首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the use of an in vitro complementation assay to measure activity, the gene 4 protein of bacteriophage T7 has been purified 1000-fold to yield a nearly homogeneous protein. The purified gene 4 protein is a single polypeptide having a molecular weight of 58,000. In addition to being essential for T7 DNA replication in vivo and in vitro, the gene 4 protein is required for DNA synthesis by the purified T7 DNA polymerase on duplex T7 DNA templates. In the absence of ribonucleoside 5'-triphosphates, DNA synthesis by the gene 4 protein and the T7 DNA polymerase is dependent on phosphodiester bond interruptions containing 3'-hydroxyl groups (nicks) in the duplex DNA. The reaction is specific for the T7 DNA polymerase, but any duplex DNA containing nicks can serve as template. The Km for nicks in the reaction is 3 x 10(-10) M.  相似文献   

2.
The most notable feature of DNA extracted from prehistoric material is that it is of poor quality. Amplification of PCR products from such DNA is consequently an exception. Here we present a simple method for the repair of degraded duplex DNA using the enzymes Escherichia coli DNA polymerase I and T4 DNA ligase. Adjacent sequences separated by nicks do not split up into intact strands during the denaturation step of PCR. Thus the target DNA is refractory to amplification. The proposed repair of nicked, fragmented ancient DNA results in an increase of amplification efficiency, such that the correct base order of the respective nuclear DNA segment can be obtained.  相似文献   

3.
There are two approaches in detection of bacterium Erwinia amylovora by PCR. One is based on detection of plasmid pEA29 and the other is based on detection of a chromosomal DNA sequence, specific for E. amylovora, in a sample. Since pathogenic strains without pEA29 have been isolated from the environment, methods based on this plasmid have been compromised and PCR methods based on chromosomal DNA species specific sequences became only reliable methods. PCR method with chromosomal primers FER1-F and FER1-R is currently the most reliable method due to its high sensitivity and specificity. The goal of this research is to make a significant improvement of the method by optimization of PCR in application of hot start DNA Taq polymerase, instead of wax, to obtain a hot start reaction. This enzyme, which is currently widely applied, can provide simpler achievement of hot start, saving labor and time and decreasing possibility of cross contamination of samples. Experiments showed that simple replacement of a regular recombinant Taq DNA polymerase by a hot start Taq DNA polymerase leads to complete failure of the reaction. Many optimization experiments had to be carried out to obtain an operational and reliable PCR which simultaneously has high sensitivity and specificity. Content of the reaction mixture, as well as temperature and time parameters of PCR, were significantly changed to achieve proper optimization.  相似文献   

4.
T-A cloning takes advantage of the unpaired adenosyl residue added to the 3' terminus of amplified DNAs by Taq and other thermostable DNA polymerase and uses a Ilnearlzed plasmld vector with a protruding 3' thymldylate residue at each of Its 3' termini to clone polymerase chain reaction (PCR)-derived DNA fragments. It Is a simple, reliable, and efficient Ilgatlon-dependent cloning method for PCR products, but the drawback of variable cloning efficiency occurs during application. In the present work, the relationship between variable T-A cloning efficiency and the different 5' end nucleotlde base of primers used In PCR amplification was studied. The results showed that different cloning efficiency was obtained with different primer pairs containing A, T, C and G at the 5' terminus respectively. The data shows that when the 5' end base of primer pair was adenosyl, more white colonies could be obtained In cloning the corresponding PCR product In comparison with other bases. And the least white colonies were formed when using the primer pair with 5' cytldylate end. The gluanylate end primers resulted In almost the same cloning efficiency In the white colonies amount as the thymldylate end primer did, and this efficiency was much lower than that of adenosyl end primers. This presumably is a consequence of variability In 3'dA addition to PCR products mediated by Taq polymerase. Our results offer instructions for primer design for researchers who choose T-A cloning to clone PCR products.  相似文献   

5.
An inorganic pyrophosphatase (PPases) was cloned from the hyperthermophilic archaeon Pyrococcus horikoshii and was expressed in and purified from Escherichia coli. The recombinant inorganic pyrophosphatase (PhPPase) exhibited robust catalytic activity of the hydrolysis of pyrophosphate into two orthophosphates at high temperatures (70°C to 95°C). Thermostable pyrophosphatase activity was applied into polymerase chain reaction (PCR) due to its ability to push chemical equilibrium toward the synthesis of DNA by removing pyrophosphate from the reaction. A colorimetric method using molybdate and reducing agents was used to measure PCR progress by detecting and quantifying inorganic phosphate in the PhPPase-coupled PCR mixture. Compared to PCR mixtures without PhPPase, the thermostable PhPPase enhanced the amount of PCR product in the same number of cycles. Thus, thermostable PPase may overcome the limitations of thermodynamically unfavorable DNA polymerization in PCR by yielding more products.  相似文献   

6.
Often, it is convenient to subclone polymerase chain reaction (PCR) products into a plasmid vector for subsequent replication in bacteria, but conventional subcloning methods often fail. We report a rapid and versatile method to subclone PCR products directionally into a specific site of virtually any plasmid vector. The procedure requires only four primers, does not require DNA ligase, and may be accomplished in a single day. Ligase-free subcloning is performed by incorporating into the PCR primers sequences at the 5' ends that result in PCR products whose 3' ends are complementary to the 3' ends of the recipient linearized plasmid. The PCR product and the linearized plasmid are spliced together in a second PCR reaction in which Taq polymerase extends the complementary overlapping 3' ends (ligation by overlap extension). Denaturation followed by heterologous reannealing and cyclization results in a cyclic recombinant plasmid with two nicks that may be used directly to transform competent Escherichia coli. In our hands, ligase-free subcloning is rapid, and offers many advantages over existing strategies.  相似文献   

7.
The family B DNA polymerase gene was amplified from Thermococcus celer genomic DNA by using the degenerate primers and DNA walking PCR. The Tce DNA polymerase gene was cloned and sequenced. The gene contains an ORF of 2,325 bp encoding 774 amino acid residues with a calculated molecular weight of 89,788.9 kDa. The Tce DNA polymerase was purified by heat treatment and heparin column chromatography. The optimal conditions for PCR were determined. Long-range PCR and time-saving PCR were performed using various specific ratios of Taq and Tce DNA polymerases (Tce plus DNA polymerase). Tce plus DNA polymerase surpassed the PCR performance of Tce, Taq and Pfu DNA polymerases in terms of yield and efficiency.  相似文献   

8.
Lamarche BJ  Showalter AK  Tsai MD 《Biochemistry》2005,44(23):8408-8417
Our recent demonstration that DNA polymerase X (Pol X), the DNA repair polymerase encoded by the African swine fever virus (ASFV), is extremely error prone during single-nucleotide gap filling led us to hypothesize that it might contribute to genetic variability in ASFV. For the infidelity of Pol X to be relevant, however, the DNA ligase working downstream of it would need to be capable of sealing nicks containing 3'-OH mismatches. We therefore examined the nick ligation capabilities of the ASFV-encoded DNA ligase and here report the first complete 3' fidelity analysis, employing catalytic parameters, for any DNA ligase. The catalytic efficiency of nick sealing by both ASFV DNA ligase and bacteriophage T4 DNA ligase was determined in the steady state for substrates containing all 16 possible matched and mismatched base pair combinations at the 3' side of a nick. Our results indicate that ASFV DNA ligase is the lowest-fidelity DNA ligase ever reported, capable of ligating a 3' C:T mismatched nick (where C and T are the templating and nascent nucleotides, respectively) more efficiently than nicks containing Watson-Crick base pairs. Comparison of the mismatch specificity of Pol X with that of ASFV DNA ligase suggests that the latter may have evolved toward low fidelity for the purpose of generating the broadest possible spectrum of sealed mismatches. These findings are discussed in light of the genetic and antigenic variability observed among some ASFV isolates. Two novel assays for determining the concentration of active DNA ligase are also reported.  相似文献   

9.
The inhibitory effect of human and porcine bile samples to detect Helicobacter DNA was studied by adding different concentrations of bile samples to PCR mixtures of six thermostable DNA polymerases containing cagA specific primers and Helicobacter pylori DNA. PCR products were amplified by using the Rotorgene system and SYBR Green I. Among the six DNA polymerases tested, rTth had the lowest sensitivity to bile inhibitors, whereas Taq and Tfl had the highest sensitivity. Bile proteins did not inhibit AmpliTaq DNA polymerase, whereas the fraction containing mainly bile acids and their salts inhibited the amplification capacity of AmpliTaq. Heating human bile at 98 degrees C and adding casein and formamide to the reaction mixture reduced the PCR inhibitory effect of bile. Therefore, a pre-PCR treatment based on dilution and heating of bile, adding casein and formamide to the reaction mixture of rTth DNA polymerase was found efficient to amplify DNA directly in bile.  相似文献   

10.
The known archaeal family B DNA polymerases are unable to participate in the PCR in the presence of uracil. Here, we report on a novel archaeal family B DNA polymerase from Nanoarchaeum equitans that can successfully utilize deaminated bases such as uracil and hypoxanthine and on its application to PCR. N. equitans family B DNA polymerase (Neq DNA polymerase) produced λ DNA fragments up to 10 kb with an approximately 2.2-fold-lower error rate (5.53 × 10−6) than Taq DNA polymerase (11.98 × 10−6). Uniquely, Neq DNA polymerase also amplified λ DNA fragments using dUTP (in place of dTTP) or dITP (partially replaced with dGTP). To increase PCR efficiency, Taq and Neq DNA polymerases were mixed in different ratios; a ratio of 10:1 efficiently facilitated long PCR (20 kb). In the presence of dUTP, the PCR efficiency of the enzyme mixture was two- to threefold higher than that of either Taq and Neq DNA polymerase alone. These results suggest that Neq DNA polymerase and Neq plus DNA polymerase (a mixture of Taq and Neq DNA polymerases) are useful in DNA amplification and PCR-based applications, particularly in clinical diagnoses using uracil-DNA glycosylase.  相似文献   

11.
分子克隆是现代生物学研究的核心技术之一,是基因工程、蛋白质工程中的重要手段。为提高分子克隆实验的操作效率,本研究设计并合成基于聚合酶引物不完全延伸(polymerase incomplete primer extension,PIPE)现象的质粒克隆位点序列。并以此为基础统一相关引物的设计方案,避免传统酶切--连接法中需针对不同载体MCS序列设计不同引物的缺点。该方案利用13 bp定长接头序列,在同一体系中使用2对引物、2种线性化模板同时扩增载体和插入片段,通过20个循环,在1次PCR过程中即合成可供转化使用的带缺口质粒产物。在NEB Q5酶系统中,利用此法将3种荧光素酶序列插入pET-15b及pET-21b(+)载体,均获得成功。且利用商品化感受态细胞(转化效率 > 5×108 cfu/μg)转化后所获得转化子数量均在300个以上,其中含插入片段的阳性克隆比例可达85%以上。基于本方案的设计及作用原理,可将其应用于10 kb以内载体和插入片段的快速重组。且具有通用性强、耗时少、阳性克隆得率高和成本低等优点,是传统DNA重组方法的有益补充,可作为各实验室的常规分子克隆手段之一。  相似文献   

12.
A rapid and sensitive method for the detection of genetically engineered microorganisms in soil and sediments has been devised by in vitro amplification of the target DNAs by a polymerase chain reaction. A cloned catechol 2,3-dioxygenase gene located on the recombinant plasmid pOH101 was transferred to Pseudomonas putida MMB2442 by triparental crossing and used as a target organism. For the polymerase chain reaction from soil and sediment samples, the template DNA was released from a 100-mg soil sample. Bacterial seeded soil samples were washed with Tris-EDTA buffer (pH 8.0) and treated with a detergent lysis solution at 100°C. After addition of 1% polyvinylpolypyrrolidine solution, the samples were boiled for 5 min. Supernatant containing nucleic acid was purified with a PCR purification kit. The purified DNA was subjected to polymerase chain reaction, using two specific primers designed for the amplification of catechol 2,3-dioxygenase gene sequences. The detection limit was 102 cells per gram of soil. This method is rapid and obviates the need for lengthy DNA purification from soil samples. Received 28 February 1997/ Accepted in revised form 23 November 1997  相似文献   

13.
The specimens of DNA microparticles formed during PCR amplification of IS-elements ISAfe1 and IST2 by KlenTaq or Taq polymerases and plasmid DNA as a template under varying conditions were investigated by electron microscopy. Microparticle yield and morphology were found to depend on the level of synthesis of single-stranded DNA fragments during PCR. The conditions were studied for formation of discs (ellipsoids) several micrometers in diameter and several dozens of nanometers thick, as well as of microparticles of other morphologies, in the course of PCR with Taq polymerase. The structure of the microparticles produced during an asymmetric PCR, i.e., under conditions of low concentration of one of the two primers, was investigated. Morphology of the DNA micro- and nanoparticles was found to depend mainly on the DNA polymerase used in asymmetric PCR. In particular, in the presence of the KlenTaq polymerase, discs or ellipsoids a few dozen nanometers thick were formed, while in the presence of the Taq polymerase, micro- and nanospheres, heterogeneous in size with rugged surfaces, were produced. The effect of Mn2+ cations on DNA microparticle morphology was studied. In the presence of Mn2+, microparticle morphology changed dramatically; in PCR mixtures containing KlenTaq polymerase supplemented with Mn2+, DNA microspheres with fringed surfaces were formed; in the presence of Taq polymerase, microparticles in the form of short, rounded rods were produced. In light of these data, the molecular mechanism of micro- and nanoparticle formation in the course of PCR is discussed.  相似文献   

14.
A novel simple and rapid PCR-based site-directed mutagenesis method   总被引:11,自引:0,他引:11  
Site-directed mutagenesis (SDM) is a powerful tool for exploring protein structure and function, and several procedures adjusted to specific purposes are still being developed. Herein we describe a straightforward and efficient method with versatile applications for introducing site-specific alterations in any deoxyribonucleic acid (DNA) sequence cloned in a plasmidic expression vector. In this polymerase chain reaction (PCR)-based SDM method, forward and reverse primers are used to amplify the plasmid containing the sequence of interest. The primers are designed so that the desired modifications are introduced at the 5′ end of one of the primers, whereas the other primer starts with the nucleotide at position (−1) of the one to be modified. The PCR is carried out using Pfu DNA polymerase. The blunt-ended PCR-generated DNA fragment is self-ligated and used to transform Escherichia coli. Mutant clones are screened by colony hybridization using the mutagenic primer as probe and the presence of the mutation is confirmed by direct DNA sequencing. This procedure was used efficiently to introduce substitutions, deletions, and insertions in the DNA sequences coding for a recombinant form (scFv) of antibody 107 specific of the human CR3 molecule, the rat α integrin CD11b A-domain and the human CD8β cloned in pPICZαB, pGEX-2T, and CDM8 expression vectors, respectively.  相似文献   

15.
We introduce the TA cloning antibody method for the high-fidelity PCR product amplified by family B DNA polymerase without purification. This method uses antibodies and Thermus aquaticus (Taq) DNA polymerase. The antibodies can inhibit only the activity of family B DNA polymerase, and Taq can co-work for A-tailing. This method has nearly cloning efficiency to that of the PCR product of Taq.  相似文献   

16.
A semiquantitative assay of DNA impurities in preparations of human recombinant insulin is described. The assay is based on the detection of a fragment of the ampicillin-resistant gene within the producer strain DNA by PCR. The analysis of PCR products of the studied preparations and PCR products containing known amounts of E. coli total DNA enabled a quantitative determination of the producer strain DNA content in the preparations under study. The sensitivity of the method is 7 pg of E. coli DNA per 10µg of human recombinant insulin. The high sensitivity of the method allows us to recommend it for the quantitative determination of DNA content in recombinant preparations that do not inhibit PCR.Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 1, 2005, pp. 73–76.Original Russian Text Copyright © 2005 by Aleksandrov, Yu. Skoblov, M. Skoblov, Shibanova, Bairamashvili, Miroshnikov.  相似文献   

17.
A binary system of photoaffinity reagents was proposed earlier for highly efficient labeling of DNA polymerases by 5"-[32P]DNA primers. In the present study we demonstrate the feasibility of this approach to increase the efficiency of DNA polymerase labeling. A photoactive 2,3,5,6-tetrafluoro-4-azidobenzoyl (FAB) group was incorporated at the 3"-end of 5"-[32P]DNA primers synthesized by DNA polymerase or Tte in the presence of one of the dTTP analogs—FAB-4-dUTP, FAB-9-dUTP, or FAB-4-ddUTP. The reaction mixture was irradiated by light with wavelength of 334-365 nm (direct labeling) or 365-450 nm in the presence of photosensitizer, one of dTTP analogs containing a pyrene moiety, Pyr-6-dUTP or Pyr-8-dUTP. In the case of the binary system of photoaffinity reagents, a FAB group is activated by energy transfer from sensitizer localized in the dNTP-binding site of DNA polymerase in the triple complex, comprised by reagent, DNA polymerase, and Pyr-6(8)-dUTP. Direct activation of the FAB group under these conditions is negligible. The most efficient photolabeling of DNA polymerases was observed with a primer containing a FAB-4-dUMP group at the 3"-end, and Pyr-6-dUTP as a photosensitizer. Using 10-fold molar excess of photoreagent to DNA polymerase , the labeling efficiency was shown to achieve 60%, which is 2-fold higher than the efficiency of the direct DNA polymerase labeling under harsher conditions (334-365 nm).  相似文献   

18.
We have developed a polymerase chain reaction (PCR) method for sequencing of tobacco chloroplast genome. In a mixture containing chloroplast DNA, 5-end-labeled oligonucleotide primer, Taq DNA polymerase and reaction buffer, we were able to sequence a segment of chloroplast 16S rRNA gene. The results showed that the 750 bp of DNA sequenced were identical to the sequence reported, indicating that direct sequencing method that we have developed is useful for the sequencing of chloroplast genome. To analyze the chloroplast genome more rapidly in those in vitro grown plantlets, we also developed a simple method which is applicable for the amplifications and sequencing of chloroplast 16S rRNA fragment from either 0.15 g of tobacco leaf or stem tissue. The readable sequences obtained from the presented methods were consistent with the published sequence.  相似文献   

19.
以待检测的寡核苷酸本身作为一个引物,加上两个载体特异引物,组成两对PCR引物。含待检测寡核苷酸片段的重组DNA用这两对引物可分别扩增出两个大小不同的片段,而载体DNA只有一对引物(即载体特异引物)可扩增出一个较小的片段。  相似文献   

20.
In eukaryotes, the creation of ligatable nicks in DNA from flap structures generated by DNA polymerase δ-catalyzed displacement DNA synthesis during Okazaki fragment processing depends on the combined action of Fen1 and Dna2. These two enzymes contain partially overlapping but distinct endonuclease activities. Dna2 is well-suited to process long flaps, which are converted to nicks by the subsequent action of Fen1. In this report, we purified human Dna2 as a recombinant protein from human cells transfected with the cDNA of the human homologue of Saccharomyces cerevisiae Dna2. We demonstrated that the purified human Dna2 enzyme contains intrinsic endonuclease and DNA-dependent ATPase activities, but is devoid of detectable DNA helicase activity. We determined a number of enzymatic properties of human Dna2 including its substrate specificity. When both 5′ and 3′ tailed ssDNAs were present in a substrate, such as a forked-structured one, both single-stranded regions were cleaved by human Dna2 (hDna2) with equal efficiency. Based on this and other properties of hDna2, it is likely that this enzyme facilitates the removal of 5′ and 3′ regions in equilibrating flaps that are likely to arise during the processing of Okazaki fragments in human cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号