首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The accessibility of large substrates to buried enzymatic active sites is dependent upon the utilization of proteinaceous channels. The necessity of these channels in the case of small substrates is questionable because diffusion through the protein matrix is often assumed. Copper amine oxidases contain a buried protein-derived quinone cofactor and a mononuclear copper center that catalyze the conversion of two substrates, primary amines and molecular oxygen, to aldehydes and hydrogen peroxide, respectively. The nature of molecular oxygen migration to the active site in the enzyme from Hansenula polymorpha is explored using a combination of kinetic, x-ray crystallographic, and computational approaches. A crystal structure of H. polymorpha amine oxidase in complex with xenon gas, which serves as an experimental probe for molecular oxygen binding sites, reveals buried regions of the enzyme suitable for transient molecular oxygen occupation. Calculated O(2) free energy maps using copper amine oxidase crystal structures in the absence of xenon correspond well with later experimentally observed xenon sites in these systems, and allow the visualization of O(2) migration routes of differing probabilities within the protein matrix. Site-directed mutagenesis designed to block individual routes has little effect on overall k(cat)/K(m) (O(2)), supporting multiple dynamic pathways for molecular oxygen to reach the active site.  相似文献   

2.
Medda R  Mura A  Longu S  Anedda R  Padiglia A  Casu M  Floris G 《Biochimie》2006,88(7):827-835
Plant copper/quinone amine oxidases are homodimeric enzymes containing Cu(II) and a quinone derivative of a tyrosyl residue (2,4,5-trihydroxyphenylalanine, TPQ) as cofactors. These enzymes catalyze the oxidative deamination of primary amines by a classical ping-pong mechanism, i.e. two distinct half-reactions, enzyme reduction by substrate followed by its re-oxidation by molecular oxygen. In the first half-reaction two forms of the reduced TPQ have been observed, the colorless Cu(II)-aminoquinol and the yellow Cu(I)-semiquinolamine radical so that this enzyme may be referred to as a "protein-radical enzyme". The interaction of xenon, in aqueous solutions, with the copper/TPQ amine oxidase from lentil (Lens esculenta) seedlings has been investigated by NMR and optical spectroscopy. NMR data indicate that xenon binds to the protein. Under 10 atm gaseous xenon and in the absence of substrates more than 60% native enzyme is converted into Cu(I)-semiquinolamine radical species, showing for the first time that both monomers in the dimer can generate the radical. Under the same experimental conditions the copper-free lentil enzyme is able to generate an intermediate absorbing at about 360 nm, which is assigned to the product Schiff base quinolaldimine which, to the best of our knowledge, has never been observed during the catalytic mechanism of plant amine oxidases. A possible role of the lysine residue responsible for the formation of Cu(I)-semiquinolamine and quinolaldimine, is proposed.  相似文献   

3.
The interaction of xenon with copper/6-hydroxydopa (2,4,5-trihydroxyphenethylamine) quinone (TPQ) amine oxidases from the plant pulses lentil (Lens esculenta) and pea (Pisum sativum) (seedlings), the perennial Mediterranean shrub Euphorbia characias (latex), and the mammals cattle (serum) and pigs (kidney), were investigated by NMR and optical spectroscopy of the aqueous solutions of the enzymes. (129)Xe chemical shift provided evidence of xenon binding to one or more cavities of all these enzymes, and optical spectroscopy showed that under 10 atm of xenon gas, and in the absence of a substrate, the plant enzyme cofactor (TPQ), is converted into its reduced semiquinolamine radical. The kinetic parameters of the analyzed plant amine oxidases showed that the k(c) value of the xenon-treated enzymes was reduced by 40%. Moreover, whereas the measured K(m) value for oxygen and for the aromatic monoamine benzylamine was shown to be unchanged, the K(m) value for the diamine putrescine increased remarkably after the addition of xenon. Under the same experimental conditions, the TPQ of bovine serum amine oxidase maintained its oxidized form, whereas in pig kidney, the reduced aminoquinol species was formed without the radical species. Moreover the k(c) value of the xenon-treated pig enzyme in the presence of both benzylamine and cadaverine was shown to be dramatically reduced. It is proposed that the lysine residue at the active site of amine oxidase could be involved both in the formation of the reduced TPQ and in controlling catalytic activity.  相似文献   

4.
Studies on the active site of pig plasma amine oxidase.   总被引:2,自引:0,他引:2       下载免费PDF全文
Amine oxidase from pig plasma (PPAO) has two bound Cu2+ ions and at least one pyrroloquinoline quinone (PQQ) moiety as cofactors. It is shown that recovery of activity by copper-depleted PPAO is linear with respect to added Cu2+ ions. Recovery of e.s.r. and optical spectral characteristics of active-site copper parallel the recovery of catalytic activity. These results are consistent with both Cu2+ ions contributing to catalysis. Further e.s.r. studies indicate that the two copper sites in PPAO, unlike those in amine oxidases from other sources, are chemically distinct. These comparative studies establish that non-identity of the Cu2+ ions in PPAO is not a requirement for amine oxidase activity. It is shown through the use of a new assay procedure that there are two molecules of PQQ bound per molecule of protein in PPAO; only the more reactive of these PQQ moieties is required for activity.  相似文献   

5.
Longu S  Mura A  Padiglia A  Medda R  Floris G 《Phytochemistry》2005,66(15):1751-1758
Copper/quinone amine oxidases contain Cu(II) and the quinone of 2,4,5-trihydroxyphenylalanine (topaquinone; TPQ) as cofactors. TPQ is derived by post-translational modification of a conserved tyrosine residue in the protein chain. Major advances have been made during the last decade toward understanding the structure/function relationships of the active site in Cu/TPQ amine oxidases using specific inhibitors. Mechanism-based inactivators are substrate analogues that bind to the active site of an enzyme being accepted and processed by the normal catalytic mechanism of the enzyme. During the reaction a covalent modification of the enzyme occurs leading to irreversible inactivation. In this review mechanism-based inactivators of plant Cu/TPQ amine oxidases from the pulses lentil (Lens esculenta), pea (Pisum sativum), grass pea (Lathyrus sativus) and sainfoin (Onobrychis viciifolia,) are described. Substrates forming, in aerobiotic and in anaerobiotic conditions, killer products that covalently bound to the quinone cofactor or to a specific amino acid residue of the target enzyme are all reviewed.  相似文献   

6.
The mechanism of molecular oxygen activation is the subject of controversy in the copper amine oxidase family. At their active sites, copper amine oxidases contain both a mononuclear copper ion and a protein-derived quinone cofactor. Proposals have been made for the activation of molecular oxygen via both a Cu(II)-aminoquinol catalytic intermediate and a Cu(I)-semiquinone intermediate. Using protein crystallographic freeze-trapping methods under low oxygen conditions combined with single-crystal microspectrophotometry, we have determined structures corresponding to the iminoquinone and semiquinone forms of the enzyme. Methylamine reduction at acidic or neutral pH has revealed protonated and deprotonated forms of the iminoquinone that are accompanied by a bound oxygen species that is likely hydrogen peroxide. However, methylamine reduction at pH 8.5 has revealed a copper-ligated cofactor proposed to be the semiquinone form. A copper-ligated orientation, be it the sole identity of the semiquinone or not, blocks the oxygen-binding site, suggesting that accessibility of Cu(I) may be the basis of partitioning O2 activation between the aminoquinol and Cu(I).  相似文献   

7.
Truncated hemoglobins (trHbs) are small hemoproteins forming a separate cluster within the hemoglobin superfamily; their functional roles in bacteria, plants, and unicellular eukaryotes are marginally understood. Crystallographic investigations have shown that the trHb fold (a two-on-two alpha-helical sandwich related to the globin fold) hosts a protein matrix tunnel system offering a potential path for ligand diffusion to the heme distal site. The tunnel topology is conserved in group I trHbs, although with modulation of its size/structure. Here, we present a crystallographic investigation on trHbs from Mycobacterium tuberculosis, Chlamydomonas eugametos, and Paramecium caudatum, showing that treatment of trHb crystals under xenon pressure leads to binding of xenon atoms at specific (conserved) sites along the protein matrix tunnel. The crystallographic results are in keeping with data from molecular dynamics simulations, where a dioxygen molecule is left free to diffuse within the protein matrix. Modulation of xenon binding over four main sites is related to the structural properties of the tunnel system in the three trHbs and may be connected to their functional roles. In a parallel crystallographic investigation on M. tuberculosis trHbN, we show that butyl isocyanide also binds within the apolar tunnel, in excellent agreement with concepts derived from the xenon binding experiments. These results, together with recent data on atypical CO rebinding kinetics to group I trHbs, underline the potential role of the tunnel system in supporting diffusion, but also accumulation in multiple copies, of low polarity ligands/molecules within group I trHbs.  相似文献   

8.
Microfibril-associated glycoprotein-1 (MAGP-1) is a small molecular weight protein associated with extracellular matrix microfibrils. Biochemical studies have shown that MAGP-1 undergoes several posttranslational modifications that may influence its associations with other microfibrillar components. To identify the sites in the molecule where posttranslational modifications occur, we expressed MAGP-1 constructs containing various point mutations as well as front and back half truncations in CHO cells. Characterization of transiently expressed protein showed that MAGP-1 undergoes O-linked glycosylation and tyrosine sulfation at sites in its amino-terminal half. This region of the protein also served as a major amine acceptor site for transglutaminase and mediated self-assembly into high molecular weight multimers through a glutamine-rich sequence. Fine mapping of the modification sites through mutational analysis demonstrated that Gln20 is a major amine acceptor site for the transglutaminase reaction and confirmed that a canonical tyrosine sulfation consensus sequence is the site of MAGP-1 sulfation. Our results also show that O-glycosylation occurs at more than one site in the molecule.  相似文献   

9.
Copper, a mediator of redox chemistries in biology, is often found in enzymes that bind and reduce dioxygen. Among these, the copper amine oxidases catalyze the oxidative deamination of primary amines utilizing a type(II) copper center and 2,4,5-trihydroxyphenylalanine quinone (TPQ), a covalent cofactor derived from the post-translational modification of an active site tyrosine. Previous studies established the dependence of TPQ biogenesis on Cu(II); however, the dependence of cofactor formation on the biologically relevant Cu(I) ion has remained untested. In this study, we demonstrate that the apoform of the Hansenula polymorpha amine oxidase readily binds Cu(I) under anaerobic conditions and produces the quinone cofactor at a rate of 0.28 h(-1) upon subsequent aeration to yield a mature enzyme with kinetic properties identical to the protein product of the Cu(II)-dependent reaction. Because of the change in magnetic properties associated with the oxidation of copper, electron paramagnetic resonance spectroscopy was employed to investigate the nature of the rate-limiting step of Cu(I)-dependent cofactor biogenesis. Upon aeration of the unprocessed enzyme prebound with Cu(I), an axial Cu(II) electron paramagnetic resonance signal was found to appear at a rate equivalent to that for the cofactor. These data provide strong evidence for a rate-limiting release of superoxide from a Cu(II)(O(2)(.)) complex as a prerequisite for the activation of the precursor tyrosine and its transformation for TPQ. As copper is trafficked to intracellular protein targets in the reduced, Cu(I) state, these studies offer possible clues as to the physiological significance of the acquisition of Cu(I) by nascent H. polymorpha amine oxidase.  相似文献   

10.
Welford RW  Lam A  Mirica LM  Klinman JP 《Biochemistry》2007,46(38):10817-10827
The mechanism of the first electron transfer from reduced cofactor to O2 in the catalytic cycle of copper amine oxidases (CAOs) remains controversial. Two possibilities have been proposed. In the first mechanism, the reduced aminoquinol form of the TPQ cofactor transfers an electron to the copper, giving radical semiquinone and Cu(I), the latter of which reduces O2 (pathway 1). The second mechanism invokes direct transfer of the first electron from the reduced aminoquinol form of the TPQ cofactor to O2 (pathway 2). The debate over these mechanisms has arisen, in part, due to variable experimental observations with copper amine oxidases from plant versus other eukaryotic sources. One important difference is the position of the aminoquinol/Cu(II) to semiquinone/Cu(I) equilibrium on anaerobic reduction with amine substrate, which varies from almost 0% to 40% semiquinone/Cu(I). In this study we have shown how protein structure controls this equilibrium by making a single-point mutation at a second-sphere ligand to the copper, D630N in Hansenula polymorpha amine oxidase, which greatly increases the concentration of the cofactor semiquinone/Cu(I) following anaerobic reduction by substrate. The catalytic properties of this mutant, including 18O kinetic isotope effects, point to a conservation of pathway 2, despite the elevated production of the cofactor semiqunone/Cu(I). Changes in kcat/Km[O2] are attributed to an impact of D630N on an increased affinity of O2 for its hydrophobic pocket. The data in this study indicate that changes in cofactor semiquinone/Cu(I) levels are not sufficient to alter the mechanism of O2 reduction and illuminate how subtle features are able to control the reduction potential of active site metals in proteins.  相似文献   

11.
Pyrroloquinoline quinone: a new redox cofactor in eukaryotic enzymes   总被引:1,自引:0,他引:1  
During the past decade pyrroloquinoline quinone has been shown to be a new redox cofactor for a range of bacterial alcohol dehydrogenases. Recent studies suggest that this cofactor may also be covalently bound to the active site of the eukaryotic copper amine oxidases. In this mini-review we present the evidence in support of pyrroloquinoline quinone as a novel eukaryotic cofactor. As a result of mechanistic advances during the last three years, together with a re-examination of previously existing data, a working model for the role of pyrroloquinoline quinone in enzyme-catalyzed amine oxidation reactions can be proposed.  相似文献   

12.
Bovine serum amine oxidase (BSAO), reduced by excess amine under limited turnover conditions, was over 80% inactivated by H(2)O(2) upon oxygen exhaustion. The UV-Vis spectrum and the reduced reactivity with carbonyl reagents showed that the cofactor topaquinone (TPQ) was stabilized in reduced form. The protein large M(r) (170 kDa) prevented the identification of modified residues by amino acid analyses. Minor changes of the Cu(2+) EPR signal and the formation of a radical at g = 2.001, with intensity a few percent of that of the Cu(2+) signal, unaffected by a temperature increase, suggest that Cu(2+)-bound histidines were not oxidized and the radical was not the Cu(+)-semiquinolamine in equilibrium with Cu(2+)-aminoquinol. It may derive from the modification of a conserved residue in proximity of the active site, possibly the tyrosine at hydrogen-bonding distance of TPQ C-4 ionized hydroxyl. The inactivation reaction appears to be a general feature of copper-containing amine oxidases. It may be part of an autoregulatory process in vivo, possibly relevant to cell adhesion and redox signaling.  相似文献   

13.
The study of model compounds continues to significantly contribute to our understanding of the role of transition metals at the active sites of enzymes. Recent advances in the field include the use of mimics for enzymes that activate dioxygen, as dioxygen is not only manipulated in nature but also has industrial significance in metal-catalyzed oxidations of organics. Copper, nonheme and heme iron coordination complexes have been used to mimic reversible dioxygen-binding by the three classes of blood-oxygen carriers - hemocyanin, hemerythrin and hemoglobin/myoglobin - while functional mimics of oxygenases and oxidases with copper and iron have also provided key insights into important dioxygen activation processes.  相似文献   

14.
The electrochemical behavior of redox centers in the active site of amine oxidases from lentil seedlings and Euphorbia characias latex was investigated using a mercury film electrode. Tyrosine-derived 6-hydroxydopa quinone (TPQ) and copper ions in the active site are redox centers of these amine oxidases. The enzymes undergo two reduction processes at negative potentials related to the reduction of the TPQ cofactor to the corresponding hydroquinones and the reduction of copper ions, (Cu(II)-->Cu(I)). Copper depleted enzymes, prepared by reduction with dithionite followed by dialysis against cyanide, undergo only one reduction process. Nyquist diagrams, recorded at potentials corresponding to the reduction of cofactors as dc-offset, represent charge transfer impedance followed by a Warburg-type line at low frequencies, indicating the occurrence of a diffusion controlled process in the rate-limiting step of the reduction process.  相似文献   

15.
Computational studies of the interaction of myoglobin and xenon   总被引:2,自引:0,他引:2  
Computational studies are used to investigate the energies of xenon binding to myoglobin and to describe pathways through the protein interior for a metmyoglobin-xenon complex. Empirical energy calculations indicate a favorable enthalpic contribution of 0.6 to 4.2 kcal/mol to xenon binding for four experimentally determined xenon sites. These calculated enthalpies help to explain the different xenon occupancies observed experimentally. A fifth site, modeled in place of the iron co-ordinated water molecule in the distal cavity, is also predicted to bind xenon. The largest contribution to the binding energy is from van der Waals' interactions with smaller contributions from polarization and protein strain terms. Ligand trajectory calculations as well as a new geometric algorithm define a connecting network of channel-like pathways through the static protein structure. One or two pathways appear to lead most easily from each major internal cavity to the protein surface. The importance of these channels in protein dynamics and their implications as routes for ligand motion are discussed.  相似文献   

16.
Amine oxidase AO-I from Aspergillus niger AKU 3302 has been reported to contain topa quinone (TPQ) as a cofactor; however, analysis of the p-nitrophenylhydrazine-derivatized enzyme and purified active site peptides showed the presence of a carboxylate ester linkage of TPQ to a glutamate. The catalytic functionality of such a cross-linked cofactor has recently been shown unlikely by spectroscopic and voltammetric studies on synthesized model compounds. We have obtained resonance Raman spectra of native and substrate-reduced AO-I demonstrating that the catalytically active cofactor is unmodified TPQ. The primary structure of the enzyme (GenBank acc. no. U31869) has been reviewed and updated by repeated isolation and sequencing of AO-I cDNA. This allowed rectification of several errors that account for previously reported low homology to other amine oxidases in the regions around copper binding histididyl residues. The results were confirmed by cloning the ao-1 structural gene (GenBank acc. no. AF362473). Analysis of the gene 5'-upstream region of the gene revealed potential binding sites for an analog of NIT2, the nitrogen metabolism regulatory protein found in Neurospora crassa and other fungi. The molecular structure of AO-I was modeled by a comparative method using published crystal structures of amine oxidases as templates.  相似文献   

17.
A new molecule, the 4-methyl-thio-phenyl-propylamine (PrNH(2)) was synthesized and its biological interaction with different amine oxidases such as semicarbazide sensitive amine oxidase (SSAO) [E.C.1.4.3.6], and monoamine oxidase [E.C.1.4.3.4] under its two isoforms, MAO A and MAO B, has been assessed. The substrate specifities of MAO and SSAO overlap to some extent. In this context, the search of new molecules, able to discriminate between these different amine oxidases is very important as it will allow greater elucidation of the SSAO's role in physiological and pathological conditions. We report for the first time, the synthesis and evaluation of a new molecule which has a high affinity towards the SSAO family of enzymes, more so than previously described and furthermore an ability to discriminate between the different amine oxidases.  相似文献   

18.
The copper-binding site of lysyl oxidase remains extremely poorly characterized and although models have been suggested for copper(II) coordination by three histidine ligands, as has been found for other copper-containing amine oxidases, there has been no experimental confirmation of these suggestions. In this work, two synthetic peptides with 24 and 34-amino acid residues, respectively, were chosen from the highly conserved histidine-rich sequence previously suggested as the copper-binding region of lysyl oxidase. These peptides each bind one equivalent of Cu(II), at the same site in the two peptides. Spectroscopic (NMR, electron paramagnetic resonance (EPR), CD, visible absorption and fluorescence) techniques were employed to investigate the nature of the resulting complexes. The results indicate that at neutral pH three histidine ring nitrogen atoms and one carboxylate oxygen atom coordinate as the in-plane ligands of the copper, which is in an approximately tetragonally-distorted octahedral geometry. Modeling of the copper-peptides using the consistent force field (CFF91) produces a minimum energy configuration with three histidines and one water molecule as the copper ligands. CD, EPR and fluorescence results are reported for lysyl oxidase and compared with results for the peptides.  相似文献   

19.
Topaquinone (TPQ) is a cofactor present at the active site of copper amine oxidases, derived from a Tyr residue inserted in the polypeptide chain through a copper-dependent but otherwise largely unknown mechanism. A simple model system was developed that permits to obtain the overall transformation of 4-tert-butylphenol, chosen as a model for Tyr, into a TPQ-like, para-hydroxyquinonic structure in the presence of Cu(II)-imidazole mononuclear complexes.  相似文献   

20.
Potential inhibitory effects of the clinically utilized monoamine oxidase inhibitor tranylcypromine (TCP) on mammalian, plant, bacterial, and fungal copper-containing amine oxidases have been examined. The following enzymes have been investigated: human kidney diamine oxidase (HKAO), bovine plasma amine oxidase (BPAO), equine plasma amine oxidase (EPAO), pea seedling amine oxidase (PSAO), Arthrobacter globiformis amine oxidase (AGAO), and Pichia pastoris lysyl oxidase (PPLO). Only BPAO, EPAO, and AGAO were found to lose significant levels of activity when incubated with varying amounts of TCP. Inhibition of BPAO was completely reversible, with dialysis restoring full activity. TCP inhibition of AGAO was also found to be ultimately reversible; however, dialysis did not remove all bound compounds. Chemical displacement with either substrate or a substrate analogue successfully removed all bound TCP, indicating that this compound has a high affinity for the active site of AGAO. The notable lack of TCP inhibition on HKAO argues against the inhibition of diamine oxidase as a potential source for some of the deleterious side effects occurring in patients treated with this antidepressant. The marked differences observed in behavior among these enzymes speaks to the importance of intrinsic structural differences between the active sites of copper amine oxidases (CAO) which affect reactivity with a given inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号