by the genetic probes enables large-scale, long-term Ca2+ measurements with robotic multiplexing technologies such as fluorescence plate readers or automated microscopes. This opens the way to large-scale pharmacological or genetic screens based on organelle-specific functional assays. At the whole animal level, probes with improved dynamics and reduced interference with endogenous proteins will allow to generate transgenic animals bearing Ca2+ sensitive indicators in specific cells and tissues. With this approach, Ca2+ signals can be recorded in neurons, heart, and pancreas of live animals during physiological and pathological stimulations. In this chapter, I will review the progress made in the design and use of genetic Ca2+ indicators, and discuss how these new tools provide an opportunity to challenge several unsolved questions in Ca2+ signaling.  相似文献   

7.
GFP-based fluorescence resonance energy transfer (FRET) probes that visualize local activity-changes of Ras and Rho GTPases in living cells are now available for examining the spatio-temporal regulation of these proteins. This article describes principles and strategies to develop intramolecular FRET probes for Ras- and Rho-family GTPases. The procedure for characterizing candidate probes, and image acquisition and processing are also explained. An optimal FRET probe should have (i) a wide dynamic range (which means a high sensitivity), (ii) a high fluorescence intensity, (iii) target specificity, and (iv) a minimal perturbation to endogenous signaling cascades. Although an improvement of FRET probes should be executed in a trial-and-error manner, practical tips for optimization are provided here. In addition, we illustrate some applications of FRET probes for neuronal cells, which are composed of diverse subcellular compartments with different functions; thus, tools to decipher the dynamics of GTPase activity in each compartment have long been desired.  相似文献   

8.
Fertilization competency results from hormone-induced remodeling of oocytes into eggs. The signaling pathways that effect this change exemplify bistability, where brief hormone exposure irrevocably switches cell fate. In Xenopus, changes in Ca(2+) signaling epitomize such remodeling: The reversible Ca(2+) signaling phenotype of oocytes rapidly adapts to support irreversible propagation of the fertilization Ca(2+) wave. Here, we simultaneously resolved IP(3) receptor (IP(3)R) activity with endoplasmic reticulum (ER) structure to optically dissect the functional architecture of the Ca(2+) release apparatus underpinning this reorganization. We show that changes in Ca(2+) signaling correlate with IP(3)R redistribution from specialized ER substructures called annulate lamellae (AL), where Ca(2+) release activity is attenuated, into IP(3)R-replete patches in the cortical ER of eggs that support the fertilization Ca(2+) wave. These data show: first, that IP(3)R sensitivity is regulated with high spatial acuity even between contiguous ER regions; and second, that drastic reorganization of Ca(2+) signaling dynamics can be driven by subcellular redistribution in the absence of changes in channel number or molecular or familial Ca(2+) channel diversity. Finally, these results define a novel role for AL in Ca(2+) signaling. Because AL are prevalent in other scenarios of rapid cell division, further studies of their impact on Ca(2+) signaling are warranted.  相似文献   

9.
Ca2+ regulates numerous biological processes through spatiotemporal changes in the cytosolic Ca2+ concentration and subsequent interactions with Ca2+ binding proteins. The endoplasmic reticulum (ER) serves as an intracellular Ca2+ store and plays an essential role in cytosolic Ca2+ homeostasis. There is a strong need to develop Ca2+ sensors capable of real-time quantitative Ca2+ concentration measurements in specific subcellular environments without using natural Ca2+ binding proteins such as calmodulin, which themselves participate as signaling molecules in cells. In this report, a strategy for creating such sensors by grafting a Ca2+-binding motif into chromophore sensitive locations in green fluorescence protein is described. The engineered Ca2+ sensors exhibit large ratiometric fluorescence and absorbance changes upon Ca2+ binding with affinities corresponding to the Ca2+ concentrations found in the ER (Kd values range from 0.4 to 2 mM). In addition to characterizing the optical and metal binding properties of the newly developed Ca2+ sensors with various spectroscopic methods, we also examined the kinetic properties using stopped-flow spectrofluorimetry to ensure accurate monitoring of dynamic Ca2+ changes. The developed Ca2+ sensor was successfully targeted to the ER of mammalian cell lines to monitor Ca2+ changes occurring in this compartment in response to stimulation with agonists. We envision that this class of Ca2+ sensors can be modified further to measure the Ca2+ concentration in other cellular compartments, providing tools for studying the contribution of these compartments to cellular Ca2+ signaling.  相似文献   

10.
11.
12.
Calcium is a universal messenger that translates diverse environmental stimuli and developmental cues into specific cellular and developmental responses. While individual fungal species have evolved complex and often unique biochemical and structural mechanisms to exploit specific ecological niches and to adjust growth and development in response to external stimuli, one universal feature to all is that Ca(2+)-mediated signaling is involved. The lack of a robust method for imaging spatial and temporal dynamics of subcellular Ca(2+) (i.e., "Ca(2+) signature"), readily available in the plant and animal systems, has severely limited studies on how this signaling pathway controls fungal growth, development, and pathogenesis. Here, we report the first successful expression of a FRET (F?rster Resonance Energy Transfer)-based Ca(2+) biosensor in fungi. Time-lapse imaging of Magnaporthe oryzae, Fusarium oxysporum, and Fusarium graminearum expressing this sensor showed that instead of a continuous gradient, the cytoplasmic Ca(2+) ([Ca(2+)](c)) change occurred in a pulsatile manner with no discernable gradient between pulses, and each species exhibited a distinct Ca(2+) signature. Furthermore, occurrence of pulsatile Ca(2+) signatures was age and development dependent, and major [Ca(2+)](c) transients were observed during hyphal branching, septum formation, differentiation into specialized plant infection structures, cell-cell contact and in planta growth. In combination with the sequenced genomes and ease of targeted gene manipulation of these and many other fungal species, the data, materials and methods developed here will help understand the mechanism underpinning Ca(2+)-mediated control of cellular and developmental changes, its role in polarized growth forms and the evolution of Ca(2+) signaling across eukaryotic kingdoms.  相似文献   

13.
Mitochondria take up calcium during cell activation thus shaping Ca(2+) signaling and exocytosis. In turn, Ca(2+) uptake by mitochondria increases respiration and ATP synthesis. Targeted aequorins are excellent Ca(2+) probes for subcellular analysis, but single-cell imaging has proven difficult. Here we combine virus-based expression of targeted aequorins with photon-counting imaging to resolve dynamics of the cytosolic, mitochondrial, and nuclear Ca(2+) signals at the single-cell level in anterior pituitary cells. These cells exhibit spontaneous electric activity and cytosolic Ca(2+) oscillations that are responsible for basal secretion of pituitary hormones and are modulated by hypophysiotrophic factors. Aequorin reported spontaneous [Ca(2+)] oscillations in all the three compartments, bulk cytosol, nucleus, and mitochondria. Interestingly, a fraction of mitochondria underwent much larger [Ca(2+)] oscillations, which were driven by local high [Ca(2+)] domains generated by the spontaneous electric activity. These oscillations were large enough to stimulate respiration, providing the basis for local tune-up of mitochondrial function by the Ca(2+) signal.  相似文献   

14.
信号分子介导藻类细胞程序性死亡的研究进展   总被引:1,自引:0,他引:1  
藻类是水生态系统中的重要初级生产者, 在物质转换和能量迁移过程中发挥重要作用。细胞程序性死亡(PCD)作为一种细胞自我调控的死亡模式, 受到多种信号分子的控制。研究发现藻类细胞在遭受环境胁迫的情况下, 在形态和生理上均表现出类PCD的特征, 同时伴随着活性氧/一氧化氮/钙离子(ROS/NO/Ca2+)水平的变化。研究认为, ROS/NO/Ca2+作为信号分子介导藻细胞内的caspase-like酶活性变化, 从而触发藻细胞的类程序性死亡。然而, 对信号分子是如何在环境胁迫下的藻类细胞中引发类PCD仍知之甚少。文章综述了信号分子ROS/NO/Ca2+介导藻类类PCD的研究进展以及信号分子间的级联关系, 并对今后类PCD在该领域待开展的研究进行了展望。  相似文献   

15.
Presynaptic group III metabotropic glutamate receptors (mGluRs) and Ca(2+) channels are the main neuronal activity-dependent regulators of synaptic vesicle release, and they use common molecules in their signaling cascades. Among these, calmodulin (CaM) and the related EF-hand Ca(2+)-binding proteins are of particular importance as sensors of presynaptic Ca(2+), and a multiple of them are indeed utilized in the signaling of Ca(2+) channels. However, despite its conserved structure, CaM is the only known EF-hand Ca(2+)-binding protein for signaling by presynaptic group III mGluRs. Because the mGluRs and Ca(2+) channels reciprocally regulate each other and functionally converge on the regulation of synaptic vesicle release, the mGluRs would be expected to utilize more EF-hand Ca(2+)-binding proteins in their signaling. Here I show that calcium-binding protein 1 (CaBP1) bound to presynaptic group III mGluRs competitively with CaM in a Ca(2+)-dependent manner and that this binding was blocked by protein kinase C (PKC)-mediated phosphorylation of these receptors. As previously shown for CaM, these results indicate the importance of CaBP1 in signal cross talk at presynaptic group III mGluRs, which includes many molecules such as cAMP, Ca(2+), PKC, G protein, and Munc18-1. However, because the functional diversity of EF-hand calcium-binding proteins is extraordinary, as exemplified by the regulation of Ca(2+) channels, CaBP1 would provide a distinct way by which presynaptic group III mGluRs fine-tune synaptic transmission.  相似文献   

16.
The implication of calcium as intracellular messenger in the arbuscular mycorrhizal (AM) symbiosis has not yet been directly demonstrated, although often envisaged. We used soybean (Glycine max) cell cultures stably expressing the bioluminescent Ca(2+) indicator aequorin to detect intracellular Ca(2+) changes in response to the culture medium of spores of Gigaspora margarita germinating in the absence of the plant partner. Rapid and transient elevations in cytosolic free Ca(2+) were recorded, indicating that diffusible molecules released by the mycorrhizal fungus are perceived by host plant cells through a Ca(2+)-mediated signaling. Similar responses were also triggered by two Glomus isolates. The fungal molecules active in generating the Ca(2+) transient were constitutively released in the medium, and the induced Ca(2+) signature was not modified by the coculture of germinating spores with plant cells. Even ungerminated spores were able to generate the signaling molecules, as proven when the germination was blocked by a low temperature. The fungal molecules were found to be stable to heat treatment, of small molecular mass (<3 kD), and, on the basis of extraction with an organic solvent, partially lipophilic. Evidence for the specificity of such an early fungal signal to the AM symbiosis is suggested by the lack of a Ca(2+) response in cultured cells of the nonhost plant Arabidopsis (Arabidopsis thaliana) and by the up-regulation in soybean cells of genes related to Medicago truncatula DMI1, DMI2, and DMI3 and considered essential for the establishment of the AM symbiosis.  相似文献   

17.
The lumen of the endoplasmic reticulum (ER) contributes to the dynamics of Ca(2+) signaling by acting as a source or sink of signal Ca(2+). Despite its relevance for the understanding of the cell biology and pathophysiology of the luminal calcium store, the direct measurement of luminal Ca(2+) release and uptake is still critical when Ca(2+) homeostasis is analyzed in neural cells. For the analysis of Ca(2+)-dependent signaling, synthetic Ca(2+) indicators have become popular. The properties of these indicators allow only limited targeting to subcellular structures such as the ER. Recently, we introduced a new strategy for the targeting of synthetic Ca(2+) indicators to the lumen of the ER. The method, termed Targeted-Esterase-induced Dye loading (TED) is based on the targeted recombinant expression of a high carboxylesterase (CES) activity in the lumen of the ER, which is needed to trap synthetic indicators. The method combines the selectivity of protein targeting with the biochemical advantages of low-affinity synthetic Ca(2+) indicators. TED permits direct and non-disruptive measurement and imaging of Ca(2+)-store dynamics. Here, we summarize major topics in the cell biology of ER Ca(2+) signaling and discuss the perspectives of the TED method for the morphological and physiological analysis of temporal and spatial Ca(2+)-dynamics in neural cells.  相似文献   

18.
In the female reproductive tract, mammalian sperm undergo a regulated sequence of prefusion changes that "prime" sperm for fertilization. Among the least understood of these complex processes are the molecular mechanisms that underlie sperm guidance by environmental chemical cues. A "hard-wired" Ca(2+) signaling strategy that orchestrates specific motility patterns according to given functional requirements is an emerging concept for regulation of sperm swimming behavior. The molecular players involved, the spatiotemporal characteristics of such motility-associated Ca(2+) dynamics, and the relation between a distinct Ca(2+) signaling pattern and a behavioral sperm phenotype, however, remain largely unclear. Here, we report the functional characterization of two human sperm chemoreceptors. Using complementary molecular, physiological, and behavioral approaches, we comparatively describe sperm Ca(2+) responses to specific agonists of these novel receptors and bourgeonal, a known sperm chemoattractant. We further show that individual receptor activation induces specific Ca(2+) signaling patterns with unique spatiotemporal dynamics. These distinct Ca(2+) dynamics are correlated to a set of stimulus-specific stereotyped behavioral responses that could play vital roles during various stages of prefusion sperm-egg chemical communication.  相似文献   

19.
Stomatal pores in the epidermis of plants enable gas exchange between plants and the atmosphere, a process vital to plant life. Pairs of specialized guard cells surround and control stomatal apertures. Stomatal closing is induced by abscisic acid (ABA) and elevated CO(2) concentrations. Recent advances have been made in understanding ABA signaling and in characterizing CO(2) transduction mechanisms and CO(2) signaling mutants. In addition, models of Ca(2+)-dependent and Ca(2+)-independent signaling in guard cells have been developed and a new hypothesis has been formed in which physiological stimuli are proposed to prime Ca(2+) sensors, thus enabling specificity in Ca(2+)-dependent signal transduction.  相似文献   

20.
Junek S  Engelke M  Schild D  Wienands J 《FEBS letters》2012,586(10):1452-1458
Antigen-induced B cell activation requires mobilization of the Ca(2+) second messenger. This process is associated with the subcellular relocalization of signal effector proteins of the B cell antigen receptor such as the adaptor protein SLP65. Here we describe a broadly applicable live cell imaging method to simultaneously visualize intracellular Ca(2+) flux profiles and the translocation of cytosolic signaling proteins to the plasma membrane in real time. Our approach delineated the kinetic hierarchy of Ca(2+) signaling events in B cells and revealed a timely ordered contribution of various organelles to the overall Ca(2+) signal. The developed experimental setup provides a useful tool to resolve the spatiotemporal signaling dynamics in various receptor signaling systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号