首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Early spermatids of the crabUca tangeri consists of the nucleus of granular chromatin and the cytoplasm, which contains a proacrosomal vesicle in close association with membrane lamellae. In the mid spermatids an invagination of the acrosomal vesicle membrane gives rise to the formation of the perforatorium, a spindle-shaped tubule which encloses tubular membranous structures. The pair of centrioles located at the base of the acrosome is not directly involved in perforatorial differentiation. The acrosomal vesicle shows a heterogeneous content composed of the operculum, the thickened ring, and three layers of different materials concentrically arranged around the perforatorium. During the late spermatid stage the nuclear profile differentiates numerous slender arms and the chromatin arranges into fibers. Membranous tubules from the cytoplasm become incorporated into the tubular structures of the perforatorium. The mature spermatozoon has the typical structure of the branchyuran sperm, with a complex acrosome, cupped by the nucleus, and a thin cytoplasmic band intervening between the former main elements. The centrioles are degenerate. The nuclear arms are unusually numerous (more than 20) and lack microtubules or microtubular derivatives.  相似文献   

2.
A fine structure study of spermatids and spermatozoa of the spider, Pisaurina sp. demonstrates that early spermiogenesis is similar to other flagellate spermatozoa. An acrosome forms from a Golgi-derived, acrosomal vesicle, a perforatorium indents acromosome and nucleus, a flagellum with a three-plus-nine tubule substructure is formed and nuclear chromatin condenses during spermiogenesis. Divergence from typical spermatozoa includes the presence of a three-tubule substructure of the central flagellar shaft, progressive rounding-up of late spermatids with concomitant incorporation of previously formed flagellum. This evidence is presented in terms of its possible functional significance in fertilization and gamete fusion in spiders.  相似文献   

3.
The fine structure of spermatid differentiation in a primitive vertebrate, the hagfish, whose spermatozoa bear acrosomes, was investigated. In early round spermatids, the acrosomal vesicles were spherical and located in a shallow nuclear indentation, flanked by the plasma and the nuclear membranes. The vesicle underwent a transition through lens-shaped and cap-shaped stages until it attained the shape of a bell in mature spermatozoa. Electron-dense acrosomal material that appeared as deposits in three portions of the vesicle finally joined in the center region at a late stage. Condensation of chromatin occurred in the anterior region of the nucleus. During transformation of the spermatids, many regularly spaced microtubules appeared beneath the plasma membrane except in the anteriormost region of the cell. The microtubules in a single alignment lay parallel to one another and encased the nucleus diagonally. During an early stage, the centrioles changed their orientation from perpendicular to longitudinal and rotated to become parallel to the long axis of the nucleus. Thus, the flagellum lay nearly straight along the cell axis. A cytoplasmic canal appeared transiently during the early stage. A droplet of cytoplasm was eliminated after descending along the flagella. The features of spermiogenesis in hagfish, which lies between invertebrates and vertebrates, are compared with those of other animals.  相似文献   

4.
Summary Testes of Bombyx mori Linné were fixed in buffered (pH 8.2) 1% OsO4 or 3 % KMnO4 and thin sections of the tissue, embedded in methacrylate or epoxy Epon resin, were studied under the electron or light microscope.At the late stage of differentiation of the spermatid, the nucleus shows an elongated conical contour, being composed of fine fibrillar elements. These fibrillar elements fixed in OsO4 measure 100 to 130 Å in diameter, while those fixed with KMnO4 are approximately 70 Å in diameter.It has been found for the first time in the spermiogenesis of the silkworm that two bands and a tubular structure develop in close proximity to one another and attached to the plasma membrane of the spermatid. The two bands fixed in OsO4 are electron dense, but in the material fixed with KMnO4, one of them, situated within the cell body, is as dense as that fixed in OsO4, while the other, outside the cell body, is much less dense. These apparently novel apparatuses develop from the caudal nuclear region along the elongating spermatid, but the dense band intertwines with the acrosome in the apical region of the nucleus along the major axis of spermatid, while the tubular structure and the clear band reach far into the nutritive cell where the dense band and acre-some are not visible.A possible relationship between the tubular structure and the nutritive cell has been discussed.This study was supported by Grant GM-8327-03 from the United States Public Health Service.  相似文献   

5.
余山拟异蚖和3种古蚖的精子均为扁圆形,未见顶体,线粒体集中在一侧;核呈环形、边位、中部由膜状体分布其间.领结古蚖的早期精细胞为球形,染色质凝集成团,继而核中裂并沿细胞赤道逐渐围绕成环,染色质呈细沙状,胞间有“桥”相通.核膜一端开始内陷,出现黑点.待发育到中期精细胞,这些黑点逐渐形成奇特的管状核膜陷体;染色质变成短线形,随后排成4—5行.线粒体颗粒状,细胞间仍有“桥”连通.晚期精细胞的染色质凝集成粗带,最后形成光滑质密的核,而多余的核物质,一段一段从精子一端脱离,形成一串孢囊状体夹在精子之间,待精子成熟游离时,这些孢状体分散开来.从观察结果表明拟异蚖精子与古蚖的非常相近.  相似文献   

6.
7.
The kinetic apparatus, the acrosome and associated structures, and the manchette of the spermatid of the domestic chicken have been studied with the electron microscope. The basic structural features of the two centrioles do not change during spermiogenesis, but there is a change in orientation and length. The proximal centriole is situated in a groove at the edge of the nucleus and oriented normal to the long axis of the nucleus and at right angles to the elongate distal centriole. The tail filaments appear to originate from the distal centriole. The plasma membrane is invaginated along the tail filaments. A dense structure which appears at the deep reflection of the plasma membrane is identified as the ring. The fine structure of the ring has no resemblance to that of a centriole and there is no evidence that it is derived from or related to the centrioles. The tail of the spermatid contains nine peripheral pairs and one central pair of tubular filaments. The two members of each pair of peripheral filaments differ in density and in shape: one is dense and circular, and the other is light and semilunar in cross-section. The dense filaments have processes. A manchette consisting of fine tubules appears in the cytoplasm of the older spermatid along the nucleus, neck region, and proximal segment of the tail. The acrosome is spherical in young spermatids and becomes crescentic and, finally, U-shaped as spermiogenesis proceeds. A dense granule is observed in the cytoplasm between acrosome and nucleus. This granule later becomes a dense rod which is interpreted as the perforatorium.  相似文献   

8.
This paper reports an electron microscope study of typical and atypical spermatogenesis in the pond snail, Cipangopaludina malteata. In the typical spermatid the nucleus undergoes profound changes as development proceeds, affecting both its form and internal fine structure. A large number of roughly parallel, dense filaments, arranged along the long axis of the nucleus, fuse with each other to form in the end the homogeneous helical body characteristic of the head of the adult spermatozoa. The nebenkern is apparently mitochondrial in nature and, in its early development, is similar to that of insects except that it appears as a double structure from the beginning. As differentiation proceeds, the mitochondria lose their membranes, and the residual, now denuded cristae, reorganize to give a parallel radial arrangement. In the last stages of development, the nebenkern derivations become applied to the sheath of the middle piece in a compact helical fashion. In the development of the atypical spermatozoa, the nucleus fails to differentiate and simply shrinks in volume until only a remnant, devoid of DNA, is left. The cytoplasm shows numerous vesicles containing small Feulgen-positive bodies, 80 to 130 mµ in diameter. These vesicles plus contents increase in number as spermatogenesis proceeds. The "head" structure of the atypical spermatozoa consists of a bundle (7 to 17) of tail flagella, each with a centriole at its anterior end. The end-piece of the atypical form appears brush-like and is made up of the free ends of the several flagella.  相似文献   

9.
This paper reports an electron microscope study of typical and atypical spermatogenesis in the pond snail, Cipangopaludina malteata. In the typical spermatid the nucleus undergoes profound changes as development proceeds, affecting both its form and internal fine structure. A large number of roughly parallel, dense filaments, arranged along the long axis of the nucleus, fuse with each other to form in the end the homogeneous helical body characteristic of the head of the adult spermatozoa. The nebenkern is apparently mitochondrial in nature and, in its early development, is similar to that of insects except that it appears as a double structure from the beginning. As differentiation proceeds, the mitochondria lose their membranes, and the residual, now denuded cristae, reorganize to give a parallel radial arrangement. In the last stages of development, the nebenkern derivations become applied to the sheath of the middle piece in a compact helical fashion. In the development of the atypical spermatozoa, the nucleus fails to differentiate and simply shrinks in volume until only a remnant, devoid of DNA, is left. The cytoplasm shows numerous vesicles containing small Feulgen-positive bodies, 80 to 130 mmicro in diameter. These vesicles plus contents increase in number as spermatogenesis proceeds. The "head" structure of the atypical spermatozoa consists of a bundle (7 to 17) of tail flagella, each with a centriole at its anterior end. The end-piece of the atypical form appears brush-like and is made up of the free ends of the several flagella.  相似文献   

10.
This is the first study investigating spermatogenesis and spermatozoan ultrastructure in the polyclad flatworm Prosthiostomum siphunculus. The testes are numerous and scattered as follicles ventrally between the digestive ramifications. Each follicle contains the different stages of sperm differentiation. Spermatocytes and spermatids derive from a spermatogonium and the spermatids remain connected by intercellular bridges. Chromatoid bodies are present in the cytoplasm of spermatogonia up to spermatids. During early spermiogenesis, a differentiation zone appears in the distal part of spermatids. A ring of microtubules extends along the entire sperm shaft just beneath the cell membrane. An intercentriolar body is present and gives rise to two axonemes, each with a 9 + “1” micro‐tubular pattern. Development of the spermatid leads to cell elongation and formation of a filiform, mature spermatozoon with two free flagella and with cortical microtubules along the sperm shaft. The flagella exit the sperm shaft at different levels, a finding common for acotyleans, but so far unique for cotylean polyclads. The Golgi complex produces numerous electron‐dense bodies of two types and of different sizes. These bodies are located around a perinuclear row of mitochondria. The elongated nucleus extends almost along the entire sperm body. The nucleus is wide in the proximal part and becomes narrow going towards the distal end. Thread‐like chromatin mixed with electron‐dense intranuclear spindle‐shaped bodies are present throughout nucleus. The general sperm ultrastructure, the presence of intranuclear bodies and a second type of cytoplasmic electron‐dense bodies may provide characters useful for phylogenetic analysis.  相似文献   

11.
The fine structure has been examined, of spermatogonia, spermatocytes,early spermatids, late spermatids and early spermatozoa nestlingagainst Sertoli cells in the gonad of Lymnaea stagnalis. Changes in the Sertoli cells are linked with the phases of spermdifferentiation. Details on differentiation particularly ofthe head of the sperm, are presented. (Received 14 March 1981;  相似文献   

12.
The process of spermiogenesis and the structure of spermatozoa in the mite, Hafenrefferia gilvipes (Koch) were studied ultrastructurally. Spermiogenesis was divided into six stages. The spermatids at stage 1 have the usual structure. At stage 2 the structure of the mitochondria and their distribution in the spermatid start to change, leading to the formation of specific mitochondrial derivatives which are subsequently incorporated into the nucleus of the spermatozoon. Parallel to the transformation of mitochondria occurs a reorganization of the nuclear material. The fully formed spermatozoon has a tadpole-like shape, with the cell nucleus located in the distended part of the cell, and containing mitochondrial derivatives in its karyoplasm. Acrosome, flagellum and centrioles are absent. The participation of peripherally distributed microtubules, present in spermatids at stages 4 to 6, in the shaping of the spermatozoon has been suggested.  相似文献   

13.
Summary Testes of the Japanese freshwater turtle Clemmys japonica Temmnick et Schlegel were fixed in 3% potassium permanganate buffered to pH 7.2 with Veronal-acetate buffer, and thin sections of the tissue, embedded in epoxy Epon resin, were studied under the electron or light microscope.At the early stage of differentiation of the spermatid, the cytoplasm contains a few mitochondria provided with cristae which are oriented transversely or longitudinally. As the differentiation of spermatids proceeds, the mitochondrion has been modified into a cupshaped body with a wall consisting of several concentric layers. Such body has been referred to the mitochondrial lamellar body. The formation of such a body is mainly attributed to the mitochondrial cristae, and subsequently to the membrane system of the endoplasmic reticulum. In a more advanced stage of differentiation, the mitochondrial lamellar bodies appear wrapped around a bundle of tail filaments, and seem to present a very wide surface available for the localization of organized enzyme systems to facilitate the motion of spermatozoa.Prior to the formation of the mitochondrial lamellar bodies, the Golgi apparatus has been reorganized into a peculiar body with a floral appearance, consisting of numerous tubular elements, and revealing to be positive in PAS-reaction. The body has been designated as the tubular body which has never been demonstrated in any spermatogenic cells through animal kingdom.One to three tubules oval in cross section, approximately 430 × 700 Å in diameter, have been found in the nucleoplasm along the longitudinal axis of a greatly elongated, cone-shaped nucleus of the spermatid. The tubules open on the apex surface of the nucleus, but they are not encountered in the acrosome. A possible physiological significance of the tubules has been discussed in view of the function of the acrosomal tubules in the decapod and other species spermatozoa as well as on the basis of the metabolism of nucleus.This study was supported by Grant GM-8327 from the United States Public Health Service.We wish to express our gratitude to Dr. B. A. Afzelius, Wenner-Gren Institute, University of Stockholm, for his valuable suggestion to the present work.  相似文献   

14.
15.
Changes in chromatin structure at different stages of differentiation of human spermatids were studied. It was shown that, in nuclei of early spermatids, chromatin is loosely packed and its structural element is an 8-nm fiber. This "elementary" fiber is predominant at the initial stages of differentiation; in the course of maturation, it is replaced by globular elements approximately 60 nm in diameter. In intermediate spermatids, these globules start to condense into fibrillar aggregates and reduce their diameter to 30-40 nm. At all stages of spermatid maturation, except the final stages, these globules are convergence centers for elementary fibers. This remodelling process is vectored and directed from the apical (acrosomal) to the basal pole of the nucleus. In mature spermatids, the elementary 8-nm fibers are almost absent and the major components are 40-nm fibrillar aggregates. The nuclei of mature spermatids are structurally identical with the nuclei of spermatozoa with the so-called "immature chromatin," which are commonly found in a low proportion in sperm samples from healthy donors and may prevail over the normal cells in spermiogenetic disorders. The cause of this differentiation blockade remains unknown. Possibly, the formation of intermolecular bonds between protamines, which are required for the final stages of chromatin condensation, is blocked in a part of spermatids. The results of this study are discussed in comparison with the known models of nucleoprotamine chromatin organization in human spermatozoa.  相似文献   

16.
17.
Abstract. The spermatozoa of Exogone naidina and E. dispar are characterized by a prominent bell-shaped acrosome, a spheroidal nucleus, and a conventional flagellum. During spermiogenesis, the acrosomal vesicle undergoes conspicuous modifications leading to its final bell shape with a posterior opening. The subacrosomal material initially shows radiating filaments but in mature sperms it appears as a meshwork of electron-opaque material. The acrosomal axis is oblique with respect to the main longitudinal sperm axis. The chromatin is arranged in electron-opaque strands in the early spermatids, then becomes amorphous, and is finally organized in filaments in mature sperms. Centrioles are orthogonally arranged beneath the nucleus and fibers radiate from the distal centriole to contact the plasma membrane and the single mitochondrion. The latter is located eccentrically on the side of the nucleus opposite the acrosome. A disk-shaped structure is evident beneath the distal centriole. The flagellar axoneme has a 9+2 microtubule pattern. A conspicuous glycocalyx surrounds the flagellar plasma membrane, and an electron-lucent space is present between these two structures at the distal tip of the flagellum. We compare the sperm morphology of these two species of Exogone with that described in other members of the subfamily Exogoninae. The fine structure of these two species supports the occurrence of an ent-aquasperm type within Exogoninae, in accordance with the brood strategy present within this subfamily. The mode of reproduction is of taxonomic importance for defining subfamilies within Syllidae, and is likely also of phylogenetic significance. Because epitoky is probably plesiomorphic, the ent-aquasperm type found in Exogoninae can be considered a derived feature within Syllidae.  相似文献   

18.
Changes in chromatin structure at different stages of differentiation of human spermatids were studied. It was shown that, in nuclei of early spermatids, chromatin is loosely packed and its structural element is an 8-nm fiber. This “elementary” fiber is predominant at the initial stages of differentiation; in the course of maturation, it is replaced by globular elements approximately 60 nm in diameter. In intermediate spermatids, these globules start to condense into fibrillar aggregates and reduce their diameter to 30–40 nm. At all stages of spermatid maturation, except the final stages, these globules are convergence centers for elementary fibers. This remodelling process is vectored and directed from the apical (acrosomal) to the basal pole of the nucleus. In mature spermatids, the elementary 8-nm fibers are almost absent and the major components are 40-nm fibrillar aggregates. The nuclei of mature spermatids are structurally identical with the nuclei of spermatozoa with the so-called “immature chromatin,” which are commonly found in a low proportion in sperm samples from healthy donors and may prevail over the normal cells in spermiogenetic disorders. The cause of this differentiation blockade remains unknown. Possibly, the formation of intermolecular bonds between protamines, which are required for the final stages of chromatin condensation, is blocked in a part of spermatids. The results of this study are discussed in comparison with the known models of nucleoprotamine chromatin organization in human spermatozoa.  相似文献   

19.
Spermatozoa of abalone Haliotis discus were examined before and during the acrosome reaction with special regard to one of the newly formed structures: a cylindrical structure surrounding a part of the elongated acrosomal process near the opening of the acrosomal vesicle. The structure, about 0.2 μm in diameter and about 1 μm in length, was revealed to be composed of a tightly coiled, fine tubular structure about 20 nm in diameter. In the course of the acrosome reaction, a triple-spiral structure appeared in the anterior part of the acrosomal vesicle. Since this spiral structure was also composed of a tightly coiled 20 nm tubule(s), it was concluded that this structure was transformed into the single-walled cylindrical structure by simple stretching in the direction of its longitudinal axis. In the clumps of spermatozoa that underwent acrosome reaction in suspension, the cylindrical structures were frequently found in contact with each other and/or other structures, indicating that they are very sticky.  相似文献   

20.
Spermiogenesis is the final phase during sperm cell development in which round spermatids undergo dramatic morphological changes to generate spermatozoa. Here we report that the serine/threonine kinase Stk33 is essential for the differentiation of round spermatids into functional sperm cells and male fertility. Constitutive Stk33 deletion in mice results in severely malformed and immotile spermatozoa that are particularly characterized by disordered structural tail elements. Stk33 expression first appears in primary spermatocytes, and targeted deletion of Stk33 in these cells recapitulates the defects observed in constitutive knockout mice, confirming a germ cell-intrinsic function. Stk33 protein resides in the cytoplasm and partially co-localizes with the caudal end of the manchette, a transient structure that guides tail elongation, in elongating spermatids, and loss of Stk33 leads to the appearance of a tight, straight and elongated manchette. Together, these results identify Stk33 as an essential regulator of spermatid differentiation and male fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号