首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By controlling gene expression, DNA methylation contributes to key regulatory processes during plant development. Genomic methylation patterns are dynamic and must be properly maintained and/or re‐established upon DNA replication and active removal, and therefore require sophisticated control mechanisms. Here we identify direct interplay between the DNA repair factor DNA damage‐binding protein 2 (DDB2) and the ROS1‐mediated active DNA demethylation pathway in Arabidopsis thaliana. We show that DDB2 forms a complex with ROS1 and AGO4 and that they act at the ROS1 locus to modulate levels of DNA methylation and therefore ROS1 expression. We found that DDB2 represses enzymatic activity of ROS1. DNA demethylation intermediates generated by ROS1 are processed by the DNA 3′‐phosphatase ZDP and the apurinic/apyrimidinic endonuclease APE1L, and we also show that DDB2 interacts with both enzymes and stimulates their activities. Taken together, our results indicate that DDB2 acts as a critical regulator of ROS1‐mediated active DNA demethylation.  相似文献   

2.
3.
《Cell reports》2023,42(7):112731
  1. Download : Download high-res image (118KB)
  2. Download : Download full-size image
  相似文献   

4.
Dentin matrix protein1 (DMP1), highly conserved in humans and mice, is highly expressed in teeth, the skeleton, and to a lesser extent in nonskeletal tissues such as brain, kidney, and salivary gland. Pathologically, DMP1 is associated with several forms of cancers and with tumor-induced osteomalacia. Conventional disruption of the murine Dmp1 gene results in defects in dentin in teeth and in the skeleton, including hypophosphatemic rickets, and abnormalities in phosphate homeostasis. Human DMP1 mutations are responsible for the condition known as autosomal recessive hypophosphatemic rickets. For better understanding of the roles of DMP1 in different tissues at different stages of development and in pathological conditions, we generated Dmp1 floxed mice in which loxP sites flank exon 6 that encodes for over 80% of DMP1 protein. We demonstrate that Cre-mediated recombination using Sox2-Cre, a Cre line expressed in epiblast during early embryogenesis, results in early deletion of the gene and protein. These homozygous Cre-recombined null mice display an identical phenotype to conventional null mice. This animal model will be useful to reveal distinct roles of DMP1 in different tissues at different ages.  相似文献   

5.
Gastric cancer is one of the most common causes of cancer‐related death worldwide. Immunotherapy via programmed cell death protein 1 (PD‐1)/programmed cell death‐ligand 1 (PD‐L1) blockade has shown benefits for gastric cancer. Epigenetic DNA methylation critically regulates cancer immune checkpoints. We investigated how the natural compound oleanolic acid (OA) affected PD‐L1 expression in gastric cancer cells. Interleukin‐1β (IL‐1β) at 20 ng/mL was used to stimulate human gastric cancer MKN‐45 cells. IL‐1β significantly increased PD‐L1 expression, which was abolished by OA. Next, OA‐treated MKN‐45 cells were co‐cultured with activated and PD‐1‐overexpressing Jurkat T cells. OA restored IL‐2 levels in the co‐culture system and increased T cell killing toward MKN‐45 cells. Overexpression of PD‐L1 eliminated OA‐enhanced T cell killing capacity; however, PD‐1 blocking antibody abrogated the cytotoxicity of T cells. Moreover, OA abolished IL‐1β‐increased DNA demethylase activity in MKN‐45 cells. DNA methyltransferase inhibitor 5‐azacytidine rescued OA‐reduced PD‐L1 expression; whereas DNA demethylation inhibitor gemcitabine inhibited PD‐L1 expression, and, in combination with OA, provided more potent inhibitory effects. Furthermore, OA selectively reduced the expression of DNA demethylase TET3 in IL‐1β‐treated MKN‐45 cells, and overexpression of TET3 restored OA‐reduced PD‐L1 expression. Finally, OA disrupted nuclear factor κB (NF‐κB) signaling IL‐1β‐treated MKN‐45 cells, and overexpression of NF‐κB restored OA downregulation of TET3 and PD‐L1. The cytotoxicity of T cells toward MKN‐45 cells was also weakened by NF‐κB overexpression. Altogether, OA blocked the IL‐1β/NF‐κB/TET3 axis in gastric cancer cells, leading to DNA hypomethylation and downregulation of PD‐L1. Our discoveries suggested OA as an epigenetic modulator for immunotherapy or an adjuvant therapy against gastric cancer.  相似文献   

6.
Although homologous recombination-promoted knock-in targeting to monitor the expression of a gene by fusing a reporter gene with its promoter is routine practice in mice, gene targeting to modify endogenous genes in flowering plants remains in its infancy. In the knock-in targeting, the junction sequence between a reporter gene and an endogenous target promoter can be designed properly, and transgenic plants carrying an identical and desired knock-in allele can be repeatedly obtained. By employing a reproducible gene-targeting procedure with positive–negative selection in rice, we were able to obtain fertile transgenic knock-in plants with the promoterless GUS reporter gene encoding β-glucuronidase fused with the endogenous promoter of MET1a , one of two rice MET1 genes encoding a maintenance DNA methyltransferase. All of the primary (T0) transgenic knock-in plants obtained were found to carry only one copy of GUS , with the anticipated structure in the heterozygous condition, and no ectopic events associated with gene targeting could be detected. We showed the reproducible, dosage-dependent and spatiotemporal expression of GUS in the selfed progenies of independently isolated knock-in targeted plants. The results in knock-in targeted plants contrast sharply with the results in transgenic plants with the MET1a promoter -fused GUS reporter gene integrated randomly in the genome: clear interindividual variation of GUS expression was observed among independently obtained plants bearing the randomly integrated transgenes. As our homologous recombination-mediated gene-targeting strategy with positive–negative selection is, in principle, applicable to modify any endogenous gene, knock-in targeting would facilitate basic and applied plant research.  相似文献   

7.
The cold tolerance of rice at the booting stage is a main factor determining sustainability and regional adaptability. However, relatively few cold tolerance genes have been identified that can be effectively used in breeding programmes. Here, we show that a point mutation in the low-temperature tolerance 1 (LTT1) gene improves cold tolerance by maintaining tapetum degradation and pollen development, by activation of systems that metabolize reactive oxygen species (ROS). Cold-induced ROS accumulation is therefore prevented in the anthers of the ltt1 mutants allowing correct development. In contrast, exposure to cold stress dramatically increases ROS accumulation in the wild type anthers, together with the expression of genes encoding proteins associated with programmed cell death and with the accelerated degradation of the tapetum that ultimately leads to pollen abortion. These results demonstrate that appropriate ROS management is critical for the cold tolerance of rice at the booting stage. Hence, the ltt1 mutation can significantly improve the seed setting ability of cold-sensitive rice varieties under low-temperature stress conditions, with little yield penalty under optimal temperature conditions. This study highlights the importance of a valuable genetic resource that may be applied in rice breeding programmes to enhance cold tolerance.  相似文献   

8.
9.
Genome‐wide DNA demethylation, including the erasure of genome imprints, in primordial germ cells (PGCs) is a critical first step to creating a totipotent epigenome in the germ line. We show here that, contrary to the prevailing model emphasizing active DNA demethylation, imprint erasure in mouse PGCs occurs in a manner largely consistent with replication‐coupled passive DNA demethylation: PGCs erase imprints during their rapid cycling with little de novo or maintenance DNA methylation potential and no apparent major chromatin alterations. Our findings necessitate the re‐evaluation of and provide novel insights into the mechanism of genome‐wide DNA demethylation in PGCs.  相似文献   

10.
NADPH oxidase complexes are multiprotein assemblies that generate reactive oxygen species in a variety of mammalian tissues. The canonical phagocytic oxidase consists of a heterodimeric, enzymatic core comprised of the transmembrane proteins, CYBB andCYBA and is regulated, in part, by an “organizing” function of NCF1 and an “activating” activity of NCF2. In contexts outside of the phagocyte, these regulatory functions may be encoded not only by NCF1 and NCF2, but also alternatively by their respective paralogues, NOXO1 and NOXA1. To allow tissue‐specific dissection of Noxa1 function in mouse, we have generated an allele of Noxa1 suitable for conditional inactivation. Moreover, by crossing Noxa1 conditional allele carriers to B6.129S4‐Meox2tm1(Cre)Sor/J mice, we have generated first, Noxa1‐null heterozygotes, and ultimately, Noxa1‐null homozygotes. Through the thoughtful use of tissue‐specific, Cre‐expressing mouse strains, the Noxa1 conditional allele will offer insight into the roles of NOXA1 in the variety of tissues in which it is expressed. genesis 48:568–575, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
12.
Twist1 is the mouse ortholog of TWIST1, the human gene mutated in Saethre-Chotzen syndrome. Previously, a Twist1 null allele was generated by gene targeting in mouse embryonic stem cells. Twist1 heterozygous mice develop polydactyly and a craniofacial phenotype similar to Saethre-Chotzen patients. Mice homozygous for the Twist1 null allele die around embryonic day 11.5 (E11.5) with cranial neural tube closure and vascular defects, hindering in vivo studies of Twist1 function at later stages of development. Here, we report the generation of a Twist1 conditional null allele in mice that functions like a wild-type allele but can be converted to a null allele upon Cre-mediated recombination.  相似文献   

13.
HIC1 (hypermethylated in cancer 1) is a tumor suppressor gene located on chromosome 17p13.3, a region frequently hypermethylated or deleted in human neoplasias. In mouse, Hic1 is essential for embryonic development and exerts an antitumor role in adult animals. Since Hic1-deficient mice die perinatally, we generated a conditional Hic1 null allele by flanking the Hic1-coding region by loxP sites. When crossed to animals expressing Cre recombinase in a cell-specific manner, the Hic1 conditional mice will provide new insights into the function of Hic1 in developing and mature tissues. Additionally, we used gene targeting to replace sequence-encoding amino acids 186-893 of Hic1 by citrine fluorescent protein cDNA. We demonstrate that the distribution of Hic1-citrine fusion polypeptide corresponds to the expression pattern of wild-type Hic1. Consequently, Hic1-citrine "reporter" mice can be used to monitor the activity of the Hic1 locus using citrine fluorescence.  相似文献   

14.
15.
Lesion-mimic mutants (LMMs) provide a valuable tool to reveal the molecular mechanisms determining programmed cell death (PCD) in plants. Despite intensive research, the mechanisms behind PCD and the formation of lesions in various LMMs still remain to be elucidated. Here, we identified a rice (Oryza sativa) LMM, early lesion leaf 1 (ell1), cloned the causal gene by map-based cloning, and verified this by complementation. ELL1 encodes a cytochrome P450 monooxygenase, and the ELL1 protein was located in the endoplasmic reticulum. The ell1 mutant exhibited decreased chlorophyll contents, serious chloroplast degradation, upregulated expression of chloroplast degradation-related genes, and attenuated photosynthetic protein activity, indicating that ELL1 is involved in chloroplast development. RNA sequencing analysis showed that genes related to oxygen binding were differentially expressed in ell1 and wild-type plants; histochemistry and paraffin sectioning results indicated that hydrogen peroxide (H2O2) and callose accumulated in the ell1 leaves, and the cell structure around the lesions was severely damaged, which indicated that reactive oxygen species (ROS) accumulated and cell death occurred in the mutant. TUNEL staining and comet experiments revealed that severe DNA degradation and abnormal PCD occurred in the ell1 mutants, which implied that excessive ROS accumulation may induce DNA damage and ROS-mediated cell death in the mutant. Additionally, lesion initiation in the ell1 mutant was light dependent and temperature sensitive. Our findings revealed that ELL1 affects chloroplast development or function, and that loss of ELL1 function induces ROS accumulation and lesion formation in rice.  相似文献   

16.
Organisms are covered extracellularly with cuticular waxes that consist of various fatty acids. In higher plants, extracellular waxes act as indispensable barriers to protect the plants from physical and biological stresses such as drought and pathogen attacks. However, the effect of fatty acid composition on plant development under normal growth conditions is not well understood. Here we show that the ONION1 (ONI1) gene, which encodes a fatty acid elongase (β-ketoacyl CoA synthase) involved in the synthesis of very-long-chain fatty acids, is required for correct fatty acid composition and normal shoot development in rice. oni1 mutants containing a reduced amount of very-long-chain fatty acids produced very small shoots, with an aberrant outermost epidermal cell layer, and ceased to grow soon after germination. These mutants also showed abnormal expression of a KNOX family homeobox gene. ONI1 was specifically expressed in the outermost cell layer of the shoot apical meristem and developing lateral organs. These results show that fatty acid elongase is required for formation of the outermost cell layer, and this layer is indispensable for entire shoot development in rice.  相似文献   

17.
The orphan receptor ROS1 is a human proto‐oncogene, mutations of which are found in an increasing number of cancers. Little is known about the role of ROS1, however in vertebrates it has been implicated in promoting differentiation programs in specialized epithelial tissues. In this study we show that the C. elegans ortholog of ROS1, the receptor tyrosine kinase ROL‐3, has an essential role in orchestrating the morphogenesis and development of specialized epidermal tissues, highlighting a potentially conserved function in coordinating crosstalk between developing epithelial cells. We also provide evidence of a direct relationship between ROL‐3, the mucin SRAP‐1, and BCC‐1, the homolog of mRNA regulating protein Bicaudal‐C. This study answers a longstanding question as to the developmental function of ROL‐3, identifies three new genes that are expressed and function in the developing epithelium of C. elegans, and introduces the nematode as a potentially powerful model system for investigating the increasingly important, yet poorly understood, human oncogene ROS1. genesis 51:545–561. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
19.
20.
DNA uptake by imbibition and expression of a foreign gene in rice   总被引:2,自引:0,他引:2  
Uptake of DNA by imbibition of dry and viable rice ( Oryza sativa L.) embryos from a DNA solution and expression of a foreign gene were detected using two different vectors contaíning gusA (β-glucuronidase) and hpt (hygromycin phosphotransferase) as reporter genes. The frequency of transient expression of gusA and hpt genes using the CaMV35S promoter was about 30 to 50%. The main sites of gusA gene expression were meristems of roots and vascular bundles of leaves. Also, DNA uptake, integration and expression of the hpt gene in selected rice were investigated by various PCR methods and Southern blot analysis of genomic DNA. It was shown that the hygromycin phosphotransferase (HPT) DNA was present in the rice genome in an integrated form and not as a plasmid form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号